Local Stress Measurement Using the

Thermoelastic Effect

A method for determining local stresses associated
with stress concentrations by experimental measurement
of temperature changes due to elastic deformation

is described and experimentally tested

by R. W. Dunlap, E. E. Hucke and D. V. Ragone

ABSTRACT—A technique for measuring local stresses in
metallic specimens is proposed and tested. The tech-
nique depends on the experimental measurement of
temperature changes in stressed members due to adiabatic
elastic deformation. At a free boundary in a body
under plane stress, these temperature changes are
directly related to the value of the tangential principal
stress. The technique is suited for measurement of
stress-concentration effects, since the temperature
changes can be measured with thermocouples featuring
extremely small junctions.

A simple stress-concentration geometry, the finite-
width strip with a central circular hole, is chosen as a
model system for this study. Heat transfer in this
geometry due to the temperature gradients produced by
elastic deformation is analyzed. It is shown that the
ratio of the temperature change at a reference section
to the change at the locale of the stress concentration
can be used to determine the stress-concentration factor,
allowing for heat-transfer effects. An experimental
measurement system capable of obtaining reproducible
results with the thermal-measurement technique is de-
scribed, and experimental results are given for the model
geometry which agree favorably with theoretical pre-
dictions. Application of the technique to other prob-
lems is discussed.
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= relaxation function
stress-concentration factor

= stress-concentration factor, from temperature
change ratio

= minimum ligament distance
Fourier number = «t,/W?
= polar coordinate
= Seebeck coefficient
= temperature
= ambient temperature
= time
= unloading time
width of strip
= length coordinate
= linear-thermal-expansion coefficient
= polar coordinate
= thermal diffusivity
= ratio of hole diameter to strip width = D/W
= density
o, = uniform uniaxial stress far from hole
A® = change in sum of principal stresses during
deformation
AT = temperature change due to thermoelastic
effect
AThoe = peak temperature change at root of hole
during deformation
AT e = peak temperature change at reference section
during deformation
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Introduction

The proportionality between stress changes and the
resulting adiabatic temperature changes in elastic
solids was first postulated by Kelvin in 1851,! and
verified experimentally by Joule in 1857.2 Since
that time, however, very few investigations have
been devoted to the measurement of stress states
in solids by virtue of this proportionality. Reviews
of the pertinent literature? ~* show that only Coker®
in 1904 and Nadai’ in 1911 have used the thermal-
measurement technique for stress-analysis studies
involving nonuniform stress states. Both investi-
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gators analyzed the bending stress over the cross
section of a stéel beam, using a large cross-section
size to minimize the temperature gradients. A
linear distribution of stress over the cross section
was verified in each study. Quite recently, Dillon
and Tauchert have measured thermoelastic temper-
ature changes as part of a more general study of the
heat generated during small plastic deformations of
metals.® Their study included measurement of
temperature changes due to the elastic bending of a
cantilever beam, but the results obtained were
qualitative in nature.

Practical application of the technique up to this
time has been limited for two reasons. The small
temperature changes involved, typically 0.1-0.4° C
for most metals at elastic-limit stress levels, lead to
instrumentation and measurement problems. Also,
if nonuniform stress states are studied, temperature
differences produced by deformation are dissipated
by conductive heat transfer in the stressed member,
in times which can be smaller than the characteristic
response times of temperature-measurement trans-
ducers.

The present study was undertaken to investigate
the limitations and potentialities inherent in the
thermal technique, particularly for studies of non-
uniform stress states. An advantage of the method
is that temperature changes can be measured with
thermocouples featuring extremely small junctions.
Hence, the technique would appear to be suited for
measurement of local stresses associated with vari-
ous stress-concentration geometries. For this
study, a typical stress-concentration geometry, in-
volving the tensile loading of a finite-width strip
containing a central circular hole, is taken as a
model system (Fig. 1). Since a theoretical solution
for the stress state in the neighborhood of the hole
is available, the temperature distribution produced
by elastic deformation and the changes in this tem-
perature distribution due to conductive heat trans-
fer can be calculated.

An analytical study based on such considerations
is made. The Duhamel integral is used to predict
the temperature change occurring at the locale of
the maximum stress concentration for an arbitrary
loading schedule. It is shown that the measure-
ment of a temperature change ratio can be used to
determine the stress-concentration factor for the
geometry, regardless of heat-transfer effects. Ex-
perimental methods and procedures used to mea-
sure thermoelastic temperature changes are then

involved in the model
> system
-
——

discussed, and experimental results for the model
problem are given. Specimen materials used in the
experimentation include stainless steel, brass and
aluminum alloys, and thermocouple voltages mea-
sured are on the order of ten microvolts. The ex-
tension of the experimental techniques used for the
analysis of the model geometry and the application
of the thermal-measurement technique to other
studies is discussed.

Analytical Studies

The stress state in the model geometry, in the
annular region with outer diameter W surrounding
the hole, has been investigated analytically by
Howland.® ® The mathematical solution has been
verified experimentally,’* and the geometry has
served as a standard for several experimental stress-
analysis investigations.}? 13

The peak stress in the geometry occurs at the
root of the hole, the location (r, 8) = (D/2, 0).
For this study, the stress-concentration factor for
the geometry is defined as the value of the peak
stress divided by the value of the nominal stress o,
far from the hole. (The stress o, will be referred
to as the plate stress.) The stress-concentration
factor defined in this way is 3.03 for A = 0.1, and
4.32 for A = 0.5.

The stress distributions involved for the two A
values, 0.1 and 0.5, differ. Using Neuber’s termi-
nology,!4 the case A = 0.1 is an example of a shallow
notch problem, in which the effect of the stress con-
centration is localized around the notch. The case
A = 0.5 is an example of the deep notch where the
disturbance of stress is localized over the minimum
section. Heat transfer due to stress-induced tem-
perature gradients in the first case is two dimen-
sional in nature; for the second case, heat transfer
may be approximated by a one dimensional prob-
lem. The analysis below indicates that the tem-
perature-measurement technique may be used in
either case to determine the stress-concentration
factor for the geometry.

Heat-transfer Effects
The thermoelastic temperature change for an
incremental volume element in an isotropic solid
undergoing an adiabatic, elastic deformation is®> *°
AT = —(Tswa/pCy)A0 (1)

The temperature change is associated with the
dilation produced by the deformation. For mate-
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Fig. 2—Geometry and
boundary-value problem in-
volved in two-dimensional
heat-transfer approxima-
tion

/S.TR IP EDGE

INITIAL CONDITION:
T(r,0,0) = T+ AT(r,0)

/

BOUNDARY VALUE PROBLEM:

-1 )
T8 = kT, (roa,0) + 77T (re, ) o Toe(r.6.0)],

FOR (D/2<r<W/2, o< 8 <m/2,
T(r,0,0) =Ta+AT(r,9) ,
T.(D/2,6,t) =T (W2,6,t),
Te(r,o,t) = Tg(r,fr/z,t) ,

rials with a positive thermal-expansion coefficient,
simple tensile stressing is accompanied by a tem-
perature drop; simple compressive stressing, a tem-
perature rise; and pure shear, no temperature
change.

If the model geometry is subjected to an instan-
taneous uniaxial loading (from stress zero to stress
o, far from the hole), the instantaneous tempera-
ture change at each point is given by eq (1). At
locations far from the hole, the temperature change
is uniform over the cross section, with A@ = o..
At the edge of the hole, the radial stress is zero, and

t >0)

(D/2<r<W/2, o< 8<7/2)

(t>o0)
(t>o0)

the initial thermoelastic temperature change is pro-
portional to the tangential stress at each point.
In the neighborhood of the hole, the sum of principal
stresses is a steep function of position, and the de-
formation creates steep temperature gradients.
Hence, the instantaneous temperature changes at
the hole edge are quickly dissipated by conductive
heat transfer.

Ignoring the small loss due to convective heat
transfer from specimen surfaces to the air, heat-
transfer effects at the root of the hole can be studied
with the boundary-value problems shown in Figs.

~~——-2STRIP EDGE

HOLE
EDGE
(LS A S A
o T _ - 3T
Ix - 0 — T(x,0) = Ta +AT(x) —t—-a—x: 0
Fig. 3—Geometry and VLYY X
boundary-value problem 0 X = L

involved in one-dimension-
al;heat-transfer approxi-
mation

BOUNDARY VALUE PROBLEM:

Tt(x,t) =KTxx(x,t)
T(x,0) = Ta + AT(x)
T (o,t) = T (L,¢t) =
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Fig. 4—Relaxation function
calculated from approximate
heat-transfer models (A = 0.5)
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2 and 3. In the two-dimensional problem (Fig. 2),

heat conduction in the entire region surrounding
the hole is accounted for. From symmetry, only
one quadrant of the geometry need be considered.
The angular boundary conditions result from this
symmetry, while the radial condition at the hole is
based on the absence of convective heat transfer.
The radial boundary condition at r = W/2 is an
approximation to the true physical situation, but
analysis of steady-state temperatures indicates it is
a good approximation. The one dimensional prob-
lem (Fig. 3) is an approximation which is applicable
when heat transfer from the root of the hole is
dominated by the temperature gradient across the
minimum section.

Both problems can be solved, utilizing Howland’s
results and eq (1) to compute the initial tempera-
ture distribution. Details of the solutions are given
elsewhere,® and only the pertinent results are shown
here. The relaxation of temperature at the root of
the hole due to heat conduction is represented by a
relaxation function:

AT@)/AT0) = H()\, Ng,) (2)

This is the ratio of the temperature difference from
the ambient at any time ¢ to the initial temperature
difference; each temperature difference is evaluated
at the root of the hole. The relaxation function is a
generalized dimensionless temperature, and is a
function of A, the dimensionless geometry parame-
ter, and Ny,, the Fourier number, or dimensionless
time. Figures 4 and 5 show values of this relaxa-
tion function computed from results of both the
one- and two-dimensional analyses. Results for
A = 0.5 (Fig. 4) indicate that the one-dimen-
sional heat-transfer model is a good approximation
for small times. Results for A = 0.1 (Fig. 5) show
that the one-dimensional approximation is inade-

quate, and the heat-conduction problem involved
in this shallow notch case is always two-dimen-
sional in nature.

Temperature relaxation occurs rapidly at the
hole. For example, if a 1-in.-wide 6061 aluminum
specimen with !/,-in.-diam hole were instanta-
neously stressed, Fig. 4 shows that 10 msec later
(corresponding to 100V N » = 3.24), only about
80 percent of the initial AT would exist at the root
of the hole. Since the heat-transfer effects demon-
strated here can occur in such short characteristic
times, both the effect of finite loading time and the
effect of thermocouple response time on the tem-
perature changes are important.

Loading-time Effects

The relaxation of temperature at the root of the
hole is described by eq (2) for a step-function load-
ing process. The Duhamel integral is used to give
the relaxation for an arbitrary loading process in
terms of the relaxation for a step function loading:

¢
AT() = ATOYH(®) + fF(T)H(t — 7)dr (3)

Here, F(7) is the loading function, defined as the
value of the total AT developed at the root of the
hole up to time 7, in the absence of heat-transfer
effects. The loading function can be computed
from eq (1) and a knowledge of the load-time rela-
tionship. Equation (3) simplifies to eq (2) for the
case of step-function loading.

Two assumptions are involved in the use of this
equation to determine temperature changes devel-
oped under arbitrary loading procedures. First,
the loading rate must be rapid enough that heat-
transfer effects other than conduction near the hole
are negligible. Second, heat-generation effects due
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Fig. 6—Schematic temperature-response curves for linear
loading, showing effect of heat conduction

to thermoelastic dissipation must be negligible, as
they are not accounted for in eq (1). The latter
assumption rules out the use of eq (3) to study the
steady-state temperature changes involved in an
oscillatory loading. Biot!'® has noted the second-
order nature of the heat generation and resulting
temperature changes due to thermoelastic dissipa-
tion. This second-order heat becomes important
if it accumulates over a long-time period, as in an
oscillatory loading schedule.

Under these restrictions, eq (3) may be used to
determine temperature changes occurring at the
root, of the hole. The solution to this equation is
afforded by Laplace transform techniques, as the
Laplace transform convolution integral is involved
in the equation. Calculations are shown in the
Appendix for the case in which the loading function
varies linearly with time up to time ¢, and then
remains constant. This is the case of linear load-
ing, an idealization of the loading pattern obtained
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100 YN,

in many experimental situations. For this case,
eq (A-3) governs the relaxation process, and tem-
perature response curves are shown in Fig. 6.
Here, the temperature changes occurring at the root
of the hole, both with and without heat conduction,
are shown schematically. Both curves are normal-
ized with respect to the maximum temperature
change occurring in the absence of heat conduction.
The peak temperature change which actually ob-
tains in an experimental situation is always less than
this maximum value, and occurs at time ¢, as
shown in the bottom curve.

Technique to Determine Stress-concentration Factor

The peak temperature changes which occur dur-
ing linear loadings are particularly suited for experi-
mental measurement, and form the basis of a tech-
nique to determine the stress-concentration factor
for the geometry with temperature measurements.

A stress-concentration factor based on tempera-
ture measurements is defined as the ratio of the peak
temperature changes occurring at hole and plate.

K = ATwoie/AT e 4)
This equation is applicable to any stress-concentra-
tion geometry, comparing the temperature change
at a discontinuity to the temperature change at a
reference section. For the model geometry, the
peak temperature change at the root of the hole is

.given by eq (A-4), and the peak change far from

the hole is given by eq (A-5). It follows that

to
K = Kt,~! f H(t)dt (5)

where K is the stress-concentration factor for the
geometry. Hence, K is a dimensionless quantity, a
function of the three dimensionless variables A\, K
and Ny,.

This equation can be evaluated for the model



Fig. 7—Analytical results, showing relationship between
variables used in thermal-measurement technique

geometry, using the previous two-dimensional ap-
proximation to the relaxation function. The re-
sults of the evaluation are shown in Fig. 7, for the
two cases A = 0.1 and A = 0.5. In each case, the
relationship between 1 /K and Ny, is nearly linear.
The intercept of each curve is 1/K, while the slope
of each curve is related to the stress and resulting
temperature gradients involved in the problem.
For a problem involving no heat transfer, a line with
zero slope is obtained.

The technique for determining the stress-con-
centration factor from thermal measurements con-
sists in making a parametric study of the tempera-
ture changes during linear loading, computing K for
each data point by eq (4), and plotting 1/]& values
vs. values of the square root of the Fourier number
for the geometry. The inverse of the stress-con-
centration factor is the intercept of this plot.

Upper and Lower Bounds

An experimental verification of the technique is
based on data obtained for the model geometry, for
the case A = 0.5. Based on the analytical model,
upper and lower bounds for the experimental data
can be established. These bounds refer to lines on
the plot of 1/K vs. N, between which valid
experimental data should lie.

A lower bound for the data is the line for A = 0.5
shown in Fig. 7. This line, based on the two-
dimensional heat-transfer approximation discussed
above, underestimates the amount of heat conduc-
tion which occurs, especially at large times. There-
fore, valid experimental data will lie on or above this
line.

An upper bound for the data can be based on an
examination of eq (5). The relaxation function,
Fig. 4, is monotone decreasing and it follows that

f "H®dt > t,H(,) 6)

From eq (6) and eq (5), an upper bound for the
data follows:

1/K < [KH(t,)]™ D

The upper bound can be evaluated from a knowl-
edge of the two-dimensional relaxation function.
Both bounds are shown in Fig. 12, where the experi-
mental data are also shown.

Experimental Equipment and Procedures

Experimental measurement of thermoelastic tem-
perature changes depends on careful experimental
technique. Methods used to load test specimens
and measure the temperature changes produced are
summarized here. Further details concerning the
experimentation are found elsewhere.?

Loading System

A standard guillotine-type loading frame is em-
ployed, in which the specimen is axially loaded
(Fig. 8). The system is designed to produce a
change in stress by unloading. This ensures elastic
response of the specimen, and allows easy adjust-
ment of the unloading time. The specimen is
loaded by suspending weights from a quick-release
magnet at one end of a beam.

The unloading time has to be small enough to
preclude excessive signal losses due to thermal re-
laxation at the hole, and large enough to ensure
quasi-static loading. The unloading time is a func-
tion of the magnet-energizing-circuit parameters
(Fig. 10), and can be varied through a two to one
ratio for a given load. Unloading times used in the
experimental program varied between 7 and 20
msec. A typical strain-gage trace, showing the
linear approximation to the unloading curve, is
given in Fig. 11,

To unload the specimen, the magnet is de-
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Fig. 8—Schematic diagram of loading apparatus
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energized by actuating a DPST microswitch. This
switch closes a relay circuit after an adjustable time
delay, thereby initiating the unloading cycle. Si-
multaneously, the CRO traces are triggered. Upon
unloading, the beam is free to rotate in the vertical
plane. Weights, weight pan and rod, and lower
magnet platen fall on a hydraulic platform and can
be raised into position to prepare for a subsequent
unloading cycle.

A typical specimen design is shown in Fig. 9.
Specimens are designed with a sufficient length—
width ratio to ensure that a uniform uniaxial stress
state exists in a large region on either side of the
central hole. The extent of these regions is suffi-
cient to ensure that the signal from a thermocouple
mounted here is unaffected by axial heat conduc-
tion. Bending effects are minimized by the use of
pin loading and specification of close dimensional
tolerances for the specimens. Specimen pin holes
are 0.020 in. oversize, and radiused in the thickness
dimension. Hence, the specimen is free to rotate
about the pin both in and perpendicular to the
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STRAIN GAGE CIRCUIT

plane of the specimen, to maintain axial loading.
The specimen is prestrained with several load-
unload cycles at a stress level slightly higher than
the level used for subsequent measurements.

Measurement System

The measurement system is shown in Fig. 10.
For each unloading cycle, a strain-gage signal and a
thermocouple signal are simultaneously monitored.

A strain gage mounted at one plate location on
the specimen is used to provide a reference signal
to which the thermocouple signal can be compared.
Foil-type strain gages are used, and a conventional
Wheatstone bridge circuit with d-c coupling to the
CRO is employed. .

The thermocouple signal measurement circuit
features a commercial a-c low-noise amplifier and
external impedance matching input transformer.
System gain is ~-55,000, and input resistance 30
ohms. System noise referred to input for band-
width 10-1000 Hz is 0.04 uv rms, and is monitored
with a commercial true rms voltmeter.



STRAIN GAGE
1T MV/DIVISION

VOLTAGE

HOLE THERMOCOUPLE
200 MV (~0.06°C)/DIVISION

~ 4\
\
\ PLATE THERMOCOUPLE

100 MV (~0.03°C)/DIVISION

TIME (5 MSEC/DIVISION)

Fig. 11—Strain gage and thermocouple signals for 70-30
brass specimen, showing linear approximation to
unloading curve

Thermocouple signal levels range from 3 to 20
uv, and achievement of a good signal-to-noise ratio
depends on careful use of shielding, grounding and
isolation techniques. Optimum results are ob-
tained when the specimen is electrically isolated
from the loading frame, the magnet circuit is elec-
trically isolated from the other measurement-sys-
tem circuits, and electromagnetic and electrostatic
shielding is used in the input circuits. The stan-
dard deviation for a thermocouple signal, measured
in a number of successive unloading cycles, is always
less than 3 percent, and is typically 1-2 percent.

Thermocouple Characteristics

A differential input, intrinsic thermocouple is used
for the measurement. One lead, wire C in Fig. 11,
is attached to the specimen at an isothermal junc-
tion. The other leads are single, bare thermocouple
wires welded separately to the specimen at either
plate or hole locations. A resistance-welding tech-
nique is employed, using a commercial d-c stored-
energy welding power supply and handpiece, and a
micromanipulator to position the wire. Wires are
welded flat to the specimen surface or hole edge,
and a typical weld (5 mil wire) is oval in cross sec-
tion, with maximum width 8 mils and length 15
mils. Surface and wire damage is minimized with
proper welding procedure, and metallographic cross
sections of the welds reveal typical surface damage
less than 0.5—1.0-mils deep.

The temperature-change measurements are mark-
edly affected by the response characteristics of the
thermocouples. Experiments with thermocouple-
wire diameters ranging from one to 10 mils, welded
at various energy levels, show the effects of variable
thermocouple response.’ Poor response leads to
signal attenuation and the presence of a large lag
time between the end of unloading denoted by the
strain signal, and the time at which the thermo-
couple signal reaches maximum deflection. These
effects are minimized for the smallest wire size in-
vestigated, and minimal welding energy. However,
the response characteristics of these small-wire
thermocouples are not reproducible, and all data
are taken using 5-mil-diam, Chromel and Constan-

tan wires. Although these larger-wire thermo-
couples have slower response, results between differ-
ent thermocouple installations are reproducible.
To ensure identical response characteristics for the
hole and plate thermocouples, the lag times asso-
ciated with each couple are compared. Valid data
are obtained only when the lag time associated with
the hole thermocouple is less than the lag time
associated with the plate thermocouple, under
identical unloading conditions. This criterion is
demanded because of the effect of heat transfer in
the specimen at the hole, and is discussed fully else-
where.5

Experimental Procedure

The amplifier responds to an attenuated signal
S4sAT, where S, is the Seebeck coefficient of the
thermocouple A-B, and AT is the thermoelastic
temperature change. The degree of signal attenua-
tion depends on the combined response characteris-
tics of the thermocouple-amplifier system. All
measurements are made with an amplifier band-
width 0.5-1200 Hz, but the upper frequency limit
of the combined system is typically set by the
thermocouple response characteristics. If the com-
bined system response is identical for measurements
made at plate and hole locations, and if identical
thermocouple materials are used for the two mea-
surements, the ratio of the voltage measurements
yields K, by eq 4).

Comparison of the voltage levels is made at the
end of unloading, where the strain-gage signal
exhibits a discontinuity in slope. Signal-amplitude
measurements at this point are preferable to mea-
surements of peak deflections because of small
fluctuations in stress level which occur after unload-
ing. The thermocouple-signal amplitudes are mea-
sured at different oscilloscope sensitivities, and plate
and hole signal deflections average 2 and 4 cm
respectively on the CRO screen. Twelve unloading
cycles are usually performed for each thermocouple
location, and a mean value and standard deviation
for the deflection are calculated. Results are then
corrected for the effect of circuit loading due to the
low input impedance of the amplifying system, and
1 /K' values and associated standard deviations are
calculated from eq (4).

Experimental Results

Typical strain-gage and thermocouple traces for
a 70-30 brass specimen are shown in Fig. 11.
Measurements are made with thermocouple polarity
reversed, so that strain and temperature deflections
have the same sign. The traces from two unloading
cycles are superposed, hence the strain gage and
hole and plate thermocouple signals are shown
simultaneously. The curves shown are copied
directly from Polaroid print records. The effect of
thermocouple response is seen in the lag-time phe-
nomena previously discussed. The hole-thermo-
couple lag time shown here is less than the plate-
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TABLE 1—EXPERIMENTAL PARAMETERS AND RESULTS

A

Material Width(in.) x(cm?/sec) to(msec) 100 +/NFo Ao (Psi) 1I/K
321 S.S. 2.00 0.041 7.25 = 0.25 0.34 9400 0.245*
321 S.S. 1.75 0.041 7.25 = 0.25 0.39 = 0.01 9200 0.239 = 0.008
321 S.S. 1.25 0.041 8.0 =0.3 0.57 9300 0.267*
304 S.S. 1.00 0.041 9.5 = 0.5 0.78 = 0.02 8000 0.251 = 0.008
70-30 Brass 1.00 0.368 9.5 = 0.2 2.33 = 0.07 7700 0.276 = 0.006
6061-T6 Al 1.00 0.676 12.0 =0.3 3.55 = 0.10 5200 0.304 = 0.005
6061-T6 Al 1.00 0.676 20,0 =0.5 4.58 = 0.13 3700 0.328 = 0.008

* Hole and plate thermocouples have unmatched response characteristics, as shown by lag times.

0,34
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100¥Ng

Fig. 12—Experimental data, with data bound lines
calculated from heat-transfer analysis

thermocouple lag time, and response characteristics
of the two thermocouples are closely matched.

Table 1 reports parameters and results for the
specimens used in the experimentation. Thermal
diffusivity values listed are taken from recent prop-
erty compilations, and are felt to be accurate to
5 percent. Unloading times listed are measured
from the strain-gage traces, and standard deviations
calculated from the data are shown. Error limits
shown for the Fourier number parameter are cal-
culated from standard deviations associated with
the thermal diffusivity and loading-time values.
The stress levels shown are stress ranges at the plate
locations, calculated from the strain-gage deflec-
tions. Values of 1 /I% calculated from the experi-
mental temperature measurements are also shown,
with associated standard deviations.

Results are presented in Figs. 12 and 13. In Fig.
12, upper and lower bounds from the analysis are
shown, and experimental data listed in Table 1 are
plotted, including data for the two specimens which
failed to satisfy the thermocouple lag-time criterion.
The effect of dissimilar thermocouple response at
the two measurement locations is shown by these
two data points. Here, thermocouple response at
the hole location is slower than plate thermocouple
response, and signal attenuation is greater for the
hole thermocouple signal. Hence, these two data
points lie above the upper bound. The valid data
points, however, lie within the theoretical bounds,
or have error limits which extend into the region
predicted by the analysis.

The experimental technique for determining local
stresses with thermal measurements is shown in
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Fig. 13. The five valid data points are plotted, and
the intercept of the straight line which best fits the
experimental data is the inverse of the stress-
concentration factor. The straight line shown
minimizes the sum of squares of deviations of the
dependent variable 1/K and assumes the indepen-
dent variable is exact. A linear correlation of the
data with the assumption that the 1 /I% values are
exact and the Fourier number parameter subject to
error gives the same value for the stress-concentra-
tion factor. The stress-concentration factor ob-
tained from the analysis, with a 95 percent con-
fidence range, is 4.3 =+ 0.18. 'This agrees well with
the theoretical value of 4.32 from Howland’s analy-
sis.

Discussion

The experimental technique can be extended to
geometries where an analysis cannot be made. The
technique in these cases consists in identifying the
Fourier number for the geometry, making tempera-
ture-change measurements at various values of this
parameter, and correlating the data in the manner
shown in Fig. 13.

The similarity of stress distributions involved in
various stress-concentration geometries allows this
extension. This similarity is formalized in concepts
such as the ‘“‘equivalent ellipse”’?’ and the ‘‘law of
the stress gradient.”’’* The analytical results from
the model geometry also give confidence that the
technique may be extended. The method is valid
both for the shallow notch case, involving a two
dimensional heat flow geometry, and the deep notch
case, involving essentially a one-dimensional heat-
flow geometry.

100V

Fig. 13—Linear correlation of data involved in thermal-
measurement technique



Pertinent applications of the technique extend to
problems for which local rather than full-field stress
measurement conveys adequate information. The
effects of notch shape and depth on stress concen-
tration are examples, as is the study of the inter-
action and superposition effects’® of holes and
notches. Dynamic stress-concentration measure-
ment is also a possible application of the thermal-
measurement technique. Here, useful results can
be obtained only if thermocouples with micro-
second-response characteristics are used, and the
use of ultra-fine-wire thermocouples and carefully
controlled welding techniques are indicated. Re-
cent measurements of microsecond-response char-
acteristics for thermocouples have been re-
ported.!®. 2 Finally, Dillon’s measurements of
thermoplastic temperature changes and the use of
temperature-change measurements to study plastic
deformations should be mentioned.2! 22 Extension
of the thermal-measurement technique to these
problems could provide valuable information for the
experimental stress analyst.
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APPENDIX

Temperature Changes During Linear Loading

At the hole thermocouple location, the tempera-
ture change is described by eq (3) for an arbitrary
loading process. The transformed equation corre-
sponding to eq (3) is

AT(s) = sH(s)F(s) (A-1)
where s is the Laplace transform parameter and

f(s), for example, is the Laplace transform of the
loading function F(t):

F(s) = f e—F(t)dt

For the linear loading, the loading function is shown
in Fig. 6 (upper curve), and is represented by the
equation
F(t) = tATmax/tm t S to
= ATnex , t2> %,

The constant, AT .x, represents the maximum tem-
perature change, corresponding to the maximum
stress reached at the root of the hole:

ATmax = _Taaa'max/pcp
Hence, the transform F(s) is given as follows:
?(S) = [ATIrlax/tosz](l - 67“" (A—Z)

Substituting eq (A-2) into eq (A-1) and inverting,
the temperature change at the root of the hole for
linear loading is

AT

I

¢
(ATmax/to)fH(t)dt, t<t,

¢

(AT max/t,) H{)dt,

t—to

(A-3)

t >t

The peak temperature change occurs at time £,, and
is

to
AT(t(l) = A71}101@ = (ATmax/to)f H(t)dt (A'4)

At the plate thermocouple location, a uniform
stress state exists, and no heat conduction occurs.
The maximum stress during linear loading is
omax/K, where K is the stress-concentration factor.
The corresponding peak temperatures change is

ATpate = ATmax/K (A-5)

The ratio of peak temperature changes at hole
and plate is defined as K, eq (4). The expression
for K in linear loading, eq (5), results from the
substitution of eqs (A-4) and (A-5) into eq (4).
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