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Abstract

We consider multiprocessing systems where processes make independent, Poisson
distributed resource requests with mean arrival time 1. We assume that resources
are not released. It is shown that the expected deadlock time is never less than 1,
no matter how many processes and resources are in the system. Also, the expected
number of processes blocked by deadlock time is one half more than half the number of
initially active processes. We obtain expressions for system statistics such as expected
deadlock time, expected total processing time, and system efficiency in terms of Abel
sums. We derive asymptotic expressions for these statistics.in the case of systems with
many processes and the case of systems with a fixed numberkof processes. In the latter,
generalizations of the Ramanujan Q-function arise. We-use smgulanty analysis to obtain
asymptotics of coefficients of generalized Q-functions.

1 Introduction.

Deadlock detection and resolution is a major issue in the des1gn of multiprocessing systems
(see Tanenbaum [18]). While in some systems (Unix for example) deadlock is rare and
the cost of resolution is low, in many others (such as database systems) the likelihood of
deadlock may be quite high and resolution requires an expensive rollback and recovery. It
would be useful to know under what circumstances deadlock is likely and (especially when
resolution is costly) the expected time for the occurrence of deadlock. This paper presents
a model of multiprocessing systems where processes make resource requests independently
and with Poisson distributions of mean 1. We derive exact and asymptotic expressions for
system statistics such as expected time to deadlock, expected total processing time, and
system efficiency. We make the simplifying assumption that resources are never released.
Thus, our results may be viewed as upper bounds or bounds for an extreme case of system
behavior.

Let us describe our model a little more precisely. A multiprocessing system is composed
of two types of entities: processes and resources. Processes are the active entities of the
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system. They can change the system state by requesting new resources or releasing resources
allocated to them. Resources are serially reusable: they may be reallocated once they are
released. Examples of such resources are hardware units such as memory pages or printers,
and software resources such as database locks. We do not examine systems with consumable
resources such as messages, signals, and input data. We also assume that each process
requests only one resource at a time.

A system state is represented by a resource allocation graph. This is a directed graph
whose vertices are the processes and resources in the system. The graph is bipartite; edges
are directed from resources to processes or processes to resources (see Figure 1).
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Figure 1: A Resource Allocation Graph

A resource is free if it has not been allocated to a process. If a process p requests a free
resource 7, an edge is inserted in the resource allocation graph from r to p to indicate that
r has been allocated to p and is no longer free. When p releases r the edge is erased. If p
requests a resource 7 which is not free, an edge is drawn from p to r, indicating that p is
waiting for 7 to be released. In this case, p becomes inactive or blocked and can make no
more requests until r is released. Thus, an active process has out-degree 0 and an inactive
process has out-degree 1. Deadlock occurs when a directed cycle appears in the resource
allocation graph. Since all the processes on the directed cycle are blocked, the resources on
the cycle can never be released. They become useless until the deadlock is detected and
resolved. For example, if process p; requests resource 74 in Figure 1, deadlock occurs there
acycle p; = r4 — py — 79 — p3 — 5 — p; results when the edge p; — 74 (indicated by the
dotted arrow) is added. A more detailed description of the model is given in the following
section.



Lynch [14], in enumerating the number of cycle-free resource allocation graphs for given
numbers of resources and processes, gave the following necessary and sufficient conditions
for a bipartite directed graph to be a resource allocation graph.

(i) Every vertex has out-degree at most one.

(ii) Every resource with nonzero in-degree has out-degree exactly one.

To see this, observe that a resource acquires an out-edge the first time it is requested;
thereafter, it acquires only in-edges. A process, on the other hand, acquires in-edges until
it acquires its first out-edge; thereafter, it is inactive.

From his enumeration, Lynch derived some system statistics for a model where resource
allocation graphs with the same number of directed edges are equally likely. Our model
is quite different. It is more closely related to problems such as linear probe hashing (see
Knuth [11] and Vitter and Flajolet [19]), computation of random mapping statistics (see
Flajolet, Gardy, and Thimonier [4] and Flajolet and Odlyzko [6]), analysis of union-find
algorithms (see Yao [21] and Knuth and Schénhage [13]), and optimum caching (see Knuth
[12]). These problems are all analyzed in terms of Abel sums (so called because many of
them can be evaluated explicitly by generalizations of Abel’s identity).

The outline of the paper is as follows. In section 2 we describe our model and derive
recurrence relations for various system statistics. In section 3 we note that all of these
recurrences have a common form and give solutions in terms of Abel sums. We prove a
result we call the Half and Half Theorem. It says that beginning from any state with j active
processes, the expected number of these processes blocked by deadlock time is (5 + 1)/2,
one half more than half of the half the number of initially active processes. In section 4 we
develop a general theory for the evaluation of Abel sums. This is applied to the recurrence
solutions of section 3 to give expressions and inequalities for system statistics. In section 5
we give asymptotic expressions for these expressions in the case where systems have many
processes. In section 6 we do the same for the case where systems have a fixed number
of processes. Here functions generalizing the Q-function arise. This function was studied
by Legendre, Cauchy [1], and later by Ramanujan [15]. Ramanujan actually denoted it #
(as he did several other functions). Knuth was the one to name it @ in his first expected
time analysis of an algorithm [10, pages 113-118] (see also Flajolet, Grabner, Kirschenhofer,
and Prodinger [5]). We use singular expansions to obtain the asymptotics of coefficients of
functions of this type.

We observe several notational conventions. The expression [2"]s(z) denotes the n-th
coefficient of the generating function s(z). The expression n denotes the falling factorial
n(n —1)--+(n — m + 1). Stacked numbers in braces {"} denote Stirling numbers of the
second kind (or in the terminology of Graham, Knuth, and Patashnik [8] the subset Stirling
numbers). The expression j!! denotes the double factorial function 1-3-5---(25 - 1). E(X)
is the expectation of the random variable X. We write f < g if f(n)/g(n) approaches 0 as
n — oo; this is just another way of writing f(n) = o(g(n)).

2 Recurrence Equations.

In this section we give a more detailed description of our model and derive recurrence
relations for system statistics.



Let m be the number of resources and n be the number of processes in a multiprocessing
system. Suppose that the system has just entered a state where there are ¢ free resources
and j active processes. Let T';; be a random variable representing the time to deadlock.
T;; depends on m as well as ¢ and j, but for notational convenience we suppress m. We
shall see that T'; ; does not depend at all on n.

Consider the arrival time for the next request. If there were just a single active process,
this value would be an exponentially distributed random variable with mean 1. For j active
processes it is the minimum of j independent, exponentially distributed random variables
with mean 1. A straightforward calculation shows that this is an exponentially distributed
random variable with mean j~!. That is, we may express the arrival time for the next request
as j~'X;;, where X ; is an exponentially distributed random variable with mean 1.

Thus, after a time interval of length j~'X; ;, a process p chooses a resource r. Now r
may be one of the i free resources or one of the m — ¢ allocated resources. The event that r
is free is represented by a random variable A;; where P[A;; = 1] =1- P[A;; = 0] = i/m.
When A;; is 1, an edge is inserted from r to p and the system enters a new state in
which there are ¢ — 1 free resources and j active processes. When A, ; is 0, we check to
see if an edge inserted from p to r would result in deadlock. We do this by constructing
a directed path from r as follows. Follow the unique out-edge from r to a process. If
this process has out-degree one, follow its unique out-edge. Continue in this fashion. The
resource allocation graph contains no directed cycle yet so this path terminates. In fact, it
terminates at a process, since resources with nonzero in-degree have out-degree one. If the
process where this path terminates is p, an edge from p to r would complete a directed cycle
and deadlock results. If the path terminates at any of the other 7 — 1 active processes, we
do not have deadlock. Thus, the probability that deadlock does not occur is (5 —1)/j. The
event that deadlock does not occur may be represented by a random variable B;; where
P[B;;=1]=1- P[B;; =0] = (j — 1)/j. Putting this all together, we have

Tij=3""Xij+ AijTic1;+(1— Ay j)Bi ;T jy (1)

where the random variables A;; and B;; are independent of each other and of the random
variables X;;, Ti_1;, and T;;_;.

This model is counterintuitive in one respect. Suppose that process p requests a resource
r and at some later time p requests r again. This is not precluded in our description of the
model. The system enters deadlock at this point because a 2-cycle appears in the resource
allocation graph. If we do not allow the possibility of a process requesting a resource already
allocated to it, then the system may never reach deadlock. It may instead reach a state in
which all resources have been allocated to a particular process and all other processes are
blocked. If we wanted to forbid the possibility of a process requesting a resource already
allocated to it, we would have to be more careful about what we mean by expected deadlock
time. Of course, the main reason for considering the model here is that it is analytically
more tractable.

In the case where there is a single process our model is an instance of the famous birthday
problem (see Knuth [10]). This problem asks how many people one must choose at random
to find a pair with the same birthday. This is equivalent to labeling 365 resources with the
days of the year (we ignore leap days) and computing the expected deadlock time, which,



with just one process, occurs only when a resource is repeated. In general, T, ; is the
expected number of people one must choose for a year with m days.

Closely related to the problem of finding the expected deadlock time is the problem of
finding the total processing time P;; before deadlock. This requires only a minor modific-
ation of the argument used to derive equation (1). Observe that if j processes are active for
a time interval given by j~!X,; then the total processing time over that interval is X ;.
Hence,

Pij=Xij+AijPi1j+(1- Aij)Bi;Pij (2)

Now if welet T; ; = E(T;;) and P,; = E(P;;), from (1) and (2) we have, using linearity
of expectation and independence, then multiplying by 7,

. i, 1 ) :
iTi; = 1+ EJT:'-L,' + (1 - E) (- DTi;-4, (3)
. R 1 ;

iB; = 7+ ;in—l,j + (1 — fn;) (J-1)P (4)

for 7 > 0.

A system statistic that will be especially important is F; ; = P;;/5T;; which measures
system efficiency. Note that jT;; is total processing time in system where j processes are
active for a time interval of T; ;. The ratio of actual total processing time to this quantity
is the expected fraction of time that processes are active.

We will also be interested in the variances of T';; and P,-,j. Therefore, we wish to
compute the expectations U;; = E(T?;) and Q;; = E(P};). Squaring both sides of (1)
and using the identities A, ;(1 - A;;) =0, A,J- =A;; (1- ,,j)z =1-A;;, 32 = B;;,
we have

T, = j7°X};+Ai;Ti,;+(1- A;)Bi;T]_ +
23"'Xu As,;T._l,; +257 X:;(1 - Aij)Bi T 1

Now take expectations and use equation (3). Note that E(X?;) = 2. Then multiply by j
to obtain

jUs; = 2T:; + ]U,_IJ + (1 - ;’:-) (G - D)1 (5)

Performing the same series of computations beginning with (2) we have
. : i
3Qus = 2Py + =@ + (1= =) (G = Duon (©)

The last statistic we consider measures how well the system allocates resources. This is
also important for system design. Even if the expected deadlock time is fairly long, system
performance still might be poor if processes requesting resources are usually blocked. We
are interested, therefore, in the expected number of resources R; ; that will be allocated by
the time deadlock occurs. This is easy to determine from our model. Notice that whenever
a process requests a resource, the probability that the request will be granted is ¢/m. Thus,

jRi,j - + —]R‘ 1,5 + (1 - _)(] - 1)R‘J 1. (7)



3 Solving the General Recurrence.
The equations (3)—(7) have the form
=t S5 (1) s ®
m m
where §; o = X; = 0 for all . (Note that there is no need to specify the values of Sy ; since

So,;j = Xo,j + So,j-1.) We summarize the results of the previous section, with respect to this
general form, in Figure 2.

| Symbol | Description | Si; | Xi; | Equation |
T, ~ Expected iTi; | 1 (3)
Deadlock Time
P;; Expected Total JPi; J (4)
Processing Time
Ui Expected Square JUs; | 2T;; (5)

of Deadlock Time
Qi ; Expected Square of | jQ:; | 2j P (6)
Total Processing Time
R; ; Expected Number of | jR;; | ij/m (7
Resources Allocated

Figure 2: Summary of Recurrences

Recurrence (8) is linear in X;;; that is, if X;; = aX]; + bX{; for all i and j, then
Si; = a8 ; + bS}';, where S; ; and §7'; are solutions of the equations obtained from (8) by
replacing X;; with X;; and X{; respectively.

To solve (8), we might try to form a bivariate generating function y; ; S; ;4*2’ and solve
the resulting partial differential equation. Unfortunately, the solution to this equation does
not lead easily to a closed form solution for coefficients of the generating function. Instead,
we form sequences of generating functions

.S‘,'(Z) = ZS,',J'ZJ' and 33,'(2) = ZX,'JZ]-.
i=1 i=1
Multiply equation (8) by 2/ and sum over the range j > 1 to obtain

3i(z) = z;y(2) + —1%3,-_1(2) + (1 - %) z8;(2).

Solving for s;(2) gives an expression in terms of s;_;(2) and z;(z):

m )

8i(2) = — —

i)zxi(z) + msi-l(z)'

(m =



Substitute for s,_;(z) on the right side of this expression, then substitute for s;_s(2), and
so on. We have

5(2) = 3 aia(2)z(2) (9)

where
mi(i—1)---(k+1)
(m=-(m-=-0z)(m—-(m—-i+1)z)---(m—(m-k)z)
It is instructive to use (9) and (10) to compute T, ;, which, recall, is the expectation in
the birthday problem for a year with m days. Take X;; = 1fori > 0 and j > 0. Then T}, ,
is the linear coefficient of s,,(z) and hence is the sum of the constant coefficients of a, ;.
Thus,

a;1(2) = (10)

Tpp=1414 22t o Dm=2),  (m-1(m—2) -1
m m m
We may regard this as a function of m. The function 7T}, ; — 1 is the Ramanujan @-function.
Tin,1 is the linear coefficient of s,,(z) and thus is just the first of a family of functions given
by the successive coefficients of s,,(z). The techniques used by Knuth and others to obtain
the asymptotics of coefficients of the Q-function do not seem to extend easily to other
functions in the family. In a later section we will develop other asymptotic methods to deal
with these functions.
Let us return to our analysis of (9) and (10). By partial fraction decomposition

ain(2) = g('l)” (i - z,zi— k,k) (1 - ?i'i)i-k (1 - (1 - %) z>_1 '

[2"ai x(2) = g(_l)l—k (z N li_ k’k) (1 _ %y-“r

and consequently

Thus,

S = Y S lass()([F ()

k=0r=0
i j-1 4 - ; ’ b
- St (i) () wn -
: i ! ! l I-kj-1 l i=14r
= g (l) kgo (k) <—'n_z- - 1) ;—-o (1 - R) Xk jor
! CIN (I 1 NFRITL e
B z—;XO’r * ,Z; l § k (7& B 1) Z;) (1 - ;n-) Xk jor-

This appears a little cumbersome, but for many choices of X, ; there is a considerable
simplification. In particular, if X;; can be written as a product X;; = Y;Z; then we can

write ; e 1 | o1
Sii=Yo) Zo+), (z) 0y (k) Yo(-0)*Y Z; ) (12)
r=1 i=1 r=0

k=0

7



where I; = 1 — I/m. The sums 3, _, (1) Yi(=1,)'""* and Yy Z;_ Iy can then be evaluated

r=

separately. Results below follow in this way. It is convenient to introduce the notation

e(pra) = Z (,) (—,f;) (1- -,';) - (13)

Note that ¢;(p+1,¢+1) = ¢;(p+1,¢) — ¢i(p, ¢). In the next section we explain how ¢;(p, q)
may be computed in closed form for some values of p and gq.

Theorem 8.1 We have the following ezpressions for ezpected deadlock time, expected total
processing time, and expected number of resources allocated at deadlock time.

(i) Tij = 1+ (ci(1,0) — ei(1,5))/4-
(i) Pij = (G +1)/2+4c(1,0) = (ei(2,1) — (2,5 + 1)) /5.
(iii) Ri; = ¢i(1,0) = (ci(2,1) — (2,5 + 1))/3.

Proof. For (i) take X;; = 1 in equation (3) so that ¥; = Z; = 1. Use the Binomial
Theorem and summation of geometric series to obtain

B ()G 08 (-0-2))

Similarly, (ii) and (iii) follow from the identities

i
) (,f) K(=L)~* = 101 - L), (14)

k=0
j-1 ; j+1
. J I -1
-7 = - , 15
which are derived by standard techniques. O

Parts (ii) and (iii) of the theorem already provide useful information about system
behavior. The expected total processing time P; ; is the also the expected number of requests
since the request arrival time for each process is 1. The difference between this value and
R; ;, the expected number of resources allocated, is the expected number of processes blocked
by deadlock time. We see that this quantity is always (j+ 1)/2, one half more than half the
number of initially active processes. Thus, we have the following surprising result about
system performance.

Theorem 3.2 (The Half and Half Theorem) Beginning from any state with j active
processes, the expected number of these processes blocked by deadlock time is (7 + 1)/2.

There is an easier way to prove the Half and Half Theorem. The theorem is clearly true
when j = 1. Now suppose the system is in a state where the number j of active processes is
more than one and assume the Half and Half Theorem holds for states with j — 1 processes.



The system may change states a number of times before it changes from a state with j
active processes to a state with j — 1 active processes. Let us call state changes where the
number of active processes decreases critical. A system can deadlock only at a critical state
change. The probability of deadlock at the first critical state change is 1/j; in this event
just one of the original processes is blocked. The probability, then, that deadlock does not
occur at the first critical state change is (7 — 1)/j; in this event the system enters a state
with j — 1 active processes and the expected number of remaining processes that will be
blocked by deadlock time is j/2, by the induction hypothesis. Thus, the expected number
of processes blocked by deadlock time is (1/7)+ (1 +j/2)(G—-1)/i=(F+1)/2.

Using these ideas we can determine how many processes must be blocked for the prob-
ability of deadlock to exceed § > 0. The probability of reaching deadlock after k critical
state changes is
1 7-1 1 j-17-2 1 j-1j-2 j-k+1 1 k

J j i-1 Jj j-1j-2 i j-1 j-k+2j-k+1

so we set k = §j. We have the following result

Theorem 3.3 If we allow a system with j initially active processes to operate until 6j of
those processes are blocked, the probability that deadlock has occurred is 6.

Before concluding this section, let us explore another consequence of equation (11).
Consider the case where ¢ = m, that is, where all resources are initially free. Changing the
order of summation we have

j=1m k k4r
m k l
= B (o ()@
’ r=0}§) k ! Z(; l m
i-1'm m—k
m2== |k+7r
r=0k=0

The last equation follows from formula (6.19) of Graham, Knuth, and Patashnik [8]. While
this is a more pleasing form than equation (12) (and shows, in particular, that S, ; is a
positive linear combination of the quantities X} ,), it is not as useful.

4 Evaluation of Abel Sums.

Abel’s identity is expressed in several different forms in the literature. Here is one of them
(see Riordan [16, page 18]):

23 (;) @+ y+i-D" = (e +y+i).
=0
It follows immediately that

3] O e

I=1 z

9



Taking the limit as z approaches 0 we have

i-1 /.

2 (3)1"‘(31 ti= )T =iy + )T

1=0 !
If we put y = m — ¢ and divide by m*~! we have one of the cases of (13) needed to evaluate
the expression in Theorem 3.1(i), viz., ¢;(1,0) = . Riordan [16, pages 18-23] considers
several generalizations of Abel’s identity. These give some of the other cases ¢;(p,¢) by
the same argument. (N.B. There are some typographical errors in Riordan’s formulas.)
However, in order to get good asymptotic results we must develop a more general theory
for expressions of the form

Ci(p,q,y) = E ( )l""(y+ i— )=t

and then evaluate ¢;(p, q) = Ci(p, g, m — 1)/m*~?+1. First note that Ci(p,q,y) is a convolu-

tion. Let k"” B
fp(2) = Z and g,(2) = Z Y +

(f p = 0 then it will be convement to begin the summation for f,(z) at £ = 0 rather
than k£ = 1 so that the constant coefficient is 1.) Then C;(p,q,y) = [z'/i!]f,(2)g,(z). The
function f1(z) = f(z) is well known in combinatorial enumeration. A standard textbook
application of the Lagrange Inversion Formula is to show that f(z) is the solution of the
functional equation f(z) = ze/(*) (see Wilf [20]). If we differentiate both sides of this
equation, substitute e/(*) = f(2)/z, and solve for f'(z) we have zf'(z) = f(2)/(1 - f(2)).
Thus,

)k+q

o) = [[Lda = [0 f@)r@)da = ) - 3107,
from which it follows that

@)= [ E = [ (1-31@) (- f@) @) de = 1) = S5 + LGP

If we use the Lagrange Inversion Theorem to compute the coefficients of e¥/(*) and then
substitute f(z)/z for e¥/(*) we have

ad k-1
fzY =y Z k)™ +Ij) 2yHE
k=1 *

Differentiate, multiply by z, and replace z f'(z) with f(z)/(1 - f(z)). We obtain

gol2) = E(yw)" _(fgz))”l_lf(z)_

It follows that

fi(2)go(2) = = (fiz))y“ 1-1f(2)

i k(y + k)k-l k
AR

k=1

10



and so C;(1,0,y) = i(y+¢)*~!. A similar evaluation of f,(z)ge(z) and f3(2)go(z) shows that
Ci2,0,8) = ily+i) = 3y +if,
. i 3. i 1. i
Ci(3,0,9) = i(y+i)7 - 2y + i)+ Zi¥(y +9)

We can use the method above to compute values of C;(p,0,y) whenever p > 0. We can
show easily by induction that

fo(2) =3 _Dyuf(2)
k=1

where for all positive p, Dp 1 = 1 and Dpy1e41 = (Dp k41 — Dy i)/ k. These coefficients are
the “differences of reciprocals of unity” appearing on page 248 of David, Kendall, and Barton
[2]. (This source was located with the help of Sloane [17]; cf. sequences 2049 and 2305.) It
follows that »
Ci(p,0,9) = Y _ Dy ity +1)'*.
k=1

We can now compute the values of ¢;(p,q) when p > ¢ > 0. The first few values are as

follows.

(1,00 = i,
(2,0) = im—i(igl),

(3,0) = im?— 35“4‘ D, 4 = 1;(27 -2)

a(2,1) = a(2,0)-a(1,0) = im—i(igl),

a(3,1) = e(3,0)-c(2,0) = mz_(3i:1)im LGt 1);‘0'-1),
¢(3,2) = a(3,1)-c(2,1) = mz_(3iz5)im+(i+2)éi+ )i

In general,
p
¢i(p,0) = E D, Ll
k=1

and values of ¢;(p, ¢) for 1 < ¢ < p are obtained by differencing.
Substituting these values for ¢;(p,q) into Theorem 3.1 we have the following theorem
giving expressions for various system statistics in terms of Abel sums.

Theorem 4.1 The ezpected deadlock time, expected total processing time, and expected
number of resources allocated at deadlock time are as follows.

() Tij =1+i/j—ci(1,5)/5.
(i) Pij=(G+1)/2+i—im/j+i(i+1)/2j + ci(2,5+1)/5.
(ii) Rij =i—im/j+i(i+1)/2j+ (2,54 1)/5.

11



From equation (13) we see immediately that ¢;(1,7) < ¢;(1,0) and ¢;(2,7+1) £ ¢i(2,1),
so we have the following important corollary.

Corollary 4.2 The ezpected deadlock time, ezpected total processing time, and expected
number of resources allocated at deadlock time satisfy the following inequalities.

(i) 1< T <1+i/j.
(i) (j+1)/2+i—im[j+i(i+1)/2j < Pij < (G +1)/2+ 1.
(iii) i—im/j +i(i+ 1)/2j < Ri; < i.

The first of the these inequalities suggests that we may want to do deadlock detection
at regular intervals rather than at each change of the system state. It shows that even in
the worst possible circumstance where resources are never released, expected deadlock time
is never less than 1. There is an absolute lower bound for expected deadlock time.

5 Systems with Many Processes.

The case of systems with many processes is important for applications. This occurs, for
example, when 7, the number of free resources, is much less than j, the number of active
processes. A few of our results require slightly stronger assumptions, either that m, the total
number of resources, is much less than j or that mloglogm is less than j. The following
result is an immediate consequence of Corollary 4.2.

Theorem 5.1 Suppose that a system that begins from a state with m resources, i free
resources, and j active processes.

(i) (Ezpected deadlock time.) If i = o(j), then T; ; ~ 1.
(1) (Ezpected total processing time.) If i = o(j) and m = O(j), then P;; ~ j/2,

(ii1) (Ezpected number of allocated resources, and system efficiency.) If m = o(j), then
Rij~i, and Fy; = P.;/iTi; ~ 1/2.

We see that a system with many processes performs well; it assigns nearly all resources
before deadlock and even though most requests result in a blocked process (since the total
number of requests is asymptotically j/2 which is much larger than ¢, the number of re-
sources allocated) system efficiency is still reasonably good. Now let us consider the vari-
ances of T; ; and P; ;. The proofs are more involved so we state the results separately.

Theorem 5.2 In a system that begins from a state with m resources, ¢ free resources, and
j active processes, if mloglogm = O(j), then the variance of deadlock time approaches 1.

Proof. We must first obtain bounds on U; ;, the mean square of T; ;. Recall from Figure 2

that we take X;; = 2T;; in equation (8). Direct substitution gives a very complicated
expression, so we substitute instead the lower and upper bounds given by Corollary 4.2.

12



First, let us derive a lower bound. Let X;; = 2 in equation (8). Then we have immedi-
ately from Corollary 4.2 that S;;/j is at least 2.

To obtain an upper bound we need to solve (8) when X;; = 2+ 2i/j. By linearity, we
may solve the cases where X;; = 2 and X;; = 2¢/j separately. In the first case S;;/j has
an upper bound of 2 + 2¢/j by Corollary 4.2. In the second case an explicit solution seems
difficult. Instead, we obtain estimates on equation (12) with ¥; = 2{ and Z; = 1/5. By
equation (14) we have

= () )08 82 04

r=0

> () (&) (-2) " =ea0=s

Thus, S;;/j is a weighted average of the values

g J=1 r
ML (LY 00

Jmi-rnoom

Recall that

where [ ranges from 1 to i. These values can be expressed as [27]g;(z) where

_ 2l log(1-—2z)
9(2) = j1-(0-=1/m)z

We will show that (16) is o(1) uniformly in [ as j — co. We do this using ideas related
to singularity analysis originally formulated by Darboux (see Henrici [9] and Flajolet and
Odlyzko [7]). The dominant singularity of g;(z) is a logarithmic singularity at z = 1 and
the only other singularity is at 2 = 1 +1{/(m — [). Apply Cauchy’s formula to obtain

; _ il log(1 - z)
o) = -7 | T a e pmmen (0

We choose a contour I' consisting of several parts and bound the integral on each part
(see Figure 3). Let § vary with j so that 0 < —élogé < 1/j. Take ¢ = I/2(m — ) and
let 7 > ¢ be a fixed constant. I' consists of six pieces I';,...,T’s. T'; is a circle of radius é
centered at 1 taken clockwise beginning at 1+ §. T'; is a line segment from 1+ 6 to 1 +¢.
I's is a line segment at an angle of /3 beginning at 1 + ¢ ending at a point on the circle
of radius 1 + 7 centered at 0. We obtain I'y by following this circle counterclockwise from
this point to its conjugate. I's is a reflection of I'; through the real axis, but with reversed
orientation. T's is I'; with reversed orientation. Note, however that we use the principal
branch of log z. That is, the complex plane is slit from 1 to oo with I'; and I's on opposite
sides of the slit.

Let us derive bounds on factors of the integrand in (17). First note that I' was chosen
so that it does not come close to the point 1+ 1/(m —1); for j sufficiently large the distance
is always at least I/2(m —1)so forall zon T

1
1-(1-1/m)z

2m
< —.
= 1
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Figure 3: Contour for Evaluation of U; ;

Also, log(1 — 2) < —log|1 — z| + 7 everywhere on I' with the possible exception of some
points on I'y.

For T; we take z = 1 — 6e¥=1 for -7 < 8 < 7 s0o (1 -6y < |2/] < (14 6) and
|27| approaches 1 uniformly. Thus, (17) is bounded in modulus by a constant multiple of
4imé(— log 6 + m)/j which approaches 0 as j increases.

Next combine the contributions to (17) from I'; and I's. These two contours are the same,
except for orientation, but the branches of log(1 — z) used differ by —2m+/—1. Therefore,
the total contribution is

21l /1+f dz 4zm /1+‘
J Jies (1= (1 =1/m)z)zi+! . 145 @/¥!

which approaches 0 as j increases.

Next, for T's we take z = 1 + ¢ + zeV~1"/3 where z ranges from 0 to a value slightly
less than 2(n — £) — the exact value is not crucial. Notice that —log(1l — z) attains its
maximum modulus on this contour when z = 0 and it is less than logm there. Notice also
that |2| > 14+ €+ /2 on T; so the contribution is bounded by

4im10gm/°° dz _ 4imlogm (1 3 _l_)’ < 4z'17"¢logme_,j/m
(14+¢e+z)ytt J? m) ~ j?
which approaches 0 since mloglogm < j. We obtain a bound on I's in exactly the same
way.
Finally, on I'y we see that the modulus of the denominator of the integrand grows
exponentially in j and the numerator is bounded, so the contribution to (17) approaches 0.
We conclude that U; ; ~ 2 and hence that the variance of T;; approaches 1. o
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The log log m factor in the preceding theorem is somewhat annoying. It seems likely that
it can be eliminated. Note that the only place in the proof where we used this condition,
rather than the weaker assumption that m = o(j), was in bounding the integral on I'; and
I's. We could instead have used the condition that i < m/logm.

Theorem 5.3 In a system that begins from a state with m resources, i free resources, and
J active processes, if i = o(j) and m = O(j), then the variance of total processing time is
asymptotic to j2/12.

Proof. We begin similarly to the proof of the previous theorem. We obtain bounds on Q; ;,
the mean square of P; ; by substituting the lower and upper bounds given by Corollary 4.2.
For the lower bound we take X;; = j(j + 1) + 2ij — 2¢m + i(i + 1) in equation (8) and for
the upper bound we take X;; = j(j + 1) + 2ij. Thus, by linearity, we have four cases to
consider.

Case 1: X;; =j(7+1). In (12) welet Y; =1 and Z; = j(j + 1). Use the identities

S r(r+1) = 3G+ 1) +2)/3,

r=1

and - -
i- (g 2 _ it
. . F_JU+D 1 I -1
- —_— - -— '2
;(J MU=+ DI = S = 2 T 2T

to obtain
Sigli =G+ 10 +2)/3+ (G + Da(1,0) - 262, 1) +2(6x(3,2) - (3, + 2)/i-
Case 2: X;; = 2ij. In (12) we let Y; = 2i and Z; = j. We have from (14) and (15) that
Stirling'sS; ; /7 = 2mc;(1,0) - 2m(c;(2,1) — (2,5 + 1))/7.
Case 3: X;; = —2im. In (12) we let ¥; = —2im and Z; = 1. We have
Si5/3 = =2m*(ci(1,0) - (1, 7))/5-

Case 4: X;; =i(¢+1). In (12) welet Y; = i(i + 1) and Z; = 1. Use the identity
!
> (2) k(k+ 1)(-L)* =1(1-1)(1 - L)Y *+21(1- L),
k=0
to obtain
Si/3 = (m* + m)(ci(1,0) - ci(1,4))/5 — m(ci(2,0) = (2, 5))/3.

A lower bound for §; ;/j in case 1 is

G+DG+2)/3+4i(G+1)—2im+i(i +1).
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Add the values of S;;/j for cases 2, 3, and 4. Using the identities for ¢;(p, ¢) developed in
section 3 we have

2im — 3m(c,-(2, 1) - C.‘(z,j 4+ 1))/] - (m2 - m)(c.-(l,O) - Ct(l’]))/J

A lower bound for this is
2im — 4im?/j + i(3i 4 5)m/2j.

Thus, taking all the cases together we have a lower bound for Q; ; of
G+DE+2)/3+iG+1)+i(i+1) — 4im?/j + i(3i + 5)m/2j.

To obtain an upper bound for Q; ;, add the values of S;;/j in cases 1 and 2. This is less
than

G+DGE+2)/3+iG+ 1) +i(i+ 1)+ 2im?/j — i(3i+ 5)m/2j + (1 + 2)(1 + 1)i/35.

We see that under the hypotheses of the theorem that Q;; ~ j*/3. The square of the
mean of P, ; is asymptotic to j2/4 so the variance is asymptotic to j2/12. o

These two results on the the variance of T';; and P; ; show that we must be cautious
if we consider doing deadlock detection only at regular intervals in systems with many
processes. Even though deadlock time and total processing time have reasonable means,
their standard deviations are constant multiples of their means. For design purposes we
would like to have more information about the distributions of these random variables.
We have not yet succeeded in determining the distributions explicitly. Perhaps simulations
would give some insight. We will make some brief comments about the distributions in the
last section.

6 Systems with a Fixed Number of Processes.

Systems with a fixed number of processes are also important for applications. We will
need more sophisticated asymptotic techniques than in the last section to carry out the
analysis of these systems. We will also need to restrict to the case i = m, i.e., the case
where all resources are initially free. By Theorem 4.1 we see that we need to determ-
ine asymptotic expansions of ¢, (1,5) = [z™/m!(f(2)f-;(z)/m™ 1) and (2,5 + 1) =
[ ] fo(2)f—jor(2)mmH0). "

We first need to find the singular expansions of the functions f,. The singular expansion
of fi(z) = f(z) can be derived without too much difficulty from the Implicit Function
Theorem and the defining equation f(z) = ze/(2). Set g(z,w) = w — ze* and note that
w = f(z) is the solution of g(z,w) = 0. Now g(1/e,1) = (9g/0w)(1/e,w) = 0 and
(8%g/0w*)(1/e,1) # 0, so f has an algebraic singularity of of order 1/2 at z = 1/e. Let
6 = (2 — 2ez)'/? (the 2!/2 factor is to simplify succeeding expressions) so z = (2 — 6%)/2e.
Substituting into the equation g(z,w) = 0 we have § = (2 — 2we'~*)/2. That is, f,
considered as a function of 8, satisfies § = (2 — 2f(6)e!~7()1/2, In this context, f is the
functional inverse of h(w) = (2 — 2we!~*)}2. It is a simple matter to compute the Taylor
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expansion of h and then of its inverse (in Maple, the reversion operation accomplishes this).

We obtain 1., 11 43 769
_ - 82 __ 163 64 -
f(2)=1-8+4 38" - 58+ =58~ 1m0

A similar derivation of this formula can be found in Flajolet and Odlyzko [6]. The singular
expansion of fo(z) = f(z) — f(2)?/2 can now be seen to be

1, 5., 47
39 520 360

Note that application of the operator z(d/dz) to f;(z) gives fi_1(2). Now 2(d/dz)é™ =
—-mé™=2 + mé™ /2 so

S+

1 1o
f?(z)—z 26+

2 1 2 23
—- -1 e - = 2_______ 3 .
fo(2) = 4 —g— bt b — e
11 4 1
- §T gy 5 ...,
f-1(2) -1 135 11m

In general,
foi(R)= Y biad®
k=—2j-1

where b; ;. = kb;_14/2—(k+2)b;_1 r+2. We can solve this recurrence first for the coefficients
b; _2;-1, then for the coefficients b; _,; and so on. For j > 2 we have

cor [ emni 1252 -1 __,. 1445% — 38453 + 26452 - 23 __,. )
L (2) = i (6 o ST gan §-2H8 4 L)
f-i(2) =3 ( 24(2; — 1) 1152(2 —1)(2] - 3) +
Thus,
1 149 767
— -3 _ £-2 _ _g-1 it v
f@fa(z) = - - g o~ s T
ooy eegs 12721647 g, 182 —11j+4 _,,
_; = 4N -1 _ 54 2j+1 522
14 = (s Sy
, 2160j* — 11520;° + 181045 — 10528 + 3063 ;.5 )
17280(25 — 1)(2j - 3)
for 7 > 2, and

. 1., 12524725435 0y 1 _,
. = " S £=2j=8 _ é 2j—-1 26 2j

1447 + 13447° - 2165° = 1445~ 4T ;1 | ) ,
2304(25 + 1)(25 - 1)

for j > 1. By the Binomial Theorem and formula [z™/m!]6~* is

7f1/2 mm+(a—1)/2 ( 3a? — 6a + 2 n 9a* — 6003 + 120a? — T2 +4 +0 ( 1 ))
I(a/2) 20172 24m 1152m? '
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Substituting this into the expressions above and simplifying, we have

_ (2-,-;)1/2"11/2 1 _ (2”)1/2m—1/2

= __4_ -1 -3/2
cm(l,1) = ) 3 5 + 135m +0(m )
2T +1/2) 1y 25-1 2T +1/2)47~6145
N N _ | e
2°-45-6__, -3/2
g ™ O
y 21/27( 4 924 9
en(2i+1) = smo X1 G122+ 0 32 o0

2 2 T(j) 3 3

The asymptotic formula for ¢,,(1,1) agrees with equation (25) in section 1.2.11.3 of
Knuth [10]. Our approach seems somewhat simpler since it does not require analysis of
the incomplete gamma function. From Theorem 4.1 we now have the main result of this
section.

Theorem 6.1 Fiz j. For systems beginning from a state with j processes and all resources
free, we have the following asymptotic formulas for ezpected deadlock time, erpected total
processing time, expected number of resources allocated at deadlock time, and system effi-
ciency.

1/2 1/2
frm1 = glﬂ._.)___mll2 + g + (Q_w)__m—1/2 _ im—l + O(m'3/2),

' 2 3 24 135
o 2121 (5 + 1/2) 1, 141 22(45° — 65+ 5T~ 1/2) _y/
™3 G+ 1) 3j 2T + 1)
-2 _ . -
gz’——————mé‘;———gm‘l +0(m™3%), when j>2
2°T(j+3/2) ,, , j+3 iy
Pn; = 3T+ 1) m +——6-~+O(m )
BPT(+3/2) 1yp J
= /12 _J -1/2
_ 2. 1 -1/2
Fnj = 3+t O(m™""%).

Thus, we find that for a fixed number of processes, deadlock time, total processing
time, and number of resources allocated are asymptotic to a constant multiple of m'/?,
System efficiency always approaches a value greater than 2/3. This seems very promising.
Unfortunately, we have not yet determined the order of the variances for deadlock time and
total processing time and we have no idea of the distribution.

7 Conclusions.

Our results suggest that it may be worthwhile to investigate doing deadlock detection at
regular intervals in some systems. The most compelling evidence for this is the absolute
lower bound for expected deadlock time (Corollary 4.2(i)). Also, the high values for system
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efficiency for systems with many processes (Theorem 5.1(iii)) and systems with a fixed
number of processes (Theorem 6.1) are encouraging.

If we knew the distribution of deadlock time T'; ; we could determine, for a given é > 0,
the length of time the system must operate for the probability of deadlock to be 6. We
could then compare the cost of continuously updating to do deadlock detection versus the
expected cost of resolution and rollback when doing deadlock detection at regular intervals.
Even though we do not know the distribution, Theorem 3.3 provides a similar, but less
satisfactory, approach. We can count blocked processes. Unfortunately, this requires some
communication between processes and could therefore cost more than waiting for some fixed
time interval.

What do we have to do to determine the distribution of deadlock time T';; as i or j
increase? A standard approach for determining the distribution of a limit random variable
is to find its characteristic function (see Feller [3]). From equation (1) we have the following
recurrence for the characteristic function CZA‘,-J- of T ;:

P 1 i ) 1\ . T

T;; = 1—_\/'_712—/; (;n"Ti—l,j + (1 - —77—2-) (1 — 3—) Tij_1+ (1 — %) %) .
This may lead to a solution, but it does not seem to work well with the generating function
methods used here.

There are other important questions still to be answered.

First, the absolute lower bound we derived for expected deadlock time, although theor-
etically optimal, certainly does not come near what occurs in practice. The most obvious
reason for this is that processes do release resources in multiprocessing systems so deadlock
time is usually much greater than than in the model here. We need to develop a more
realistic model, but this will not be easy. It will require adding a queueing theoretical di-
mension to the combinatorial problem of determining when cycles emerge in certain kinds
of random bipartite graphs.

Second, we need to deal with the problem of 2-cycles mentioned in section 2. We would
expect processes to remember the resources allocated to them and to avoid making duplicate
requests. As we noted, if we prohibit 2-cycles, then it is no longer clear what is meant by
expected deadlock time. It is also not clear how to modify the model. Should we proceed
as before with a process randomly choosing a resource but have the system to continue in
case a 2-cycle arises? Or should we require a process to choose randomly among resources
not allocated to it? In either case, the model becomes much more complicated. We must
keep track not only of the number of active processes, but also of the number of resources
allocated to each active process.

In addition to the cases in sections 4 and 5, we would like to have asymptotic expressions
for system statistics when i = Kj. We would like to know in section 4 if conditions like
m = o(j) and mloglogm = o(j) can be replaced with i = o(j). We would like to solve the
general case in section 5, not just the case ¢ = m.

Finally, we would like to know the variances of T;; and P;; for fixed j. As far as
we know this has not been determined even in the case 7 = 1. This is closely related to
the problem of determining the variance of the birthday problem. (Even though the mean
of T, ; is the expected number of people needed to find a pair with the same birthday,
variance behaves differently. The model with one process is like a person standing on a
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busy street corner asking passers-by their birthdays until a repetition is found.) The first
author has used the birthday problem in data structure classes (of at least 24 students) to
illustrate hash table collisions. He has always been uneasy about this, however, because
he does not know the variance of the birthday problem random variable. Fortunately, the
demonstration has always worked. This is probably a good omen for deadlock detection.
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