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Abstract. We study networks that connect points in geographic space, such as transportation networks and
the Internet. We find that there are strong signatures in these networks of topography and use patterns,
giving the networks shapes that are quite distinct from one another and from non-geographic networks.
We offer an explanation of these differences in terms of the costs and benefits of transportation and
communication, and give a simple model based on the Monte Carlo optimization of these costs and benefits
that reproduces well the qualitative features of the networks studied.

PACS. 89.75.Hc Networks and genealogical trees — 87.23.Ge Dynamics of social systems — 05.90.+m
Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems — 64.60.Ak
Renormalization-group, fractal, and percolation studies of phase transitions

1 Introduction

There has in the last few years been considerable interest
within the physics community in the analysis and model-
ing of networked systems including the world wide web,
the Internet, and biological, social, and infrastructure net-
works [1-3]. Some of these networks, such as biochemical
networks and citation networks, exist only in an abstract
“network space” where the precise positions of the net-
work nodes have no particular meaning. But many oth-
ers, such as the Internet, live in the real space of every-
day experience, with nodes (e.g., computers in the case
of the Internet) having well-defined positions. Most previ-
ous studies of real-world networks have ignored geography,
concentrating instead on other issues. Here we argue that
geography matters greatly, and to ignore it is to miss some
of these systems’ most interesting features.

A network in its simplest form is a set of nodes or ver-
tices joined together in pairs by lines or edges. We consider
networks in which the vertices occupy particular positions
in space. The edges in these networks are often real physi-
cal constructs, such as roads or railway lines in transporta-
tion networks [4], optical fiber or other connections in the
Internet [5,6], cables in a power grid [7], or oil pipelines [8].
In other cases the edges may be more ephemeral, such as
flights between airports [9], business relationships between
companies [10], or wireless communications [11].

Interest in the spatial structure of networks dates back
to the economic geography movement of the 1960s [12,13]
and particularly the work of Kansky [14]. Early work was
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hampered however by limited data and computing re-
sources, and geographers’ attention moved on after a while
to other topics. Networks have come back into the lime-
light in recent years, particularly as a result of interest
among physicists. However, empirical studies of networks,
even networks in which geography plays a pivotal role,
have, with some exceptions [6,9,15], focused mostly on
topological features [4,17,18]. Similarly, the best-known
theoretical models of networks either make no reference to
space at all [19,20], or they place vertices on simple reg-
ular lattices whose structure is quite different from that
of real systems [7,21]. Recently several models have been
proposed that incorporate more sophisticated geograph-
ical considerations [22-26], although the empirical data
against which one might verify such models is still lack-
ing.

Here we analyze empirical data for a number of spa-
tial networks, finding some clear patterns that imply a
connection between network structure and geography. We
also propose a simple model of a spatial network that of-
fers an explanation for some of these patterns.

2 Empirical data

In this paper we look in detail at three specific networks,
particularly concentrating on their spatial form. The three
networks are the Internet, a road network, and a network
of passenger flights operated by a major airline. To make
comparison between the networks easier we limit our stud-
ies to the United States, and we exclude Alaska and Hawaii
to avoid problems of disjoint maps.
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The first of our three networks is the Internet. We
examine the network in which the vertices are au-
tonomous systems (ASes) and the edges are data con-
nections between them (technically, direct-peering re-
lationships). The topology of the connections between
ASes can be inferred from routing tables. In our stud-
ies we have made use of the collection of routing ta-
bles compiled by the University of Oregon’s Route Views
project (http://www.routeviews.org). To determine the
geographical parameters of the network we use NetGeo
(http://www.caida.org/tools/utilities/netgeo), a
software tool that can return approximate latitude and
longitude for a specified AS. Combining these two re-
sources a geographic map of the Internet was created, from
which were then deleted all nodes falling outside the lower
48 states. This leaves a network of 7049 nodes and 13 831
edges for data from March 2003.

Our second network is the US interstate highway net-
work in which the vertices represent intersections, termi-
nation points of highways, and country borders, and the
edges represent highways. Vertex positions and edges were
extracted from GIS databases. For data from the year 2000
the network has 935 vertices and 1337 edges. Our third
network, the airline network, is similarly straightforward.
In this network the vertices represent airports and there
is an edge between every pair of airports connected by a
scheduled flight. The particular case we study is the pub-
lished schedule of flights for Delta Airlines for February
2003, for which there are 187 vertices and 825 edges. Ge-
ographic locations of airports were found from standard
directories.

We focus initially in our analysis of these networks on
three fundamental properties: edge lengths, network di-
ameter, and vertex degrees. In Figure 1 we show the dis-
tribution of the lengths in kilometers of edges in each of
our networks. Common to all three networks is a clear
bias towards shorter edges, which is unsurprising since
long edges are presumably more expensive to create and
maintain than short ones. When we look more closely,
however, the networks show some striking differences. The
road network has only very short edges, on the order of
10 km to 100 km, while the Internet and airline network
have much longer ones. The latter two networks also both
have bimodal distributions, with a large fraction of edges
of length 2000 km or less, and then a smaller but dis-
tinct peak of longer edges around 4000 km!. (These are
continent-spanning edges, like coast-to-coast flights in the
airline network.)

Simple Euclidean distance between vertices is not the
only measure of distance in a network however. Another
commonly used measure is the so-called graph distance,

1 Although we do not dwell on it in this paper, the Internet
and the airline network do differ at the shortest edge lengths,
the Internet having a strong peak for edges of 100 km or less,
while the airline network seems deliberately to avoid such short
edges, having a dip in the distribution at the shortest length
scales. This is presumably an effect of economic pressures: very
short airline flights are uneconomical because passengers can
conveniently drive the same distance for less money.
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Fig. 1. Histograms of the lengths of edges in the three networks
studied here.

which measures the number of edges traversed along the
shortest path from one vertex to another — the number of
“legs” of air travel, for instance, or the number of “hops”
an Internet data packet would make. The largest graph
distance between any two points in a network is called
the graph diameter, and it varies widely between our net-
works. For the highway network for example the diameter
is 61, but it is just 8 for the Internet, even though the
latter network has far more vertices. And for the airline
network the diameter is only 3. In the jargon of the net-
works literature, the Internet and the airline network form
“small worlds,” while the interstate network does not.

Euclidean edge lengths and graph distances are not
unrelated: in a graph like the road network, which is com-
posed mainly of short edges, one will need to traverse a lot
of such edges to make a long journey, so we would expect
the diameter to be large. Conversely, the presence of even
just a few long edges makes for much smaller diameters,
as demonstrated recently by Watts and Strogatz [7]. Thus
there seems to be a pay-off between Euclidean distance
and number of legs in a journey, an idea that we exploit
below to help explain the observed structure of our net-
works.

Another way in which our networks differ is in the
degrees of their vertices. (The degree of a vertex is the
number of edges connected to it.) The highest degree of
any vertex in the highway network is 4, which means that
the best connected vertex links directly to only 0.4% of
other vertices. In the airline network by contrast, the max-
imum degree is 141 or 76% of the network, while for the
Internet it is 2139 or 30%. High-degree vertices that con-
nect to a significant fraction of the rest of the network are
commonly called “hubs”; the airline network and Internet
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thus both contain at least one hub (in fact each contains
several), whereas the road network contains none?.

We would like to understand how the observed struc-
ture of our networks is related to their geographical na-
ture, and the origin of the marked differences between the
networks. We present two approaches that shed light on
these questions. The first is empirical in nature, the second

theoretical.

3 Network dimension

At the empirical level, many of the features we observe in
these networks can be explained in terms of spatial dimen-
sion. Each of our networks is of course two-dimensional in
a geographic sense, since it lives on the two-dimensional
surface of the Earth. However, one can also ask about the
effective dimension of the network itself [27]. We find that,
in a sense we will shortly define, the Internet and airline
networks are not really two-dimensional at all, but the
road network is.

The road network is, in fact, almost planar. That is, it
can be drawn on a map without any edges crossing. This
automatically gives it a two-dimensional form and helps us
to understand why its edges are so short: if edges are not
allowed to cross then they cannot travel far before they run
into one another. It also goes some way towards explaining
the network’s low vertex degrees: it can be proved that the
mean degree k of a planar graph is strictly less than 6 [28]
and indeed we find that the mean degree of the road net-
work is k = 2.86. For the airline network on the other
hand k = 8.82, so this network cannot be planar. This is
not an entirely persuasive argument however. The Inter-
net has mean degree k = 3.93, which is not large enough
to rule out planarity, and the highway network is actu-
ally not perfectly planar, having a small number of road
crossings so that rigorous demonstrations of planarity such
as Kuratowski’s theorem [28] or the Hopcroft—Tarjan pla-
narity algorithm [29] fail. We would like, therefore, some
other more flexible way of probing the dimension of our
networks. We propose the following.

On an infinite regular d-dimensional lattice, such as
a square or cubic lattice, the dimension d can be calcu-
lated from d = lim,_, dlog N, (r)/dlogr where N, (r) is
the number of vertices r steps or less from a given ver-
tex v [27]. On finite lattices one cannot take the limit
r — 00, but good results for d can be achieved by plotting
log N,, against logr for some central vertex v and mea-
suring the slope of the initial part of the resulting line.
Applying the same method to other networks allows us
to define a dimension in more general cases as well. It’s
important to realize, as pointed out in references [27,30],
that this dimension need not coincide with the dimension
of the underlying space (if any) on which our networks
are built. If it does coincide, however, it provides a strong

2 The existence of hubs in the airline network is of course
well known to travelers, and their existence in the Internet has
also been known for some years [17].
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indication that the network structure has been influenced
by this space.

We show results for NV, (r) for the interstate network
and the Internet in Figure 2, panels (a) and (b). (To reduce
statistical errors, N, is averaged over all vertices v.) As
the figure shows, the slope of the plot is close to 2 for the
interstates, indicating that this network is essentially two-
dimensional. For the Internet on the other hand, the plot
grows much faster with r, indicating that the network has
high dimension, or perhaps no well-defined dimension at
all (similar results are seen for the airline network).

If a network is fundamentally two-dimensional, then
we would expect it to have a diameter that, like any two-
dimensional system, varies as the square root of the net-
work size. Networks without a well-defined low dimension,
by contrast, have diameters varying much more slowly,
usually logarithmically with network size. Thus, we pro-
pose a tentative explanation of the structure of our geo-
graphic networks as follows. All our networks appear to
show a preference for short edges over long ones, which
is a natural effect of geography. However, the road net-
work has much shorter edges, lower degrees, and larger
diameter than the other two. These are all expected con-
sequences of a two-dimensional or near-planar form, and
when we measure dimension we do indeed find that the
road network is fundamentally two-dimensional, while the
other networks are not.

4 A model of a spatial network

This is a satisfying finding, certainly, but to some extent it
just passes the intellectual buck: our measurements can be
explained in terms of network dimensionality, but why do
the networks have different dimension in the first place?
As we now show, it is possible to construct a simple model
that explains the basic features of geographic networks,
including their dimension, in terms of competing prefer-
ences for either short Euclidean distances between vertices
or short graph distances.

First, let us assume that the cost of building and main-
taining a network is proportional to the total length of all

its edges:
cost = Z dij,
edges (3,5)

(1)

where d;; is the Euclidean length of the edge between ver-
tices ¢ and j. This result is only approximately true in
most cases, but it is a plausible starting point.

From a user’s perspective, a network will usually be
better if the paths between points are shorter. As we have
seen, however, the way we measure path length can vary.
In a road network most travelers look for routes that are
short in terms of miles, while for airline travelers the num-
ber of legs is often considered more important. To account
for these differences, we assign to each edge an effective
length thus:

effective length of edge (i,7) = A\Wndi; + (1 —XN), (2)
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Fig. 2. The size of neighborhoods vs. their radius on doubly-logarithmic plots (a) for interstate highways, (b) for the Internet,
(c) and (d) for simulations based on the optimization model described in the text (A = 1.0 and A = 0.1 in Eq. 2). The straight
lines have slope 2 and indicate the expected growth for two-dimensional networks.

where 0 < A < 1 and n is the number of vertices. The pa-
rameter A determines the user’s preference for measuring
distance in terms of miles or legs. (The factor of /n is not
strictly necessary but it is convenient; it compensates for
the scaling of nearest-neighbor distances d;; ~ n~1/2 with
system size.) If there is no path between i and j we for-
mally set the effective length to infinity. Now we define the
total distance between two (not necessarily adjacent) ver-
tices to be the sum of the effective lengths of all the edges
along a path between them, minimized over all paths.
We now construct a model network as follows. We sup-
pose we are given the positions of n vertices that we are to
connect®, we are given a budget, equation (1), for build-
ing the network, and we are given the preference of the
users, meaning we are given a value of \. We then search
for network structures that connect all the vertices, can be
built within budget, and minimize the mean vertex—vertex
distance between all vertex pairs, for edge lengths defined
as above. If the budget is smaller than the cost of build-
ing the minimum spanning tree, no connected network
can be built and the mean distance is infinity, whereas
an unlimited budget would allow us to construct a fully
connected network with n(n — 1)/2 edges. For intermedi-

3 The formation of cities usually predates the existence of
highway or airline networks, so in the context of this paper it
is reasonable to assume that the vertices are given from the
start. The alternative possibility, that the vertices are added
as they connect to the network has been investigated by, for
example, Fabrikant et al. [31].

ate budgets we have to solve a combinatorial optimization
problem [32], for which we can derive good (though usu-
ally not perfect) solutions using simulated annealing. Here
the mean effective vertex—vertex distance is treated as an
energy whose minimum we wish to calculate in the spirit
of [33].

Figure 3 shows four networks generated in this fashion
for n = 50 vertices placed at random within a square. For
A =0 and XA =1 we find networks strongly reminiscent of
airlines and roads respectively — tree-like structures with
long edges and hubs in the first case and structures with
many loops but neither long edges nor hubs in the second.
For intermediate values of A the model finds a compromise
between hub formation and local links. Note that we see
hub formation for small A even though there is no “prefer-
ential attachment” mechanism in our model, unlike some
previous models [23-25,34].

To make the comparison with the real-world networks
more concrete, we have generated networks using our
model with the same mean degrees as the real-world net-
works. For n = 200 nodes, we find that the maximum
degree of the model networks varies between 7 (3.5% of
the network) and 143 (71.5%) as we vary A from 0 to 1.
At the same time, the diameter decreases from a sizable
21 to a small-world-like 4. In Figures 2c and 2d we show
the mean size of the neighborhood N, (r) of a vertex as a
function of distance r, as we did for our empirically ob-
served networks. As the figure shows, the results indicate
a network with a roughly two-dimensional form for large A
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Fig. 3. Optimized networks created using the model described
in the text starting with 50 points placed uniformly at random
in the unit square, a total budget of 10.0, and (a) A = 0,
(b) A= 3, (c) A= 2, (d) A = 1. Networks (a) and (d) resemble
airline and road networks respectively, while (b) and (c) show
structure intermediate between the two extremes.
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Fig. 4. Histograms of the Euclidean lengths of edges in sim-
ulated networks for A = 1.0 (top) and A = 0.0 (bottom). The
vertices were placed uniformly at random in the unit square.

(Fig. 2¢) and a strongly super-quadratic form for small A
(Fig. 2d).

In Figure 4 we show a histogram of the distribution
of the lengths of edges in the model for A = 0 and 1.
Again the model shows behavior qualitatively similar to
the real-world networks (Fig. 1). For large A most edges
are short, but for smaller A a small fraction of edges span
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distances on the order of the system size. These “short-
cut” edges substantially reduce the mean graph distance
between vertices, as in the model of reference [7], but cost
relatively little because they are few in number.

5 Conclusions

In this paper we have studied empirically a number of
networks whose vertices exist in the two-dimensional ge-
ographic space defined by the surface of the Earth. Our
analysis indicates that there are strong connections be-
tween the geographical and topological features of these
networks, as well as substantial qualitative differences be-
tween the various networks. In particular, we find that
a simple measure of effective dimension distinguishes
strongly between networks such as the road network,
which is fundamentally two-dimensional, and the airline
network, which has a much higher dimension.

We have also proposed a simple model of a geographic
network that balances the extent to which users of the
network care about geographic distance between vertices,
as in the road network, against their concern for graph
distance — the number of legs or hops between vertices
— as in an airline network or the Internet. We find that
this model reproduces well the qualitative features of our
real-world networks, generating two-dimensional road-like
networks in one limit and high-dimensional hub-and-spoke
networks in another.

The results presented here are inevitably only the be-
ginnings of a detailed study of spatial networks. Many
other features of these networks deserve scrutiny, such
as, for instance, the effects of population distribution. We
hope that others will also investigate this interesting class
of systems and look forward eagerly to their results.

The authors thank the staff of the University of Michigan’s
Numeric and Spatial Data Services for their help with the ge-
ographic data. This work was funded in part by the National
Science Foundation under grant numbers DMS-0234188 and
DMS-0405348 and by the James S. McDonnell Foundation.
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