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Mapping a forest mosaic

A comparison of vegetation and bird distributions using geographic boundary analysis
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Abstract

Many areas of ecological inquiry require the ability to detect and characterize change in ecological variables across
both space and time. The purpose of this study was to investigate ways in which geographic boundary analysis
techniques could be used to characterize the pattern of change over space in plant distributions in a forested wetland
mosaic. With vegetation maps created using spatially constrained clustering and difference boundary delineation,
we examined similarities between the identified boundaries in plant distributions and the occurrence of six species
of songbirds. We found that vegetation boundaries were significantly cohesive, suggesting one or more crisp
vegetation transition zones exist in the study site. Smaller, less cohesive boundary areas also provided important
information about patterns of treefall gaps and dense patches of understory within the study area. Boundaries for
songbird abundance were not cohesive, and bird and vegetation difference boundaries did not show significant
overlap. However, bird boundaries did overlap significantly with vegetation cluster boundaries. Vegetation clus-
ters delineated using constrained clustering techniques have the potential to be very useful for stratifying bird
abundance data collected in different sections of the study site, which could be used to improve the efficiency of
monitoring efforts for rare bird species.

Introduction change the distribution of some ecological variable
over part of an area (Hansen & diCastri 1992; Johnston
etal. 1992; Fortin & Drapeau 1995; Fortin et al. 1996).
The ability to create maps of vegetation boundaries
has many applications, including use as a baseline for

climate or land use change studies, as a source of data

Traditionally, plant ecologists have focused their ef-
forts on study sites that are relatively homogeneous
with respect to species composition and age. Studies
may investigate heterogeneity in plant communities by

comparing sampling units that support different plant
communities, but typically the goal is to minimize
within-site variation so that effects of or differences
in plant community can be detected statistically. Al-
though this approach is useful for addressing a variety
of research questions, many other areas of ecological
inquiry require the ability to detect and characterize
change, or boundaries, in ecological variables across
both space and time (Turner & Gardner 1991; Wiens
et al. 1985; Wiens 1995). Vegetation boundaries can
be associated with gradients in one or more envi-
ronmental variables, or can be caused when natural
or human-related disturbances (e.g., fire or logging)

for pattern analysis, as a template for studying the
relationships among spatial variables, and as habitat
maps for animal species. Here we demonstrate how
two tools from the field of geographic boundary analy-
sis can be used to characterize and map vegetation
patterns in a wetland forest mosaic.

The boundary detection techniques we present here
arose primarily from work related to processing and
classifying images obtained via remote sensing. Algo-
rithms for image textural analysis were needed to iden-
tify areas of rapid spatial change in the images (Hobbs
& Mooney 1990; Musick & Grover 1991; Quattrochi
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& Pelletier 1991; Fortin 1999). Identifying ‘edges’ has
allowed researchers to extract locations of linear fea-
tures from the images, such as vegetation boundaries,
roads, and geologic contacts. As work in the field of
edge detection has progressed, new methods have been
developed that allow users to take advantage of multi-
variate data, including multi-spectral remotely-sensed
images (Turner et al. 1991; Johnston et al. 1992; Fortin
1994; Fortin et al., 1996). Here we focus on two
of these multivariate methods, multivariate clustering
algorithms, and difference boundary delineation, or
‘wombling’ (Womble 1951; Fortin 1994). Although
our application identifies boundaries in field-based
vegetation data, the approach is also relevant to the
analysis of remotely sensed imagery.

The ability to detect boundaries using more than
one vegetation variable can be particularly useful
for mapping complex landscapes. In particular, re-
searchers working in areas with highly variable soil
conditions, and where disturbance is common may
find that using a suite of variables provides a great
deal of flexibility in terms of how vegetation is rep-
resented in a map. Using boundary detection tools,
many different types of vegetation categories can be
identified, and the types are not restricted to the ob-
server’s predetermined list of classes. In addition, the
landscape can be characterized not only by the values
of vegetation variables in different areas (e.g., density
of a particular overstory species or size class), but also
by the variability of a particular variable (or set of
variables) across space. Through examining both the
location of boundaries identified by various methods,
and investigating how various variables contributed to
these boundaries, the heterogeneity of landscapes be-
comes the focus of attention, which we suggest will
be very useful in studies of interactions between plant
associations in dynamic landscapes.

Geographic boundary analysis typically involves
two steps. The first step, boundary detection, identifies
spatial locations where a variable or variables show
large differences when values at neighboring sites are
compared. The second step is statistical evaluation
of these boundary features (areas with high rates of
change across space) using measures such as boundary
contiguity or overlap between two sets of boundaries
(Fortin 1994; Fortin et al. 1996; Jacquez et al. 2000).
A key difference between boundary analysis and tra-
ditional vegetation mapping methods (e.g., those dis-
cussed in Kiichler 1967) is the focus on the role of
space. By explicitly considering space, we can pro-
duce maps that highlight within-site spatial variation.

Maps that show and describe heterogeneity are likely
to offer many insights into the processes driving ob-
served ecological patterns, and may be particularly
useful tools for tracking changes in vegetation over
time (Stohlgren et al. 2000).

The two boundary detection methods we demon-
strate here, spatially constrained cluster analysis and
difference boundary detection (wombling), identify
edges in different ways. Spatially constrained cluster
analysis is a modification of the more familiar methods
of ‘ordinary’ unconstrained cluster analysis, which
group data based on similarity in measured attributes.
Constrained clustering groups sampling locations into
clusters based on both their geographic proximity
and the similarity of their attributes, with bound-
aries placed between the resulting clusters (Legendre
& Legendre 1983; Fortin & Drapeau 1995; Gor-
don 1999). In effect, these cluster-based approaches
produce maps that show bounded areas of relative
homogeneity.

In contrast, difference boundary detection first re-
quires estimation of surface gradients (or the equiva-
lent for categorical data), and then identifies locations
with the highest rate of change (or slope) as bound-
ary elements. To date, the determination of how large
a slope value is required for a location to be part of
a boundary is achieved through an arbitrary thresh-
old (usually the top 5-20% of locations), although
attempts have been made to find more objective means
of selecting boundary locations (Jacquez & Maruca
1998). After selecting boundary elements, decisions
on whether to link adjacent boundary elements to form
subboundaries (Jacquez et al. 2000; also called sub-
graphs by Oden et al. 1993) can be made. Connection
criteria that evaluate similarity in surface gradient di-
rections are used for this purpose (Oden et al. 1993;
Fortin 1994; Fortin et al. 1996). The first criterion
prevents two adjacent locations with surface gradients
in opposite directions from being linked. The second
criterion prevents linkages between two locations for
which a link would occur parallel to the direction of
change, which is important because a boundary link
implies that the change is across (i.e., perpendicular
to) the link. As with the slope value threshold, con-
nection criteria for linking boundary elements are also
typically arbitrary.

Linking boundary elements in this way allows
for the assessment of boundary contiguity, or ‘cohe-
siveness’, defined as the degree to which boundary
elements are linked to form relatively few, highly
connected subboundaries. Evaluating cohesiveness is



essential because wombling with an arbitrary thresh-
old always identifies areas with ‘large’ slope, even if
there is no real boundary present. If a true continu-
ous boundary is present, the linked boundary elements
should extend over space in a cohesive, non-random
pattern (Oden et al. 1993; Fortin 1994). However, if
areas with high rates of change are scattered across the
landscape, or if adjacent points show different direc-
tions of change, boundary elements will not be linked
and the ‘boundary’ will appear as a set of isolated
points and/or short line segments. Such would be the
case, for example, if the surface were either noisy or
mostly flat, or if the scale of measurement was coarser
or finer than the phenomenon under study.

The purpose of this study was to investigate ways
in which the geographic boundary analysis techniques
of spatially agglomerative clustering and difference
boundary detection could be applied to create vegeta-
tion maps for a forested wetland in northern Michigan.
This wetland can be thought of as a mosaic dominated
alternately by hardwoods and conifers. The study site
also contains a large windthrow area where the den-
sity of standing trees is low, but understory vegetation
is quite dense. These strong differences in vegetation
composition and density over space make vegetation
data from this site well-suited to boundary analysis.
To illustrate one of the potential uses of these vege-
tation maps, the distribution of six forest bird species
with different habitat preferences are also analyzed us-
ing the same tools, and compared with the vegetation
maps.

To begin our demonstration, we used spatially
constrained clustering to delineate forested areas into
ecologically meaningful subsections. Next, we applied
the second method, difference boundary detection,
with the goal of identifying areas of distinct change
over space. With the results of the difference bound-
ary delineation, we conducted a statistical analysis
of difference boundary contiguity (or cohesiveness).
Cohesive vegetation boundaries suggest that observed
patterns in plant distributions are due to some under-
lying ecological factor, such as a difference in soil
type or moisture availability, and are often perceived
as ecotones (Johnston et al. 1992; Fortin 1994). If
vegetation difference boundaries are not significantly
cohesive, the heterogeneity in the forest may be more
fine-grained than the scale on which boundaries were
sought. Fine-grained patterns of change across space
might be found if variation in plant distributions were
primarily due to small-scale disturbances, such as
treefall gaps (White & Pickett 1985). Of course, both
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of these types of boundaries (cohesive and ‘broken’)
could be present at once, as the result of a structurally
complex forest. Whether or not a particular analysis
technique would detect one or both of these patterns
depends primarily on the scale of vegetation sampling
(Fortin 1999). One of the major challenges of bound-
ary analysis is that of choosing the appropriate scale
for the ecological question addressed; the choice of
sampling scale can dramatically alter the results of a
geographic boundary analysis (Fortin 1999; Jacquez
et al. 2000). These steps completed the boundary de-
tection and analysis component of our work; the next
steps focused on examination of relationships between
vegetation and bird boundaries using overlap analysis
techniques (Jacquez 1995; Fortin et al. 1996).

Many studies have shown that the distribution of
breeding forest bird species can be closely linked to
a particular combination of tree species or vegetation
structure (e.g., Smith 1977; James & Wamer 1982;
Freemark & Merriam 1986). To investigate this pos-
sibility in our forest mosaic, we compared difference
boundaries for bird distribution data with the vege-
tation boundaries (difference boundaries and cluster
boundaries) using boundary overlap analysis (Jacquez
1995; Fortin et al. 1996). Strong overlap would in-
dicate that the differences in vegetation are indeed
ecologically meaningful as a factor contributing to the
distribution and abundance of breeding birds in this
system. Identifying associations between bird species
boundaries and vegetation boundaries could be very
helpful in the development of monitoring plans and
conservation strategies for rare species.

To demonstrate the practical use of the vegetation
classification via spatially constrained clustering, we
examined the use of these clusters for stratification of
bird survey samples. The ability to do post-hoc stratifi-
cation of the vegetation could help reduce the variance
associated with estimates of mean relative abundance
(per species) for the total study site (Scheaffer et al.
1990). This is important because, in general, estimates
of mean relative bird abundance per point tend to be
low (i.e., less than one), while variances are relatively
high (Verner 1985; Hall 1996). The purpose of strati-
fying samples would be to minimize the within-strata
variance, and maximize the variance between strata
(Scheaffer et al. 1990). If birds associate closely with
vegetation clusters, as we expected they should, then
the clusters should be useful in stratifying samples of
bird data, while also representing a describable habi-
tat unit that can be compared to other studies or other
years at the same site. If the stratification is effective,
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conservation biologists will be able to calculate means
with lower associated variances, which will facilitate
detection of changes in relative abundance over time.

Methods

Study area

The study was conducted at the University of Michi-
gan’s Biological Station (UMBS), in the northern
lower peninsula of Michigan, USA, in Emmett and
Cheboygan Counties (45°35" N lat., 84°42" W long).
We focused on a 45 ha section of the western half of
the largest contiguous forested wetland area at UMBS,
known as Reese’s Swamp. Much of this area was
logged and exposed to post-logging fires in the late
1800s, but the forest has regenerated with little hu-
man influence since about 1920 (Gates 1942). Most
of the wetland area consists of Thuja occidentalis
L. (nomenclature based on Barnes & Wagner 1981)
swamps that are fringed by mixed hardwood uplands,
and bisected by numerous small streams. Adjacent to
areas of 7. occidentalis swamp are patches of mature
hardwoods; the hardwood areas are often associated
with sand ridges that radiate west from Little Carp
River, a small river on the east side of the study area.
Where the canopy is closed, the understory saplings
and shrubs tends to be sparse. Ground cover in these
areas consists primarily of leaf litter with sparse ferns,
moss, and herbaceous vegetation. In canopy gap areas,
understory vegetation is often extremely dense, and
is dominated by Abies balsamea (L.) Miller in some
areas, and Acer rubrum L. and other deciduous species
in others. Of particular note, there is a large wind-
throw area in the north-eastern section of the plot with
few standing trees and a high density of deciduous
understory vegetation. There also are dense patches
of Alnus rugosa (Du Roi) Sprengel in the wettest ar-
eas of the swamp. At the southern boundary of the
swamp is Burt Lake; the southern-most sample points
are within 100 m of open water. Within this 45 ha area
of forested wetland, a transect system was established
with permanent markers placed on a 50 m-interval
regular grid.

Field methods

Vegetation sampling

We measured forest vegetation following the 0.04 ha
circular plot (11.3 m radius) method of James &
Shugart (1970) in July and August of 1995. This
method for collecting vegetation data was chosen be-
cause it is commonly used in studies that assess bird
habitat. The study site was divided into 177 square
sections (50 m on each side), with permanent loca-
tion markers placed at the corner of each grid square.
Within these squares, vegetation sample points were
randomly determined, with the constraint that the en-
tire sample must fit within the grid square. The species
and size class of all trees with a dbh > 7.5 cm in
the circular plots were recorded, however this analysis
uses only the number, and not the size distribution or
basal area, for each species. Shrub and sapling den-
sity was estimated by counting the number of stems
< 7.5 cm dbh of each species along two 22.6 m long
by 1 m wide transects (north-south and east-west)
through the center (which is counted only once) of
the circular plot. James and Shugart’s method also
included measures of ground cover, canopy cover,
and canopy height, but we chose to use only data on
overstory (tree) and understory (shrubs and saplings)
because we felt they were most likely to be strongly
related to bird species’ abundances and distributions.

Bird sampling

Point counts, in which all birds heard or seen at a
specific location within a given interval of time are
recorded (Ralph et al. 1993) were conducted between
0615 and 1130 EDT from June 3-July 19, 1995. Sun-
rise at UMBS occurred between approximately 0520
and 0550. We conducted 73 point counts, using the
permanent location markers within Reese’s Swamp to
identify parallel transect lines that ranged from 300 to
750 m in length, and were 150 m apart. The first point
on each transect was located at a randomly selected
distance (between 0 and 40 m) from the start of the
transect, and subsequent points were sampled at 150 m
intervals. Although no two transects visited on the
same sampling day were less than 150 m apart, tran-
sects completed in July often crossed or came within
150 m of points sampled in June. All counts lasted
for 10 minutes total, and all birds that could be heard
or seen were recorded. For this application, only the
birds detected within 70 m were tabulated. Because the



point of this study was to examine the spatial bound-
aries of both birds and vegetation, and vegetation was
variable and measured at a small scale (11.3 m radius
circular sample on a 50 m grid), this small-scale bird
measure appeared appropriate. Reducing the radius of
the counts to an even smaller size that was a closer
match to the scale of the vegetation measures would
lead to smaller sample sizes per point (Hall 1996).
In choosing what form of bird data to use, we have
attempted to maximize the number of birds observed
while minimizing overlap between sampling points
and keeping the amount of area sampled similar to the
scale of the vegetation data.

We used data for the six most common war-
bler species in our comparison of overlap between
bird boundaries and vegetation clusters and bound-
aries. We focused on six common species with similar
abundance levels so that we could do the analyses
without having to standardize or weight species to ac-
count for differences in abundance. These six species
(Black-and-white Warbler Mniotilta varia, Black-
throated Green Warbler Dendroica virens, Nashville
Warbler Vermivora ruficapilla, Canada Warbler Wilso-
nia canadensis, Ovenbird Seiurus aurocapillus, and
Northern Waterthrush Seirus noveboracensis) were
expected, based on known habitat associations (e.g., as
described in Collins et al. 1982; Brewer et al. 1991), to
show different patterns of distribution within the study
site.

Analysis methods

Data sets

To represent overstory vegetation, we began by treat-
ing the number of each of the five most common
overstory species recorded in the 0.04 ha samples as
separate variables. The choice of how to group the
data is important because, unless a specific weighting
scheme is chosen, each individual variable receives an
equal weight in determining spatial boundaries. These
five species, in order of total abundance, were T. oc-
cidentalis, Populus tremuloides Michaux, Betula pa-
pyrifera Marsh., Abies balsamea (L.) Miller, and Acer
rubrum. Less-common overstory tree species counts
were grouped into either ‘other deciduous species’
[Fraxinus nigra Marsh., Prunus serotina Ehrhart,
Quercus rubra L., Tilia americana L., Ulmus ameri-
cana L., Amelanchier arborea (Micheaux f.) Fernald,
Alnus rugosa, and Salix spp.] or ‘other coniferous
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species’ [including Pinus strobus L., Pinus resinosa
Aiton, Picea glauca (Moench) A. Voss, Picea mariana
(Miller) BSP, and Larix laricina (Du Roi) K. Koch].
The understory vegetation was grouped into two vari-
ables, deciduous or coniferous. The most common
deciduous understory species were A. rubrum, Acer
spicatum Lamarck, F. nigra, A. aborea, A. rugosa,
B. papyrifera, P. tremuloides, Cornus stolonifera
Michaux, and Ilex verticillata (L.) Gray, while conifer-
ous understory stems were mostly A. balsamea, with
lesser amounts of T. occidentalis, P. glauca, P. mar-
iana, and P. strobus. Since the vegetation data were
regularly spaced, we were able to treat them as a grid
coverage with a pixel size of 50 m by 50 m.

The bird data set had six variables, representing
the number of birds detected of each of the six focal
warbler species. Because breeding songbirds are ter-
ritorial (leading to relatively even spacing across the
landscape), and territory sizes are generally larger than
the 70 m radius circle sample unit, the abundance of
birds of the same species at a point tends to be low
(ranging from 0-3). For analysis, the bird data were
represented as a point coverage, with the center of the
70 m radius area covered in the count treated as the
sample location in analyses and figures.

Spatially constrained agglomerative clustering

Forest types and their boundaries were detected us-
ing a spatially constrained clustering technique similar
to that described by Legendre (1987) and used to
define tree communities (Legendre & Fortin 1989;
Fortin & Drapeau 1995). In seeking a partition for
a given number of clusters, we first used a spatially
constrained agglomerative clustering method, using
flexible-link linkage (also called intermediate linkage;
see Legendre & Legendre 1983 for details) to calculate
cluster dissimilarities. This method requires specifica-
tion of a connectedness parameter, which determines
the ‘distance of fusion’ for a pair of clusters. Dis-
tance of fusion is the dissimilarity value used to select
the pair of clusters to be merged at each iteration.
It is calculated for each pair of adjacent clusters by
first enumerating and ordering all pairwise dissimilar-
ities between objects (i.e., sample locations) in one
cluster with objects in the other. The distance of fu-
sion is then the (Cnjnp)th dissimilarity, where C is
the connectedness parameter and n; and n, are the
numbers of objects in the two clusters. We chose a
connectedness value of 0.8, which is closer to com-
plete link clustering on the continuum spanned by
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the single link (low connectedness) and complete link
(high connectedness) methods, because we wanted to
emphasize internal cohesion of clusters over external
isolation (Gordon 1999). To calculate similarities be-
tween pairs of locations we used the Bray and Curtis
(also called Steinhaus) dissimilarity measure, as it is
self-normalizing and particularly appropriate for fre-
quency data (Legendre & Legendre 1983). After the
agglomerative step was complete, we used a k-means
clustering algorithm to refine the partition. The k-
means method is an iterative procedure that adjusts
cluster memberships in the & clusters to minimize the
within-cluster sum-of-squares error (SSE). Although
spatially constrained k-means cannot guarantee that a
global optimum partition will be found, the probabil-
ity of finding the global optimum (or a partition very
similar to it) is increased by starting with a close ap-
proximation, such as that achieved through spatially
constrained agglomerative clustering.

A common challenge when conducting multivari-
ate clustering is that of deciding how many clusters are
actually represented in the data (Milligan & Cooper
1985; Gordon 1999). To aid our selection of num-
ber of clusters for the final partition, we found the
‘best’ partition for cluster counts between 5 and 25
(inclusive), and for each we calculated a goodness-
of-fit index G (k) described originally by Califiski &
Harabasz (1974) for use in unconstrained clustering
applications. Milligan & Cooper (1985) evaluated this
index and other stopping rules, and found G (k) to be
among the best at correctly identifying the number of
clusters in simulated data sets. The index is defined by

_ SSEg/(k—1)
~ SSEw/(n—k)’

where SSE p is the between-cluster SSE, SSEw is the
within-cluster SSE, n is the total number of objects
(in this case, distinct locations) and & is the number
of clusters. Local maxima for G (k) identified poten-
tial final partitions at 9, 14, 16, 19, and 21 clusters
(Figure 1). From these choices we selected 14 as the
cluster count for the final partition, for several reasons.
Because we were interested in relationships between
vegetation types and the spatial distributions of breed-
ing warblers, we wanted the scale of the partition to be
no finer than that of warbler territories for the species
examined, which are typically no smaller than 0.5 ha.
Therefore, we wanted to reject any partition with too
many singleton clusters. Because we were also inter-
ested in using the partition for stratified sampling, we
wanted a relatively low upper limit on the number of
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Figure 1. Within-cluster sum of squares error (e) and good-
ness-of-fit index G (k) (M) for partitions with cluster counts ranging
from 5-25. Local maxima in G (k) occurred at 9, 14, 16, and 21
clusters; these partitions were examined visually to obtain a final
partition with 14 clusters.

‘strata’, so that sample sizes within each would be
adequate for this application. Partitions with 16, 19,
and 21 clusters were deemed too fine-scaled, with too
many small clusters, to be appropriate for this study.
The partition with 9 clusters did not reflect some of
the spatial pattern that we judged could be important
to warblers in the selection of territory location.

Difference boundary detection

We used the wombling method for grid (Womble
1951) and irregular point data (triangulation wombling,
Fortin 1994) to detect spatial zones of rapid change
in vegetation densities and warbler densities, respec-
tively. Throughout the text, we will refer to these
zones as difference boundaries (Jacquez et al. 2000).
To ‘womble’ with multiple variables, surface gradients
were first estimated for each variable, the magnitudes
of which were averaged at each potential boundary
location. To distinguish those locations of large aver-
age slope (boundary elements), we applied a threshold
to each data set that was selected by first examining
the distribution of average gradient magnitudes, in the
form of a histogram, and looking for natural breaks.
This resulted in the designation of 15% of the po-
tential boundary locations as boundary elements for
the vegetation data, and 17% for the bird data. Adja-
cent boundary elements were then connected to form
continuous boundaries (or subboundaries) according
to two connection criteria: adjacent gradient vectors
could differ in direction by no more than 100 deg,
and each vector could be no closer in direction to its
connecting line than 30 deg.

To evaluate the cohesiveness of the vegetation
and warbler boundaries, subboundary statistics were



calculated and evaluated using Monte Carlo proce-
dures. The statistics, developed by Oden et al. (1993),
are: number of subboundaries, number of singletons
(subboundaries comprised of a single boundary ele-
ment), maximum and mean length of subboundaries
(i.e., number of connected boundary elements), and
maximum and mean diameter. Subboundary diame-
ter is defined as the minimum number of connections
between the most separated pair of boundary ele-
ments within a subboundary. Continuous boundaries
delineating pronounced landscape features are char-
acterized by a small number of subboundaries, few
singletons, and high mean and maximum lengths and
diameters (Fortin & Drapeau 1995). The null model
used to evaluate these statistics was that of complete
spatial randomness; 500 simulations were performed
to amass the null distribution. For these and all other
statistical tests, alpha was set at the 0.05 level of
significance.

Overlap analysis and sampling example

To examine the coincidence between (1) the war-
bler difference boundaries and vegetation difference
boundaries, and (2) the warbler difference bound-
aries and vegetation cluster boundaries, we used the
distance-based boundary overlap statistics developed
by Jacquez (1995). For our work the statistics are:

— Oy : average geographic distance from a boundary
element in the warbler boundaries to the nearest
boundary element (or cluster edge) in the vegeta-
tion boundaries.

— Oy: average geographic distance from a bound-
ary element (or cluster edge) in the vegetation
boundaries to the nearest boundary element in the
warbler boundaries.

— Owy: average geographic distance from a bound-
ary element in either set of boundaries to the
nearest boundary element in the other set.

Ow and Oy measure directional association between
boundary sets, while Oy y reflects the overall degree
of overlap, regardless of direction. Because there ex-
ists a large body of ecological evidence to suggest that
vegetation directly influences bird distributions (e.g.,
Smith 1977; Collins et al. 1982; James & Wamer
1982; Cody 1985; Freemark & Merriam 1986), we
chose a null model that preserved vegetation bound-
aries and randomized only the warbler distribution
data during Monte Carlo simulations. Again, we used
500 Monte Carlo runs and randomized the original
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data to simulate complete spatial randomness of birds
recorded at the sampling points. All boundary detec-
tion and analysis procedures were performed using
the pre-release version of TerraSeer, Inc.’s Boundary-
Seer software for geographic boundary analysis (see
http://www.terraseer.com for more information).

To demonstrate the potential use of cluster analysis
as a tool for stratifying bird abundance data collected
on the research site, we chose to reduce the total num-
ber of clusters from 14 to 4, a number more practical
for this type of task. To do this, we first merged the
two island singleton clusters (a one pixel cluster sur-
rounded by a single other cluster) with their respective
surrounding clusters. To merge the other singleton, we
examined the dissimilarities between each singleton
and its neighbors using the Bray and Curtis measure
comparing means, and then merged the singleton with
its most similar neighbor. Other clusters with low
dissimilarities were then grouped together, and final
choices in terms of groupings were made based on
the examination of means of various vegetation vari-
ables, with a focus on grouping clusters with similar
understory vegetation densities. To determine mean
bird abundance values stratified by cluster, each point
count location was assigned to the overlapping vege-
tation cluster. If the count location was on a cluster
boundary, two rules were followed:

— if the count was on the edge of a large cluster group
and a smaller group, it was assigned to the smaller
group, as these groups had smaller sample sizes;

— if the count was on the edge of two smaller clus-
ters, a coin flip was used to assign it to a vegetation
strata.

Three point count locations that were outside of the
vegetation sampling area were not used in this part of
the analysis.

Results

The distribution of the nine vegetation variables in the
study area (Figure 2) demonstrates the heterogeneity
of the site vegetation. We determined that the most
appropriate partition of the data produced 14 clusters,
shown (along with the warbler difference boundaries)
in Figure 3. To help in interpretation of the vegeta-
tion cluster delineation, the mean and standard error
for each vegetation variable were calculated by cluster
(Table 1). Through examination of the vegetation val-
ues for each cluster (Table 1, Figure 2), it is possible to
the identify the vegetation variables driving the bound-
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T. occidentalis

A. rubrum

Other overstory deciduous

A. balsamea

B. papyrifera

Coniferous understory

Other overstory conifers

P. tremuloides

Deciduous understory

Figure 2. Spatial pattern of each of the nine vegetation variables at the Reese’s Swamp site (each grid cell is 50 x 50 m). Dark values indicate
high densities for that variable, while lighter values indicate lower densities. The southern boundary of the site is particularly irregular because

it follows the edge of a small lake.

ary placement. For example, the largest cluster (num-
ber 14, N = 89) was dominated by T. occidentalis in
the overstory and contains very little understory veg-
etation. Clusters 2 and 4 are small areas that deviate
from the surrounding cluster (10) in that they con-
tain much less deciduous understory. Clusters 6, 7, 8,
and 9 collectively represent a highly variable transition
zone between clusters 14 (high T occidentalis) and 10
(mostly characterized by high values for deciduous un-
derstory). Cluster 11 is similar to 10, except it contains
considerably more T. occidentalis. Clearly, small areas
were commonly identified as clusters — for example,
Cluster 12 is dominated by a patch of spruce (high
‘other conifers’) amongst the T. occidentalis (cluster
14).

Using the Bray and Curtis dissimilarity between
means for each cluster pair, we determined that the
following groups of clusters represented the same
vegetation types: clusters 3, 5, and 10, character-
ized primarily by high counts of deciduous under-

story; clusters 7 and 13, characterized by moderately
high T. occidentalis densities and a dense coniferous
understory; and clusters 1 and 9, characterized by
mixed overstory species composition and relatively
low understory counts. Characteristics of these clus-
ter groups, which formed the basis of our stratified
sampling scheme, are presented in Table 2.

The difference boundaries (with subboundary con-
nections) for vegetation and warblers are shown in
Figure 4. The subboundary statistics for the vegeta-
tion data (based on a 15% threshold) suggest that the
number of subboundaries is significantly smaller than
expected under a null hypothesis of complete spatial
randomness (p = 0.03), while the mean length is
significantly longer than expected (p = 0.03, Ta-
ble 3). The mean diameter was nearly significant
(p = 0.056), which, although far from conclusive
by itself, can aid in the interpretation of the statis-
tics as a set. The number of singleton subboundaries,
maximum length, and maximum diameter were not
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Table 1. Mean (S.E.) number of overstory trees and understory stems at vegetation sample sites in the 14 different clusters, listed by
cluster number (see Figure 3). Total area for overstory samples is 0.04 hectares, and total area for understory samples is 44 m2. N =

number of vegetation samples included each cluster.

Vegetation variable

Cluster Thuja Abies other Acer Betula Populus other Coniferous  Deciduous
occidentalis  balsamea  conifers  rubrum  papyrifera  tremuloides  deciduous  Understory  understory
1 44 9.4 1.6 32 7.1 49 4.7 8.3 8.6
N=14 (1.0) (2.8) (0.59) (1.2) (1.3) (0.85) (1.0) 4.4 (2.0)
2 0 8.5 0 1.5 0 0 12.5 0.5 16.5
N=2 0) (5.5) 0 0.5) 0) 0) (10.5) 0.5) (15.5)
3 0 15 1 0 1 6 2 0 55
N=1 - - - - - - - - -
4 15 1 0 3 2 0 1 0 10
N=1 - - - - - - - - -

5 1 10 1 1 4.5 35 8.5 1 94.5
N=2 (1 3.0 0) 0) (3.5) 0.5) (5.5) (1 (20.5)
6 1.6 8.4 0.4 3 2.8 6.8 0.4 0.8 30.8
N=5 (1.4) (2.3) (0.24) (1.2) (0.73) (1.9) (0.24) (0.37) (7.0)
7 20.5 1.6 5.5 25 1.6 0.38 0.5 533 24.6
N =38 35 (1.1) (2.9) (1.1) (0.68) (0.26) 0.27) (14.5) (7.0)
8 0.5 17.5 0.25 35 7.5 0.25 4.25 0.5 4.5
N=4 (0.29) 4.7 (0.25) (0.96) (2.6) (0.25) (1.6) (0.29) (2.6)
9 0.67 10.4 0.11 8.7 3.1 4.11 4.11 4.6 18.2
N=9 (0.55) (1.8) 0.11) (1.8) (1.3) (0.86) (1.4) (0.90) (3.2)

10 3 4.8 0.3 22 0.61 3.15 6.97 6.1 70.2
N =33 (0.97) (1.0) (0.10) (0.44) (0.23) (0.60) (1.4) (1.5) (5.1)
11 13.8 0.6 2.6 1.4 2.4 1.2 22 5 452
N=5 (4.2) (0.60) (1.0) 0.51) (1.5) (1.2) 2.2) (1.9 (6.6)
12 20 6 56 0 0 1 0 0 0
N=1 - - - - - - - - -

13 18.8 4.8 35 1.3 0.25 1.8 1.25 71.5 8.5
N=4 3.7) (0.48) 0.87) (0.48) (0.25) (1.0) (1.0) (6.6) 3.9
14 41.0 7.4 6.1 2.1 2.4 2.06 0.57 4.5 4.1
N =289 (2.0) (0.84) 0.81) 0.22) (0.24) 0.39) 0.39) (1.0) (0.78)

Table 2. Mean (S.E.) number of overstory trees and understory stems at vegetation sample sites in 3 repeated vegetation ‘types’, or
clusters that showed strong similarities. Total area for overstory samples is 0.04 hectares, and total area for understory samples is 44 m?.
N = number of vegetation samples included each cluster.

Clusters  Thuja Abies other Acer Betula Populus other coniferous  deciduous
occidentalis  balsamea  conifers  rubrum  papyrifera  tremuloides  deciduous  understory  understory

3,5,10 2.8 5.5 0.4 2.1 0.8 33 6.9 5.6 71.2

N =36 0.9 (1.0 0.1) 0.4) 0.3) 0.5) (1.3) (1.4 4.9

7,13 19.9 2.7 4.8 2.1 1.2 0.8 0.8 61.3 19.3

N=12 (2.5) (1.2) (1.9) 0.7) 0.5) 0.4) 0.3) (10.2) (5.3)

1,9 3.0 9.8 1 5.3 5.6 4.6 4.5 6.8 12.3

N =23 0.8) (1.8) 0.4) (1.1 (1.0) (0.6) 0.8) 2.7 (2.0
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Table 3. Subboundary statistics for the vegetation and warbler species boundaries. Significance values are
one-tailed in the direction of boundary cohesiveness. Lengths and diameters are expressed in terms of the

number of connected boundary elements.

Number of Number of Maximum  Mean Maximum
subboundaries  single BEs  Mean length  length diameter diameter
10 6 2.2 7 2.0 6
Vegetation  p = 0.032 p=0.12 p =0.032 p=0.58 p=0.05 p=0.07
9 3 2.3 6 2.2 5
Warblers p=022 p=0.38 p=022 p=0.16 p =021 p=032

Figure 3. Vegetation clusters obtained from spatially constrained
clustering (shown with warbler abundance difference boundaries,
see Figure 4). The following combinations of clusters represent
the same vegetation type: clusters 3, 5, and 10 (dense decidu-
ous understory, little overstory), clusters 7 and 13 (moderately
dense T. occidentalis and dense coniferous understory), and clus-
ters 1 and 9 (mixed overstory and relatively low density deciduous
understory). See text and tables for other cluster characterizations.

different from those based on a random arrangement
of the data. Overall, we concluded that the vegetation
boundaries were moderately but significantly contin-
uous. Difference boundaries in the densities of the
six warbler species (based on a 17% threshold) were
not significantly cohesive according to any of the six
subboundary statistics evaluated (Table 3).

We found no significant boundary overlap between
the warbler difference boundaries and vegetation dif-
ference boundaries (Table 4), suggesting there is no
strong spatial association between the areas where bird
abundances and tree and shrub abundances change
rapidly through space. However, there was significant
overlap between warbler difference boundaries and
vegetation cluster boundaries (Table 4). The average
minimum distance from a warbler boundary element
to a vegetation cluster boundary (Ow) was 16 m (p =
0.03), and the average distance from a boundary ele-

Figure 4. Difference boundaries for vegetation (gray squares,
linked with a dashed line) and warbler abundances (black ‘X’s,
linked with a solid line). Boundaries were detected using a 15%
threshold for vegetation and 17% for warbler abundances. Lines
represent subboundary connections; see text for details regarding
connection criteria.

ment in either set to its nearest neighbor in the other set
(Owy) was 19 m (p = 0.01). This suggests that the
warblers, in their selection of territories, are respond-
ing to differences in vegetation communities, but the
areas where bird species turnover occurs are not cor-
related with the areas with the most dramatic changes
in vegetation. Not surprisingly, the average minimum
distance from a vegetation cluster boundary to a war-
bler boundary element was not significant, suggesting
that the vegetation boundaries were not ‘influenced’
by the location of the warbler boundaries (Oy = 23 m,
p = 0.09).

The grouped clusters used for stratifying the bird
abundance observations varied primarily in terms of
the abundance of T. occidentalis, and the density of un-
derstory vegetation (Table 2, Table 5). The first group,
including clusters 1, 8 and 9, consisted of a mixed
overstory with few T. occidentalis and a medium to
high density, mostly hardwood, understory. Northern



Table 4. Overlap statistics. Significance values are one-tailed in the
direction of boundary overlap. Distances are expressed in meters.

Ow Oy Owy
Warbler (difference) and 118 86 101
vegetation (difference) p=079 p=049 p=0.67
Warbler (difference) and 16 23 19
vegetation (cluster) p=003 p=009 p=001

Waterthrushes were the only species that had their
highest abundances in samples collected within this
group (Table 5). Group 2 (clusters 2, 3, 4, 5, 6, 10 and
11) also had few T. occidentalis, and in general had
the lowest overstory density and highest understory
density, especially of deciduous understory understory
(singleton cluster # 3 is a high density A. rugosa
clump). Nashville Warblers were found in the high-
est densities in group 2, and overall warbler abun-
dance tended to be highest in these areas (Table 5).
Group 3 (clusters 7 and 13) and Group 4 (clusters
14 and 12) were both dominated by 7. occidentalis
in the overstory, but group 3 had a dense understory
layer dominated by A. balsamea, while group 4 had
little understory (cluster 12 was isolated from 14 be-
cause it is dominated by P. glauca, one of the ‘other
conifers’ in the overstory). Three species were most
abundant in group 3 (Ovenbird, and Black-and-white
and Canada Warblers), while only the Black-throated
Green Warbler was most common in group 4 sites.

Discussion

Representing the wetland forest as vegetation clusters

The heterogeneous nature of the vegetation in Reese’s
swamp site is clear from the spatial patterns of the
different variables shown in Figure 1. In general,
T. occidentalis dominates the southern portion of the
site, which is adjacent to a small lake. The areas to
the north and east, which are typically drier, tend
to be dominated by hardwoods, although there are
scattered hardwoods throughout the area. In the past
3040 years, the relative dominance of conifers in
the overstory at Reese’s Swamp has decreased (Par-
ody 1996), and numerous small and large treefall gaps
have opened, and over time, have been filled with new
vegetation. Characterizing the pattern of vegetation in
this dynamic, heterogeneous ecosystem is likely to be
a challenge with any analysis method, but we suggest
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that boundary analysis techniques are uniquely suited
to help researchers meet this challenge.

Spatially constrained clustering provides a way to
treat a vegetation mosaic as a collection of internally
homogeneous areas. As described in the methods, the
first difficulty encountered in identifying these homo-
geneous areas often is deciding how many clusters are
actually represented in the data (Milligan & Cooper
1985; Gordon 1999). The goodness of fit approach
employed here was very helpful in reducing the arbi-
trariness of this decision, although in our experience
with this method we have found that a larger num-
ber of clusters than expected was often most useful,
as many unexpected single or two-unit clusters may
occur. Because we used nine different unstandardized
vegetation variables and each was given equal weight,
cluster determinations were often driven by the vari-
ables with the highest maximum values, i.e., T. oc-
cidentalis, and deciduous and coniferous understory
(Figure 1, Table 1). In some cases, one vegetation
sample was so unusual that it led to that particular grid
square becoming isolated from all others. For exam-
ple, cluster 12 was determined by the high density of
‘other overstory conifers’ (see Figure 1 and Figure 3).
Similarly, the location of cluster 5 is driven primarily
by a clump of A. rugosa in the understory. The strong
effect of the two understory variables in the location
of boundaries seems appropriate for our application of
the vegetation map, since low vegetation is often an
important habitat variable influencing the distribution
of warblers at the local scale (e.g., Collins et al. 1982;
Cody 1985). For other applications, such as a focus
on identification of treefall gaps, less emphasis on
understory variables might be more appropriate (see
below).

Use of clusters identified by these methods re-
quires that additional judgements be made in terms
of minimum acceptable cluster size, and maximum
cluster dissimilarity for deciding whether two clusters
represent the same vegetation type. For the appli-
cation of stratifying sampling for bird surveys, we
chose to combine small clusters into nearby larger
ones (e.g., clusters 3, 4, and 12), even when they
were somewhat different, since these small areas are
typically smaller than an average warbler’s territory
size and could not be meaningfully sampled. How-
ever, in other applications, such as identification of
rare plant assemblages for conservation, it might not
be desirable to merge small, unique clusters with
larger ones. We used a similarity index approach to
help us group non-adjacent but similar clusters into
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Table 5. Mean bird detections per 10-minute, 70 m radius point count for 6 warbler species observed in the grouped
vegetation clusters. N = number of points counts conducted in that cluster. Highest detection rate for each warbler

species among the four clusters is in bold.

Species Combined vegetation clusters

Group 1 Group 2 Group 3 Group 4

(1,8and9) (2,3,4,5,6,10and 11) (7 and 13) (12 and 14)

N =10 N =22 N=6 N =18
Number of species per point (max = 6) 1.3 (0.47) 2.23(0.27) 2.33(0.67) 1.14(0.18)
Total number of warblers per point 2.4 (0.69) 2.90 (0.38) 2.83(0.79) 1.22(0.20)
Black-and-white Warbler 0.5 (0.17) 0.68 (0.15) 1.0 (0.44) 0.31 (0.090)
Black-throated Green Warbler 0.10 (0.10)  0.09 (0.063) 0 0.26 (0.095)
Nashville Warbler 0.10(0.10)  0.63 (0.12) 0.5 (0.34) 0.31 (0.080)
Canada Warbler 0.30 (0.15)  0.59 (0.17) 0.67 (0.21)  0.11 (0.055)
Ovenbird 0.30 (0.15)  0.18 (0.10) 0.33 (0.21) 0.17 (0.065)
Northern Waterthrush 1.1 (0.43) 0.73 (0.20) 0.33 (0.21)  0.057 (0.040)

‘vegetation types.” This method of simplifying cluster
analysis results is likely to be very useful in sites where
similar vegetation types show a repeated pattern across
the landscape.

Delineating and analyzing difference boundaries

As was true in the cluster results, many of the differ-
ence vegetation boundaries identified in our analyses
reflected the presence of isolated patches of dense,
distinct vegetation. An examination of the vegetation
subboundary statistics suggested that these boundaries
were significantly but perhaps moderately cohesive;
two of six of the diagnostic measures were signifi-
cant. However, these boundaries do not appear to have
been generated by a single ecological factor, such as
a change in hydrology or soils, as they were scattered
around the study site, and tended to be quite narrow
(one or two boundary elements wide). We suggest that
these boundaries represent a combination of the tran-
sition from a mostly coniferous to mostly deciduous
(overstory) swamp (the subboundaries in the center
of the study area), and also indicate the pattern of
disturbance at the site.

The main type of disturbance influencing vegeta-
tion in Reese’s Swamp (in the absence of fire and
logging) has been treefall gaps, although there were
a few small roads and trails. A very large area (about
4-5 ha) that was found in cluster 10 near the zigzag-
ging subboundary in the north-eastern corner had very
few standing trees and many trees on the ground, pre-
sumably due to a strong wind event. In the upper
section of the south-western corner (included in clus-

ter 11) there was another disturbed area that was the
site of an old road, and featured a dense deciduous un-
derstory. Many of the single boundary elements were
likely to be smaller treefall gaps, which, like the larger
windthrow areas, can result in high rates of change
in both the overstory variables (low relative to sur-
rounding areas) and understory vegetation variables
(high relative to surrounding areas, especially when
clumps of A. rugosa or A. balsamea were present). To
explicitly map patterns of treefall gaps, which were
typically fairly small, we would have used finer reso-
lution data. Similarly, small (5-10 mz), dense patches
of A. balsamea saplings often occured in the under-
story, especially in areas dominated by a fairly dense
T. occidentalis overstory. Any pattern in these patches
would be too fine-grained for this sampling scheme
to detect, yet these patterns might provide useful in-
sights into ecological processes that affect both the
vegetation and, as a result, the distribution of birds.

In contrast, these samples may have been too
fine-grained for detecting the broader-scale transition
between vegetation types in the swamp using differ-
ence boundary detection. We felt that our sampling
scheme (11.3 m radius circles within the 50 m grid
squares) would be adequate for detecting the conifer-
to-hardwoods transition that we had observed in visits
to the site, but perhaps complete inventories would
have reduced the impact of small, dense clumps of
vegetation. This broad-scale pattern of transition is ap-
parent in the clustering results, which are likely better
at picking up broad patterns due to the simple fact
that data are combined into larger units through the



clustering process. In our analyses, some isolated ar-
eas with very dense clumps of one or more species
tended to be detected as boundaries, while more grad-
ual changes in relative dominance were missed, but
could potentially be captured if data from individual
grid cells were combined into blocks of 4 or more. As
suggested by Fortin (1999), these results suggest that
a sensitivity analysis focusing on the effect of spatial
resolution should be included in future work involving
boundary detection methods.

Scale issues notwithstanding, it is important to re-
alize that crisp boundaries are not always present. In
many vegetated areas, distinct boundaries may not
exist where topography and soils are similar; in oth-
ers, sharp boundaries between vegetation are typical
(Beals 1969). In Reese’s Swamp, we are likely to
have both sharp and gradual boundaries, the sharp
boundaries being better represented by the approaches
demonstrated here. When we examined partitions for
different total numbers of clusters, we observed that
some areas were not consistently classified, while
other clusters were persistent among partitions. In
particular, the area occupied by clusters 7 and 10 in
Figure 3 showed high variation, suggesting that the
landscape here is transitional and changes across the
landscape are gradual. As a result, no truly distinct pat-
tern emerges in this area. Because one of the dominant
elements of this study site is a fairly wide transition
zone from a 7. occidentalis-dominated conifer swamp
to hardwood swamp, a fuzzy classification approach
(e.g., Burrough 1989; Brown 1998), which allows lo-
cations to have partial membership in more than one
cluster (or class), would be a useful extension of this
research.

There was little evidence for cohesive boundaries
in the bird data; none of the diagnostic subboundary
statistics was significant. The bird boundaries appear
to be located near transitions between forest types (as
indicated by the clusters), but not necessarily at the ar-
eas with highest rates of change along the transitional
areas. This idea was supported by the overlap analysis
results, in which the overlap of the bird boundaries
with the vegetation difference boundaries was not sig-
nificant, but overlap of the bird boundaries with the
cluster boundaries was significant. Our results suggest
that the birds may be avoiding the transition zones
when performing their territorial defense (i.e., singing)
behaviors, or that they could be responding to more
gradual changes in habitat that we did not detect using
these methods and this scale of vegetation data.

117
Applications to management and conservation

Based on our examination of the potential application
of boundary analysis as an aid in stratified sampling,
this approach could be quite useful. For example, the
Northern Waterthrush, a species that would have very
low means if all values were pooled, showed a rel-
atively high mean of 1.1 birds per point in points
sampled within vegetation group 2 (Table 4). Higher
means and lower variance relative to the mean in-
creases the statistical power of tests for differences be-
tween means, so these types of stratification schemes
could be very helpful for researchers monitoring popu-
lation changes over time (Cohen 1988; Scheaffer et al.
1990; Hall 1996). Again, it is likely that the impor-
tance of understory vegetation in the cluster classifica-
tion is key to the success of this stratification scheme.
As might be predicted from the results in Table 5,
Northern Waterthrush and Canada, Nashville, and
Black-and-white Warblers all tend to favor areas with
dense understory, while Ovenbirds and Black-throated
Green warblers are more often found in forests with
open understory (Brewer et al. 1991).

Differences in bird abundance means among sam-
ples collected from different vegetation clusters are
likely to represent both actual differences in abun-
dance, as well as differences in bird detectability.
Besides habitat structure, many other factors such as
time of day, wind conditions, and time within the
breeding season influence the number of birds de-
tected at a point count (e.g., papers in Ralph & Scott
1981). Although grouping bird data into sets with sim-
ilar detection probabilities (based on boundaries in
vegetation) should reduce the variance of bird abun-
dance estimates, applying boundary analysis directly
to the bird data is likely to produce less meaning-
ful boundaries due to the challenges associated with
accurately counting birds.

Although our example application applies specif-
ically to wildlife management and conservation,
boundary analysis methods are likely to be useful in
many other applications. Many land managers are
faced with the challenges of classifying and managing
heterogeneous land areas, and changes in plant distrib-
utions are likely to be important to researchers looking
for evidence of processes such as climate change (e.g.,
Millington & Alexander 2000), and other types of
natural and human-influenced drivers of vegetation
change (e.g., Camarero et al. 2000). A recent paper by
Stohlgren et al. (2000) highlights the fact that although
many landscape ecologists have called attention to the
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need for a greater understanding of the nature of eco-
tones and other heterogeneous areas, little progress has
been made since this point was emphasized years ago
by Wiens et al. (1985). Geographic boundary analysis
is likely to be useful in these endeavors, although stan-
dard methods for identifying boundaries have yet to
be developed. In particular, quantifying heterogeneity
by examining patterns of high rates of spatial change
could facilitate comparisons of plant distribution pat-
terns among sites or for the same site over time (e.g.,
Stohlgren et al. 2000; Parody et al., in press).

For researchers creating vegetation maps for the
purpose of modeling such factors as land use change,
or vertebrate population distribution, flexibility in the
number of plant associations identified using bound-
ary analysis could facilitate incorporation of a cho-
sen level of habitat variability into the models. For
some applications, this flexibility may render bound-
ary techniques more appropriate for vegetation map-
ping than the frequently used patch-based methods,
which treat various landscapes as mosaics consisting
of patch and non-patch (e.g., McGarigal & McComb
1995; Chapin et al. 1998).

Key areas for future research

For multivariate boundary analysis to be truly useful
in ecological work, several factors require further ex-
amination. One significant challenge involves the de-
velopment of guidelines for what types of data should
be included in a particular type of analysis. The choice
of variables will be a key consideration for any attempt
to map vegetation using geographic boundary analysis
(Fortin 1997, 1999). In this work, we focused on over-
story tree densities, with shrub densities also included.
We believe that inclusion of the two understory-related
variables is likely the main factor contributing to sig-
nificant overlap of bird boundaries with vegetation
clusters. In classifications for other purposes, other
variable choices may be more appropriate. Working in
a woodland in New York, USA, Fortin (1997) found
significant overlap between boundaries detected from
different data types (e.g., tree and shrub density, per-
cent coverage, or presence-absence), but also found
a significant spatial lag between boundaries based on
shrubs alone and trees alone. Fortin’s (1997) work
highlights how different forms of data can be used to
identify different types of boundaries, and how these
different boundaries are likely to be linked to differ-
ent causal mechanisms. She suggests that boundaries
based on presence/absence may indicate where species

interactions and physical tolerances are most impor-
tant, while boundaries based on changes in abundance
are more likely due to species responses to variation
in environmental quality. In a non-boundary analysis
example, work by Zogg & Barnes (1995) on classify-
ing wetland vegetation at UMBS suggests that wetland
types are poorly separated on the basis of overstory
vegetation, in part due to the effects of human dis-
turbance (selective logging and burning). This work
suggests that a more comprehensive approach utiliz-
ing ground-flora, hydrology, and soils might provide
more robust clusters. Whether this approach would be
as appropriate when the goal of characterization is to
classify wildlife habitat is worthy of further study.

Similarly, the number of variables included is an
important consideration. If a researcher decides to
use many, equally-weighted, species variables in a
vegetation data set, changes in rare species may be
overemphasized relative to their importance in the
forest community, while changes in common species
may be underemphasized. In our work, we dealt with
this problem by limiting the number of our vegetation
variables to 9, but this meant that rare species were
lumped into the ‘other’ categories, and any patterns
in those species were not likely to strongly influ-
ence the boundary determination process. The choice
of standardization methods or similarity/dissimilarity
measures also influences how variables are weighted.
We feel that our selection of variables and our deci-
sion to use unstandardized count data with the Bray
& Curtis dissimilarity measure were appropriate for
this work, and that we were unlikely to overemphasize
rare species. However, access to other vegetation data
and the use of alternative standardizations and/or dis-
similarity measures might uncover slight differences
in the detected pattern that might be meaningful for
predicting the presence of breeding warblers, or for
understanding some aspect of vegetation dynamics in
this ecosystem.

In addition to choosing variables and deciding how
they are standardized and weighted, the researcher
must also focus on how best to implement boundary
analysis methods, which involves making choices re-
garding many different methodological criteria (see
introduction and methods). Guidance for making these
choices should be a major focus of future work. Spe-
cific priorities include: replacing subjective thresholds
by more objective criteria during wombling (e.g., see
preliminary work by Jacquez & Maruca 1998); de-
veloping multiscale approaches to boundary detection
that will allow for the characterization of boundary



strength, length, sinuosity, scale, and fuzziness (see
the promising progress made here by Csillag et al.
2001); and establishing guidelines for the appropri-
ate use of the various boundary detection techniques,
including the advantages, disadvantages, and general
interpretation of difference (open) boundaries versus
cluster (closed) boundaries.

Conclusions

Maps of vegetation are crucial components of many
different types of conservation, modeling, and man-
agement efforts. Many new sources of data (e.g.,
satellite imagery with better resolution), and new data
management and visualization tools (e.g., geographic
information systems) are becoming widely used, and
new tools are needed for ecological questions that deal
with heterogeneity over space and time (Millington &
Alexander 2000). The tools of boundary analysis and
overlap statistics are likely to be useful in many eco-
logical applications that require the interpretation of
either remotely-sensed or field-collected spatial data
sets. Boundary detection techniques have been identi-
fied as a key issue in vegetation mapping (Millington
& Alexander 2000), and an area of ‘research needed
to further conservation’ in a review of spatial mod-
eling applications in bird conservation (Villard et al.
1998, p. 58). We hope that this example application of
boundary analysis techniques encourages plant ecolo-
gists to explore future applications and improvements
on these methods in their own work.

Acknowledgements

This paper is based on portions of a thesis submit-
ted by the senior author in partial fulfillment of the
requirements for the Masters of Science degree in
Natural Resources at the University of Michigan. We
thank Robert Van De Kopple and Tom Dietsch for
help with fieldwork logistics, and UMBS for access
to the research property and financial assistance to
K.H. during the field season. We also greatly appre-
ciated help with vegetation data collection from Jon
Rosenfield and David Rothstein. Geoff Jacquez, Terry
Root, Emily Silverman, and members of the Root Lab,
along with two anonymous reviewers, provided very
helpful suggestions on earlier versions of this manu-
script. We thank BioMedware, Inc. and the National

119

Cancer Institute for financial and other resources mak-
ing possible the development of BoundarySeer (Grant
number CA69864 from the National Cancer Institute
to BioMedware, G. Jacquez Principal Investigator).

References

Barnes, B. V. & Wagner, W. H., Jr. 1981. Michigan trees: A
guide to the trees of Michigan and the Great Lakes Region. The
University of Michigan Press, Ann Arbor, MI.

Beals, E. W. 1969. Vegetational changes along altitudinal gradients.
Science 165: 981-985.

Brewer, R., McPeek, G. A. & Adams, R. J., Jr. 1991. The atlas
of breeding birds of Michigan. Michigan State University Press,
East Lansing, MI.

Brown, D. G. 1998. Mapping historical forest types in Baraga
County Michigan, USA as fuzzy sets. Plant Ecol. 134: 97-111.

Burrough, P. A. 1989. Fuzzy mathematical models for soil survey
and land evaluation. J. Soil Sci. 40: 477-492.

Calinski, T. & Harabasz, J. 1974. A dendrite method for cluster
analysis. Comm. Stat. 3: 1-27.

Camarero, J. J., Gutiérrez, E. & Fortin, M.-J. 2000. Boundary
detection in altitudinal treeline ecotones in the Spanish Central
Pyrenees. Arct. Antarct. Alp. Res. 32: 117-126.

Chapin, T. G., Harrison, D. J. & Katnik, D. D. 1998. Influence
of landscape pattern on habitat use by American marten in an
industrial forest. Conserv. Biol. 12: 1327-37.

Cody, M. L. 1985. Habitat selection in birds. Academic Press, San
Diego, CA.

Cohen, J. 1988. Statistical power for the behavioral sciences, 2nd
edition. Academic Press, New York.

Collins, S. L., James, F. C. & Risser, P. G. 1982. Habitat re-
lationships of wood warblers (Parulidae) in northern central
Minnesota. Oikos 39: 50-58.

Csillag, F., Boots, B., Fortin, M.-J., Lowell, K. & Potvin, F.
2001. Multiscale characterization of boundaries and landscape
ecological patterns. Geomatica, in press.

Fortin, M.-J. 1994. Edge detection algorithms for two dimensional
ecological data. Ecology 75: 956-65.

Fortin, M.-J. 1997. Effects of data types on vegetation boundary
delineation. Can. J. For. Res. 27: 1851-1858.

Fortin, M.-J. 1999. Effects of quadrat size and data measurement on
the detection of boundaries. J. Veg. Sci. 10: 43-50.

Fortin, M.-J. & Drapeau, P. 1995. Delineation of ecological bound-
aries: Comparison of approaches and significance tests. Oikos
72: 323-332.

Fortin, M.-J., Drapeau, P. & Jacquez, G. M. 1996. Quantification
of the spatial co-occurrences of ecological boundaries. Oikos 77:
51-60.

Freemark, K. E., & Merriam, H. G. 1986. Importance of area and
habitat heterogeneity to bird assemblages in temperate forest
fragments. Biol. Conserv. 36: 115-141.

Gates, F. C. 1942. The bogs of northern Lower Michigan. Ecol.
Mon. 12: 213-254.

Gordon, A. D. 1999. Classification. 2nd edition. Monographs on
Statistics and Applied Probability 82. Chapman & Hall/CRC
Press, London.

Hall, K. R. 1996. Point counts of Michigan forest birds: Improv-
ing sampling efficiency for species of concern. Unpublished
Master’s Thesis, University of Michigan, Ann Arbor, MI.



120

Hansen, A.J. & diCastri, F. (eds). 1992. Landscape boundaries:
Consequences for biotic diversity and ecological flows. Springer-
Verlag, New York.

Hobbs, R. J. & Mooney, H. A. (eds). 1990. Remote sensing of
biosphere functioning. Springer-Verlag, New York.

Jacquez, G. M. 1995. The map comparison problem: Tests for the
overlap of geographic boundaries. Stat. Med. 14: 2343-2361.
Jacquez, G. M. & Maruca, S. 1998. Geographic boundary detec-
tion. In: Poiker, T. K. & Chrisman, N. (eds), Proceedings of the
8th internationational symposium on spatial data handling. Inter-
national Geographical Union, Geographic Information Science

Study Group, Burnaby, B.C., Canada.

Jacquez, G. M., Maruca, S. & Fortin, M.-J. 2000. From fields to
objects: a review of geographic boundary analysis. J. Geogr. Sys.
2:221-241.

James, F. C. & Shugart, H. H., Jr. 1970. A quantitative method of
habitat description. Audubon Field Notes 24: 727-736.

James, F. C. & Wamer, N. O. 1982. Relationships between temper-
ate forest bird communities and vegetation structure. Ecology 63:
159-171.

Johnston, C. A., Pastor, J., & Pinay, G. 1992. Quantitative meth-
ods for studying landscape boundaries. Pp. 107-125. In: Hansen,
A. J. & diCastri, F. (eds), Landscape boundaries: Consequences
for biotic diversity and ecological flows. Springer-Verlag, New
York.

Kiichler, A. W. 1967. Vegetation mapping. The Ronald Press
Company, New York.

Legendre, L. & Legendre, P. 1983. Numerical Ecology. Develop-
ments in environmental modeling 3. Elsevier, Amsterdam.

Legendre, P. 1987. Constrained clustering. Pp. 289-307. In: Legen-
dre, P. & Legendre, L. (eds), Developments in numerical
ecology. NATO ASI Series, Vol. G14, Springer-Verlag, Berlin.

Legendre, P., & Fortin, M.-J. 1989. Spatial pattern and ecological
analysis. Vegetatio 80: 107-138.

McGarigal, K. & McComb, W. C. 1995. Relationships between
landscape structure and breeding birds in the Oregon coast range.
Ecol. Monogr. 65: 235-60.

Milligan, G. W. & Cooper, M. C. 1985. An examination of pro-
cedures for determining the number of clusters in a data set.
Psychometrika 50: 159-179.

Millington, A. C. & Alexander, R. W. 2000. Vegetation mapping in
the last three decades of the twentieth century. Pp. 321-331. In:
Alexander, R. & Millington, A. C. (eds), Vegetation mapping:
From patch to planet. John Wiley & Sons, New York.

Musick, H. B. & Grover, H. D. 1991. Image textural measures as
indices of landscape pattern. Pp. 77-103. In: Turner, M. G. &
Gardner, R. H. (eds), Quantitative methods in landscape ecology.
Springer-Verlag, New York.

Oden, N. L., Sokal, R. R., Fortin, M.-J. & Goebl, H. 1993. Categori-
cal wombling: detecting regions of significant change in spatially
located categorical variables. Geogr. Anal. 25: 315-336.

Parody, J. M., Cuthbert, F. J. & Decker, E. H. In Press. The effect of
50 years of landscape change on species richness and community
composition. Glob. Ecol. Biogeogr.

Parody, J. M. 1996. Avian assemblages in northern Michigan: A
long-term perspective. Unpublished Master’s Thesis, University
of Michigan, Ann Arbor, MI.

Quattrochi, D. A. & Pelletier, R. E. 1991. Remote sensing for analy-
sis of landscapes: an introduction. Pp. 51-76. In: Turner, M. G. &
Gardner, R. H. (eds), Quantitative methods in landscape ecology.
Springer-Verlag, New York.

Ralph, C.J. & Scott, J. M. (eds). 1981. Estimating the number of
terrestrial birds. Studies in Avian Biol. 6.

Ralph, C.J., Geupel, G. R., Pyle, P, Martin, T. E. & DeSante, D. F.
1993. Handbook of field methods for monitoring landbirds. Gen-
eral Technical Report PSW-GTR-144. United States Department
of Agriculture, United States Forest Service, Pacific Southwest
Research Station, Albany, CA.

Scheaffer, R. L., Mendenhall, W. & Ott, L. 1990. Elementary survey
sampling, 4th Edition. PWS-Kent Publishing Company, Boston.

Smith, K. G. 1977. Distribution of summer birds along a forest
moisture gradient in an Ozark watershed. Ecology 58: 810-819.

Stohlgren, T. J., Owen, A. J. & Lee, M. Monitoring shifts in plant
diversity in response to climate change: a method for landscapes.
Biod. Cons. 9: 65-86.

Turner, S. J., O’Neill, R. V., Conley, W., Conley, M. R. &
Humphries, H. C. 1991. Pattern and scale: statistics for landscape
ecology. Pp. 17-49. In: Turner, M. G. & Gardner, R. H. (eds),
Quantitative methods in landscape ecology. Springer-Verlag,
New York.

Turner, M. G. & Gardner, R. H. (eds). 1991. Quantitative methods
in landscape ecology. Springer-Verlag, New York.

Verner, J. 1985. Assessment of counting techniques. Pp. 247-302.
In: Johnston, R. F. (ed.), Current ornithology, Vol. 2. Plenum
Press, New York.

Villard, M.-A., Schmidt, E. V. & Maurer, B. A. 1998. Contribution
of spatial modeling to avian conservation. Pp. 49-64. In: Mar-
zluff, J. M. & Sallabanks, R. (eds), Avian conservation: research
and management. Island Press, Washington, D.C.

White, P. S. & Pickett, S. T. A. 1985. Natural disturbance and patch
dynamics: An introduction. Pp. 3-13. In: Pickett, S. T. A &
White, P. S. (eds), The ecology of natural disturbance and patch
dynamics. Academic Press, New York.

Wiens, J. A., Crawford, C. S. & Gosz, J. R. 1985. Boundary dynam-
ics: a conceptual framework for studying landscape ecosystems.
Oikos 45: 421-427.

Wiens, J. A. 1995. Landscape mosaics and ecological theory. Pp. 1—
26. In: Hansson, L., Fahrig, L. & Merriam, G. (eds), Mosaic
landscapes and ecological processes. Chapman & Hall, London.

Womble, W. H. 1951. Differential systematics. Science 114: 315—
322.

Zogg, G. P. & B. V. Barnes. 1995. Ecological classification and
analysis of wetland ecosystems, northern Lower Michigan,
U.S.A. Can. J. For. Res. 25: 1865-1875.



