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Abstract 

Affinity analysis (AA) is a group of  methods for the study of  the variation of  degrees of  compositional related- 
ness among all of  the communities in a landscape. AA can be used with statistical inference to compare mosaic 
diversities (~) among different landscapes, identify unusual sites within a landscape, and determine when a 
pair of sites are significantly different from each other. These procedures were done with a set of samples from 
meadows in the Danube River Valley near Ulm by using random simulations to provide expectations of the 
summary statistics. The sampling and statistical limitations of  AA were discussed. 

Introduction 

The assessment of  pattern and the measurement of  
diversity within and among communities is a central 
focus of ecology. Of special interest is the recent de- 
bate over the existence and cause of  patterns in natu- 
ral communities (Connell 1983; Roughgarden 1983; 
Quinn & Durham 1983; Simberloff 1983; Strong 
1983; Noy-Meir & Van der Maarel 1987). Older con- 
cerns over methods for the measurement of  diversity 
at different levels of organization (Whittaker 1972; 
Peet 1974; Wilson & Shmida 1984) also remain wor- 
thy of  extension (Pielou 1975). As the method used 
for analysis can effect the conclusions reached (Peet 
1974; Diamond & Gilpin 1982; Harvey et al. 1983; 
Wilson & Shmida 1984), it is important to establish 
techniques whose assumptions are clear and whose 
statistical properties are understood. 

Affinity analysis (AA) provides methods for the 
study of  varying degrees of  compositional related- 
ness among the communities in a landscape (Istock 
& Scheiner 1987). AA provides a new measure of 

high-order diversity of the landscape mosaic. In ad- 
dition, AA allows statistical inference in the compar- 
ison of  different samples at three levels of analysis. 
First, by providing a measure of  the diversity of  com- 
munities in an entire landscape, AA can be used 1. 
to determine if a landscape mosaic is more diverse 
than expected at random and 2. to compare the 
diversities of different landscapes. Second, through 
calculation of  the affinity of  each community to the 
landscape, AA can be used to find those communi- 
ties which represent large departures from the cen- 
tral tendency of the landscape. Finally, the results of 
AA can be used to decide when any pair of sites are 
significantly different from each other with respect 
to either pairwise similarity or affinity. 

Aff in i ty  analysis consists of  two preliminary 
steps. First, the original data matrix, consisting of 
sites (columns) by species (rows), is transformed to 
a site-by-site matrix of  similarity coefficients. The 
mean similarity of  each site (Si) is calculated. A sec- 
ond transformation changes the similarity matrix 
into a site-by-site matrix of pairwise, signed, Wilcox- 
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on T values. These values are the relative affinities 
of  the two sites to the rest of  the landscape. The mean 
affinity of  each site (~r i) is computed. The mosaic 
(#) diversity of  the landscape as a whole is computed 
by taking the slope of  the relation between mean 
similarities and mean affinities of  the sites, the S - T  
relation. 

Computer simulations 

Three parameters will describe any presence-absence 
data set: the number  of  sites (Q), the total number  
of  species (R), and the fraction of  entries which are 
represented by a 1 (matrix filling, F). For any combi- 
nation of  parameters ( ~  R, and F) random data sets 
can be constructed as follows. For each entry in the 
data matrix a random number  from 0 to 1.0 is chosen 
from a uniform distribution. I f  the random number  
is smaller than the matrix filling, the entry is as- 
signed a value of  1, otherwise it is assigned a value 
of  zero. This procedure does not constrain either the 
row or column totals. It is equivalent to a null 
hypothesis that all species have equiprobability of  
being in any site, i.e., that the species are randomly 
distributed throughout the simulated data matrix. 
We agree with critics of  this null hypothesis (e.g., 
Diamond & Gilpin 1982, see Noy-Meir & Van der 
Maarel 1987) that these conditions will rarely be met 
in nature. However, as with standard assumptions of  
statistics such as random, independent, and normal  
distributions of  observations, this assumption pro- 
vides a baseline of  variation to which natural varia- 
tion can be compared. 

The random matrix is then analysed using af- 
finity analysis and summary  statistics extracted. 
These statistics are the mean Jaccard similarity of  all 
sites S (Jaccard 1901), the variance in similarity 
among all sites V(Sij), the variance in mean similari- 
ty of  individual sites V(Si), the variance among all 
sites of  the Wilcoxon T statistics V(Tij), the vari- 
ance in mean T o f  individual sites V(Ti), and mosa- 
ic diversity (/~). This procedure is repeated thirty 
times and the random expectation and variance of  
each of  the summary  statistics is computed. Prelimi- 
nary analysis indicated that within thirty runs the 

coefficients of  variation of  S and ~ ceased to change. 

This procedure is formally equivalent to a bootstrap 
(Efron 1981). 

In a similar fashion random expectations can also 
be obtained for abundance data. The equivalent 
procedure with abundance data is done by filling 
each entry in the random data matrix with a random- 
ly chosen entry from the original data matrix being 
tested. Sampling is done with replacement. Again, 
row and column totals are not constrained. This 
procedure is equivalent to constructing an average 
abundance distribution based on the original data 
and sampling all species in all sites from that distri- 
bution. Again, this null model is primarily designed 
to provide a baseline of  variation and is not meant 
to mirror reality: 

In order to understand the behavior of  the AA 
parameters and develop empirical rules for its use we 
repeated the above analysis over a range of  pr imary 
parameter  values. The number of  sites ranged from 
10 to 100. The total number  of  species ranged from 

10 to 1600. Matrix filling ranged from 0.05 to 0.90. 
These dimensions were chosen because they encom- 
pass most data sets of  natural vegetation. In addi- 
tion to the means and variances of  the parameters 
we calculated skews and the correlation between 
and/z. Copies of  the computer  programs in BASIC 
and FORTRAN to perform affinity analysis and the 
bootstrapping procedure are available from us. 

Statistical inference 

The first step, before performing any statistical tests, 
is an assurance that the parameters to be tested are 
well behaved. The two measures of  diversity, ~ and 
# as well as the other statistics, were found to vary 
in regular fashion as a function of  the three pr imary 
data matrix parameters over most  of  the range of  
values tested. The diversity indices were not correlat- 
ed with each other. The coefficients of  variation of  
all of  the parameters were small (0.1-0.3) and little 
skew was found. 

Statistical inference can be accomplished at three 
levels of  comparison: the whole landscape to its null 
expectation, single sites to the landscape, and be- 
tween individual sites. These procedures will be illus- 
trated with presence-absence data of  a set of  samples 
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from meadows on the Danube River near Ulm, 

southern Germany (Mueller-Dombois & Ellenberg 

1974). 
At the level of the whole landscape two types of  

comparisons can be made. First,/z can be used to de- 
termine if a landscape mosaic is more diverse than 
expected at random. From the random simulation 
we found CV(#)  = a~/E( Iz )<0 .3 ,  or: 

a/~ < 0.3E(#). (1) 

In Istock & Scheiner (1987) we defined the propor- 
tional deviaton from the random expectation of/~ to 
be: 

/~ = [Obs(#) - E(I~)I/E(~). (2) 

The departure, in units of  standard deviations, of  a 
sample from a theoretical distribution is given by the 
z statistic (Snedecor & Cochran 1967): 

z = [ X - E ] / o ,  (3) 

where X is the measured quantity and E and a are 
the theoretical mean and standard deviation, respec- 
tively. On substituting we obtain: 

z > ; / 0 . 3 .  (4) 

Because the distribution of/~ is somewhat skew we 
recommend using three standard deviations as a con- 
servative test of  whether the mosaic diversity of  a 
landscape is significantly different from random ex- 
pectation. 

In the analysis of  the Danube River meadow data 
we found that/~ = 0.00161 and E(/~) = 0.0058 giv- 
ing /~ = 1.78. So, by Eq. 4, the Danube meadow 
samples have a mosaic diversity six standard devia- 
tions (P < 0.00001) greater than random expectation. 

Comparisons of  mosaic diversities among differ- 
ent landscapes can also be done. For this comparison 

* . 

we use ~ in order to correct for differences in the 
values of  the primary data matrix parameters. Istock 
& Scheiner (1987) presented a comparison of  seven 
field data sets and found that ~t tended not to vary 
greatly among landscapes. Although presently we 
are not able to do so, statistical inference can be done 

with these comparisons once an adequate sample 
size is reached to provide a good estimate of the ex- 

pected mean and variance of  ~ in natural data sets. 
Within a single landscape sites which are signifi- 

cantly different from the mode can be identified. If  
a site has a 7"i that is several standard deviations, as 

given by the square root of the measured value of  
V(~ri), away from the mode that site represents a 
community quite different from the central tendency 

of  the landscape. The T axis in the S - T  graph 
(Fig. 1) could be scaled in standard deviation units 
so as to display these differences directly. For exam- 
ple, in the Danube meadow data set, v(~r/) = 752 
and ~r 4 = 51.1, which is 3.3 standard deviations 
away from modal sites 5 and 13. 

Affinity analysis presents two different measures 
for the comparison of  individual sites. First, the 
pairwise similarity values indicate which sites are 
more similar than would be expected at random. 

z = [ S x y - E ( ~ ) I A / e ( P ( S , ) ) ,  (5) 

where Sxy is the measured similarity of  any sites x 
and y, and E(S) and E(V(Sq)) are the random expec- 
tation of  the mean and variance of  the similarity S 0 

for any pair of  sites obtained from the bootstrap. For 
eaxmple, in the Danube meadow samples 
E(~) = 0.19 and E(V(Sij)) = 0.00363. For sites 4 
and 11, S4,n = 0.25 and by Eq. 5, z = 1.00, 
P <  0.16. So these two sites are no more similar than 
would be expected at random. In contrast, 
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Fig. L Affinity analysis: S-Tgraph of a set of meadow sites in 
the Danube River valley (Mueller-Dombois & Ellenberg, 1974). 
Site numbers as in the original data. Primary data dimensions are 
Q = 25, R = 94, and F = 0.34, ~ = 0.41 and/z = 0.00161. 
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823,24 = 0.51 which yields z = 5.31, P<0.00001. So 
sites 23 and 24 are more alike than would be expected 
at random. 

This test of  similarity is complementary to that 
presented by Janson & Vegelius (1981). They present 
a formula for the standard error o f  the Jaccard 
similarity index which can be used to determine 
when two sites are more dissimilar than expected at 
random. 

A second comparison among individual sites us- 
ing the Wilcoxon T statistic provides informa- 
tion distinct from that carried solely by the similarity 
indices. The pairwise T values indicate which sites 
have different affinities to the landscape as a whole. 
In this case the theoretical expectation for Tis given 
by the formula: 

E(T)  = N ( N + I ) / 4  (Siegel 1956), (6) 

where N = Q - 2 ,  and: 

z = [ ITxy l  - E(T) ] /~ /E(V(T i j ) ) ,  (7) 

where ITxy I is the absolute value of  the Wilcoxon T 
for sites x and y and E(V(Tij))  is the random expec- 
tation of  the variance as calculated from the boot- 
strap. (The theoretical expectation of  V(T  O) given 
by Siegel (1956) is based on the total sum of  ranks, 
not the smaller sum of  ranks as is used here, and so 
is not appropriate for Eq. 7.) For example, in the 
Danube meadow samples, IT4,11 I = 128 and 
z = -0 .32,  P < 0 . 3 7  while 1T23,241 = 20 and 
z = -3 .82,  P<0.0001.  So, sites 4 and 11 have equal 
affinities to the landscape while sites 23 and 24 have 
different affinities. In general, there is only a loose 
concordance between pairwise comparisons based 
on the similarity index and the Tstatistic. I f  two sites 
are identical, or nearly so, then perforce they must 
have equal affinities with the landscape. But as the 
pairwise similarity decreases, depending on the exact 
identity of  the species not  shared by the two sites 
their affinities may or may not diverge. And two sites 
with few or no species in common may still have simi- 
lar affinities with the rest of  the sites (e.g., sites 4 and 
11, Fig. 1). 

Empirical rules 

The random simulations provide a set of  empirical 
rules for the use of  affinity analysis. 
1. At extreme values of  matrix filling (F), the meth- 

od can not resolve structure because there is little 
or no variation among sites as expressed by varia- 
tion in species composition. As seen in Fig. 2, at 
very low ( <  0.10) and very high ( > 0.80) values of  
F, the variance in 7'i approaches zero. At low F 
(i.e., low mean similarity) AA now indicates that 
there is virtually no resemblance among the sites; 
and at high F, AA indicates that all the sites are 
nearly identical. Thus at the low end there is no 
sense of  continuity in the data, the landscape is 
exceptionally fragmented, and at the high end 
there is no variation among the sites left to meas- 
ure. 

2. I f  the number  of  sites (Q) is small ( <  20), we 
found that sampling errors make it difficult to 
separate structure from random noise. It would 
also, on ecological grounds, often be difficult to 
characterize a landscape on as few as 10 to 15 
sites. 
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Fig. 2. The response of  the variance in site mean T (V(7"i)) to 

changes in matrix filling (F) for various numbers of  sites. The 
number  of  species is 8 t imes the number  of  sites. 



3. If  the n u m b e r  of  species (R) is less t han  three 

t imes the n u m b e r  of  sites, the method  encounters  

diff icul ty assessing structure. Species provide the 

basis for affinities in the landscape through their 

d i s t r ibu t ion  patterns.  As each species is scattered 

u p o n  the landscape it provides an  independen t  

assessment of  the m a n y  env i ronments  (Gleason,  

1926). Since the n u m b e r  of  env i ronmenta l  combi-  

na t ions  likely increases with each addi t iona l  site, 

more  species are necessary to provide an ade- 

quate  analysis. Obviously, in any real da ta  set the 

three parameters  ( ~  R, and  F) will interact.  As 

more sites - especially more divergent ones - 

are sampled,  more species are encountered.  But, 

as the sites become more divergent, the matr ix  

filling decreases. To increase the matr ix  filling, we 

suggest, for presence-absence data  at least, tha t  

sites which seem a lmost  r edundan t  in species 

compos i t ion  be included in any sampl ing  design. 

The inc lus ion  of  subtle var ia t ion  in compos i t ion  

will more clearly define and  order the whole 

range of  affinities. 
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