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Abstract

A machining economics problem is considered where feed speed selection and tool
replacement policies are to be determined. A new stochastic model for tool wear,
called a diffusion-threshold model, is proposed. This tool wear model allows the
machining economics problem to be formulated as a stochastic optimal control
problem incorporating measurement feedback of tool wear. A class of cost func-
tionals is introduced and the optimal policy is described. An example problem

based on actual data is worked out.
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1. INTRODUCTION

An emphasis on improved productivity in manufacturing has initiated a
surge of interest in all aspects of the manufacturing field. Ramifications of this
interest are the reconsideration of traditional manufacturing practices and the
development of new approaches to manufacturing problems. One of these new
approaches is called intelligent manufacturing. Intelligent manufacturing recog-
nizes the increased capability for acquiring and processing information on the fac-
tory floor, and makes use of this capability to improve the manufacturing pro-
cess. Central to this approach is the question of how to effectively use the feed-
back of information in making decisions influencing the operation of the

manufacturing system.

The intent of this paper is to describe one simple manufacturing example,
called the drilling problem, and to show how one new approach to this problem
can be formulated. Drilling is chosen for illustrative purposes and is not a restric-
tion of the approach. The drilling problem incorporates elements of traditional
machining economics, but in the context of intelligent manufacturing. This new
approach to the problem allows a control theoretic view of the problem to be
taken. This view recognizes the potential for enhancing the performance of sys-
tems through information feedback and on-line control strategies. The control
theoretic view is made possible by the proposal of a new stochastic model for tool
wear. The new model for tool wear incorporates several features that make the
control theoretic view a natural one. This new model for tool wear is applied to

the drilling problem, resulting in the formulation of a machining economics
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problem as an optimal control problem.

The optimal control problem makes reasonable assumptions about the avai-
lability of information in the manufacturing environment. Solution to the prob-
lem yields optimal tool replacement and feed “speed selection strategies. Sufficient
conditions for existence of optimal solutions are given for one restricted case.

These conditions are satisfied by observed tool wear phenomena.

The drilling problem shows how an appropriate balance between low and
high level detail, information feedback, and manufacturing performance criteria

can be obtained in a control theoretic approach to manufacturing.
2. THE DRILLING PROBLEM

2.1. Problem Description

The drilling problem represents a simple version of a problem found in
metal-removal manufacturing operations, but with some new extensions. The
heart of the problem is the question of how to operate a machining system in the
best way subject to the limitations of uncertain physical phenomena. In this sim-
plified version, only a single machine carrying out a single operation will be con-
sidered. It is important not to divorce the problem entirely from the surrounding
manufacturing complex, however. That is, the problem formulation should

represent at once aspects of manufacturing and aspects of drilling.

Assume there is a metal drilling manufacturing operation. The machine is a
single tool drill, repetitively carrying out a single identical task on parts as they

arrive. The task involves the drilling of a single hole in each part. An unlimited
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supply of parts for drilling is available. When a part is completed, another part

is immediately available for drilling.

As holes are drilled, the tool wears and is susceptible to breakage. It is
assumed that there is a limit to the wear beyond which the tool is unacceptable.
A broken tool is considered unacceptable. Evolution of tool wear necessitates the
occasional replacement of the tool. Replacement of the tool involves some costs

for both time and material.

The spindle speed and the feed speed of the drill are variable. The machin-
ing rate, i.e. the rate of metal removal, is proportional to the feed speed. The
time required to complete an.operation is inversely proportional to the machining
rate. Assuming that the tool does not break, the time to complete a part is
inversely proportional to the feed speed. See the Appendix for a description of

relevant drilling terminology.

The dynamics of tool wear are not completely understood. Experiments have
been made from which empirical formulas for tool wear have been derived.
These formulas are known to be only approximate, and considerable variation in
tool life is evident. Furthermore, the material to be drilled has some uncertain
characteristics that also affect tool wear. The empirical formulas for tool life sug-
gest that under the assumption of a fixed feed (the ratio of feed speed to spindle
speed), the tool wear rate is an increasing function of the cutting speed, and an
increasing function of the feed speed. In this paper increasing means monotoni-

cally increasing (non-decreasing).
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The replacement of tools prior to breakage is feasible. If the tool breaks, it
must be replaced before continuing. Furthermore, tool breakage may cause dam-
age to the current part, possibly resulting in scrappage or necessitating rework.
Costs are therefore associated with tool breakage. Tool breakage is an unplanned
event, so replacement of the tool due to breakage may take longer (and thus cost

more) than planned replacement.

The drilling problem is to determine the best policies for operating the drill.
The required decisions are when to replace the tool, and the selection of spindle
and feed speeds used to drill the parts. In this paper it is assumed that the feed is
constant so that the feed speed and spindle speed are necessarily proportional.
Therefore only the feed speed needs to be specified. For simplicity in later
analysis, assume tl;at the feed speed can be changed at the start of each part, but
once chosen remains constant until the part is completed, or the drill breaks.
The criteria for ranking policies is a function of the various economic considera-

tions. Any of several different criteria may be reasonable.

The above description of the drilling problem is typical of problems of
machining economics, and as such does not appreciably extend previous con-
siderations of these problems. The on-line variability of the spindle and feed
speeds is not usual, however. Similar problems can be found in many references,
including [7], [10], [11], [13], [18], [19], [21], [23], [26], and [27].

The problem will now be extended. Suppose that occasional measurements
of the extent of tool wear are made. Assume that these measurements can be

made with reasonable accuracy, and may be taken as exact. Continuous
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measurements cannot be made while the tool is engaged in the part however.

Measurements can only be made between parts, when the tool is disengaged.

The method of wear measurement is not specified. This new information is to be

incorporated into the decision policies.

(1)

(2)

The essential features of the drilling problem are:

Mechanical Aspects: The drill is used in a fixed operation carried out repeti-
tively on parts. A fixed volume of material is removed from each part. As
metal is removed from the parts, the tool wears. The tool wear mechanism
is only known empirically, and variation in tool life is evident. The wear
rate is observed to be an increasing function of the feed speed for a fixed
feed. As the tool wears, it eventually breaks or becomes unacceptable and
must be replaced. Failure of the drill necessitates replacment, but can also

cause damage to the part being machined.

Economic/Manufacturing Aspects: The production of parts results in profit,
and the profit rate is related to the production rate. The profit rate is
assumed to be an increasing function of the feed speed. Tool replacement is
costly in terms of time and material. Tool breakage is in general more
costly than simple replacement, due to possible part damage and the

unplanned replacement that results.

Control Aspects: The objective is to determine policies for tool replacement
and for feed speed selection. Tool replacement and changes in feed speed

may only occur between parts, unless there is a tool breakage.

The Drilling Problem 5
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(4) Information Feedback: Tool wear can be measured when the tool is disen-

gaged from the part, but not during the machining.

The specific use of a drilling operation in this problem is only to facilitate
the presentation of the concepts and is not meant to imply a restriction of the
ideas to that type of machining operation. In fact, the authors believe that the
ideas presented in this paper are applicable to many other problems in manufac-

turing, including ones outside the realm of machining.

2.2. The Tool Wear Subproblem

The tool wear problem has been the subject of much study in its own right.
Since the choice of models for tool wear greatly influences the drilling problem, it
warrants a careful examination. There are at least two views of the problem that
can be taken. The first is to explain on a physical basis the mechanisms of tool
wear. The attempts in this area often lead to very complicated formulations for
tool wear as a function of several variables. See [4] and [14] as examples. Unfor-
tunately, these models are not complete, describing at best the normal evolution
of some aspects of tool wear under restricted conditions. Since the manufactur-
ing environment is uncertain, and the information requirements of these models is

considerable, their utility in the machining economics problem is questionable.

The second view is that usually taken in machining economics. Precise
description of tool wear phenomena is foresaken for empirical formulas that are
easier to use, and that capture the essential character of tool life as a function of

machining conditions. The empirical formulation of tool wear can be considered
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either deterministically or stochastically. Deterministic formulations are
prevelant in the earlier literature, but more recently the stochastic nature of tool
life has been recognized. The stochastic formulations usually assume that the
deterministic formulas properly represent mean values of tool life. References [5],
[12], [16], and [29] give various viewpoints of the tool wear problem. Also, the

references on machining economics usually give some tool wear model.

The stochastic formulation brings with it another level of complexity. If tool
life is a random variable, its distribution must be specified. Actually, a family of
distributions parameterized by machining conditions must be specified. Many
distributions have been proposed for tool life including exponential, normal, and
lognormal. In general thes? distributions are arrived at from empirical considera-
tions, and not from any physical‘basis. This is not an entirely satisfying situa-
tion. It should be mentioned that some authors have avoided this problem by
parameterizing only the moments of the tool life (usually the mean and variance)
and not specifying a distribution.

It is asserted that a new model of tool wear is required in order to accomo-
date the intelligent manufacturing approach. This new model must incorporate
certain features. The stochastic behavior of tool life must be recognized. The
influence of machining conditions must enter into the model in a clear way. The
distributions should arise from physical considerations of the process. The results
of the model should agree with observed behavior in a statistical sense. This
leads to the development of the diffusion-threshold model for tool wear as con-

sidered in Sec. 4.

The Drilling Problem 7
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3. SURVEY OF RELATED WORK

Aspects of the drilling problem have been considered by many authors. The
work of Taylor [27] is generally considered the first extensive treatment of tool
wear and machining economics. One result of his work is the Taylor tool life for-

mula relating tool life to cutting speed.

Much of the work after Taylor presumed that the tool life is deterministi-
cally related to the cutting speed and other machining parameters, using varia-
tions of the Taylor formula. Under the assumptions of a deterministic relation,
simple calculus can be used to arrive at optimal machining parameters for any of
several criteria. See also [6] and [11] for examples. Many refinements and exten-
sions are possible, including the consideration of multiple machines, constraints
on machining parameters due to finish and power requirements, and tool
geometry. Usually these treatments assume that the tool is changed at the end
of its life, as given by the tool life formula, and that tool breakage and scrappage

do not occur..

More recent work in the area has recognized the stochastic aspects of tool
life and the impact that tool life uncertainty has on machining operation produc-
tivity. In these works, tool life is viewed as a random variable whose distribution
is parameterized by cutting speed and other factors. Some researchers have
assumed particular distributions, while a few have only specified moments of the

tool life random variable. See [5], [7], [16], and [23].

8 The Drilling Problem



RSD-TR-4-86

The machining economics problem, whatever the assumption about tool life,
usually considers as performance measures production rate, profit, or time to pro-
duce a part. Various types of constraints have been proposed for inclusion in the
problem. Several things are not usually considered, however. The concept of
information feedback and on-line control is almost never considered. As a result,
most machining optimization problems have assumed constant machining param-
eters. On-line variability of machining parameters with changes in machining
parameters based on measurements and other information is not usually con-
sidered. Policies for tool change invariably rely on such information as number
of parts machined, or change upon failure. Most models do not consider costs
due to scrap and damage, or the status of other machines in the manufacturing
system in their tool replacement policies. Most importantly, tool wear informa-

tion is not incorporated into the policies.

Other authors have considered control theoretic approaches to different
problems in manufacturing. The reference [9] reviews many types of manufactur-
ing problems from a control perspective, and includes a survey of work in several

areas of research.
4. DIFFUSION-THRESHOLD PROCESSES

4.1. Process Cescription

A stochastic process, called a diffusion-threshold process, is now introduced
and proposed as a model for tool wear in the drilling problem. The use of this

process will allow formulation of the drilling problem as a stochastic optimal
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control problem.
Let {W(wt), we€EQ, teIR+} be a standard Brownian motion (i.e. a Wiener Pro-

cess) on some probability space (Q,F,P), wherelr” £ [0,00). A standard Brownian

motion is a real valued scalar process such that:

PIWwo=0]=1 (4.1a)
E[W(w,t) = 0ror telR” (4.1b)
E|W(w,2)W(w,t)] = min (s,t) for & ,IEIR+ (4.1¢)

Without loss of generality, assume W(w,t) to have continuous sample paths

for all we Q. The explicit dependence of the process on w is generally omitted:
W, 2 W(wt)

Define a real-valued scalar stochastic process {X,,t €IR"} by

X, =X, + j:b(r, X, u,)dr + _!:'a(r, X, u,)dW, (4.2)
where the last integral is interpreted as an Ito integral. Under appropriate techn-
ical conditions on the functions & (-,-,"), o(-,’), and u, ("), the process {X,} is called a
(cor;trolled) diffusion. See [8], [15], [17], and [3C] for much more on diffusions.
The functions 5 (:,,’) and of:,-,) Will be called the infinitesimal coefficients of the
diffusion, with b called the drift coefficient and o called the diffusion coefficient.
The functions u,(-) will be called the control functions, with values u,. The
important properties of diffusions are that they have continuous sample paths,
and that they are Markovian. X; can be thought of as the solution to the sto-

chastic differential equation
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dX, = b(t, X;, u)dt -+ o(t, X;, u)dW, (4.3)

with the first term describing the deterministic evolution and the second term an

additive noise. However, this is not prccise except when defined in terms of the

above integral equation.

Our attention is restricted to a simpler class of diffusion processes by exa-

mining a subset of the admissible infinitesimal coefficients. Consider those diffu-
sions where band o are independent of X and t:

¢ 4

X, = Xo+ [b(u)dr+ [o{u)dW, (4.4)
0 0
where u and thus b and ¢ are piecewise constant, i.e. there exists a set of times

0=t,<t,;< - - such that

U,= t;, lt ST< ‘k+l (4.53.)

b(u ,) = bk, l‘- ST< tg.H (45b)

U‘U,) =0;, Sf<‘k+l (4-50)

for k=01, -. Under these assumptions, {X;} is a Brownian motion with piece-

wise constant drift and piecewise linear variance.

Let A denote a threshold value, and let T, denote the first hitting time for

the threshold A by the process X,. That is
T, = inf{t20: X;=A} (4.6)
Note that T, is a random variable, called a stopping or Markov time, and is well
defined because of sample path continuity. If the event {X;=A} does not occur,
let T, =cc. When the process achieves A for the first time, the process is stopped
and re-initialized to zero. The process continues to evolve until the next time it

achieves A, when it is again re-initialized. Thus the process generates a sequence

The Drilling Problem 11
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of independent cycles, with one cycle being the time from last re-initialization to

the next hitting of threshold A.

The times ¢, t,, - - - are referred to as decision times. The motivation for
this terminology is that certain control actions will be allowed at these times. At

each decision time, the following actions may be permitted:
(1) A change in the control value u,
(2) A decision to stop the current process and re-initialize it to zero.

The diffusion-threshold process can be placed in a more general setting,
where arbitrary discontinuous state changes are permitted. This type of con-
trolled process is considered in [1], where many variations and examples are
given. In particular, that reference considers examples in maintenance and qual-

ity control which are related to the problems discussed in this paper.

4.2. Diffusion-Threshold Model of Tool Wear

The diffusion-threshold process is now proposed as a model for tool wear in
the drilling probl;zm. The following analogy is made. Let X, represent an aggre-
gated wear variable for the tool. It is understood that all of the categories of tool
wear are somehow represented by a single variable, and X, therefore represents
this wear at time t. The feed speed will be regarded as the control input «,, with
the drift coefficient b() being a positive increasing function of the feed speed.
The drift denotes a local mean rate of wear. The diffusion coefficient is the
square root of the local rate of change of the variance. Let the maximum allow-

able wear correspond to the threshold A. When the wear reaches the threshold,

12 ‘ The Drilling Problem
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the tool is considered unacceptable and must be replaced by a new tool. The
new tool is assumed to have zero wear. This is the re-initialization action. Like-
wise, the decision to replace the tool results in a re-initialization prior to reaching
the threshold. The decision times will take place between parts; i.e., just prior to
the start of a new part. At these decision times, information concerning drill wear

becomes available. Assume that exact measurements of the drill wear, X,

become available. Based upon this information, a decision is to be made whether
or not to replace the drill, and what feed speed should be selected for the next

part.

4.3. Properties of Diffusion-Threshold Models

Given the mathematical formulation of the previous section, probabilities
associated with the random variable T, can be defined. For the case of a general
diffusion process with arbitrary drift and diffusion coefficients, calculating the
distribution of T, may be a very hard problem. See [2], [15], [20], [22], and [25]
for discussions of threshold crossing problems. Reference [2] is a survey. How-
ever, when the class of diffusions under consideration is restricted to those with

piecewise constant coefficients, a solution can be obtained.

The restricted problem is as follows. Given that X, =z, and constant u so

that both 5=b(u) and o=o{u) are constant, calculate the probability of first
crossing of the threshold in a future time interval. Define the conditional distri-

bution function for the random variable T, by:

The Drilling Problem 13
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Qult |2iw) S P{Ty St Ty >t X=5)  (47)

for ¢ > t,. Under the Markov property, this is equivalent to

P{T, <t |X,=2 <A} (4.8)

Let the density function be denoted g, (¢ | z;;u) where

d
alt | 2in) = S (¢ | z0) (49)

The special cases Q,,(t;u)i- Qalt | X;;=0;u) and g4 (¢t;u) ] ga(t | X;;=0;u) follow.
In addition, the moments associated with the random variable T, are to be cal-

culated.

The result for z;, < A, b >0, ¢ > 0 can be derived as:

(‘ ' ) A bl 7 -(A - T - b(t 'tk ))2

alt | zi;u)= — exp - (4.10)

A - 20°(t -t \
V2ro(t -t )2 (t-t)

See [2] and [20]. This result can also be obtained by Laplace transform of the
integral equation in [2].

Assume that X, is measured at discrete times ¢, ¢, t,, - -. Using the above
densit‘y, the conditional probability of hitting the threshold A before ¢, given

X, can be calculated. By (4.10), calculate:

P{ty Ty Stip | Xy =2 <Aju} = Qultip |25u)=

‘kfﬂ A-1 A -z - b (-t ))2 d ( )

kL B - T 411
3 20{(r-t

v o fr-t)

This is the one step ahead threshold crossing probability. Equation (4.11) is the

key formula for deriving many of the results of interest. This formula can be

somewhat simplified by the following change of variables. Let a=A4-z,
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n= T‘tk)

and At"ﬂ = ‘k+l _‘k . Then

Bhn a ~(a - b ’7)2
Qaltiw | zm) = QulBlryr i) = { —3 P {—2—01‘7’7_ }d" (4.12)
V2ra, n?

Several properties of the random variable T, and its probability density

function ¢4 (-) can be determined. Assume the case A>z,, and 5>0, 6>0 both con-

stant. Then
”liT+qA (nlzeib)=0 (4.14)

Note that the first of these asserts that the probability of T, never occurring is
zero, even when the drift is zero. However, when b =0, E[T,] = co. When 5>0,

T, has finite moments of all order. The first four are:

E[T, |= % (4.15a)
var [T, | = -45‘1—2 (4.15b)
ps = 2—’:—;’: (4.15¢)
_ 15A0° + 34%* (4.15d)

By = b7 bg
where g, and g, are the third and fourth central moments.

In the special case that , 5, o are all positive constants as above, the result-
ing distribution for T, in (4.12) has received some attention in the statistical
literature. It is referred to as either the Inverse Gaussian or a Wald Distribution.

See (3], [24], and [28]. Note that [24] also considers the Inverse Gaussian
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Distribution as a tool life model, though in a different spirit than this paper.

4.4. Rapproachment with Taylor Tool Life Formula

For the drilling problem and other tool wear problems, a comparison can be
made between the diffusion-threshold model and other more usual models. We
will consider a comparison to the (simple) Taylor tool life formula [6]. The Tay-
lor formula, in use for many years, is a strictly empirical formula for calculating
tool life. As is shown in the appendix, for fixed feed the Taylor formula may be
written as

UT" = Cl (4-16)

where:
u = the feed speed
T = life of tool

D = an empirical constant dependent upon the part material, tool type, and

machine type

C,;= an empirical constant dependent upon the part material, tool type,

and machine type

Assume that replacement is indicated by having reached a certain level of
wear that is fixed for a given tool type. Let this level of wear be denoted by W
and let the wear of the tool at time t be denoted w(t). Also, define the instan-
taneous feed speed by u(t). If the tool life given by the Taylor equation is inter-
preted as a mean value, a diffusion threshold model with the same expectation

can be constructed. Let the drift coefficient be given by

16 The Drilling Problem
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W 1

blu(t)) = —F u(t) (4.17)
. Clﬁ
so that
Cw 1
Elw(t)]=f 1 u(‘r)" dr (418)
0 Cl-;

When the feed speed is fixed at constant value u, the expected value for the the
tool life is computed as

E|T| = b(";’) =[% B (4.19)

in agreement with the Taylor tool life formula. No restrictions are placed on the

diffusion coefficient ¢ by the Taylor formula.

5. AN OPTIMAL CONTROL PROBLEM

5.1. General Formulation

Consider the drilling problem previously described. Assume that pieces are
being machined, and that the time to complete each piece depends on the
selected feed speed. Furthermore, assume that measurements of tool wear can be
made at the completion of each piece. At each measurement time, a decision can
be made to adjust the feed speed, and/or change the drill. Each of these deci-
sions has some cost associated with it. In addition, there is a penalty cost associ-
ated with breaking the drill. The optimization problem is to make these deci-

sions in such a way as to minimize some cost functional.

The cost functional used must capture the important manufacturing con-

cerns and allow for the additional information and control capability indicated.

The Drilling Problem 17



RSD-TR-4-86

In traditional formulations of machining economics problems there is no provision
for feedback of tool wear information, nor are on-line changes in feed speed
allowed. Furthermore, tool life is considered a deterministic function of feed
speed. These limitations suggest that a cost functional different from those tradi-

tionally used should be introduced.

The class of cost functionals considered in this analysis are called one step.
One step in this context means one part ahead. One step costs incorporate the
profits earned and the costs incurred in producing the next part. The formula-
tion of one step costs must be carefully considered. In particular they must be
formulated so that behavior extremely detrimental to sﬁccessive parts is not

encouraged.

For this problem, define a control vector u £ (u,v) where u€ (0,00) is the feed
speed and v€ {0,1} is the replacement decision, where 0 corresponds to not replac-

ing the tool and 1 corresponds to replacing the tool.

Define the following:

g(u) = profit rate for selected feed speed u

T, (v) = processing time for a part corresponding to a constant feed speed u
R £ cost of a tool replacement, including tool and time costs

B £ cost of a tool breakage, not including replacement cost

A
My = to;ggtl{xr}

18 The Drilling Problem
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BXy vr, My, 41, 02) £ tool utilization cost for processing a part

a . . .
K = overhead cost rate for machine in operation

Overhead costs incurred during tool replacement are assumed to be included
in R. Note that a total cost of B+R is associated with a threshold crossing
(breakage or unacceptable wear). A candidate function for » will be presented
later. In the following formulation it is assumed that all profit for the current

part is lost when a breakage occurs.

A cost functional can now be formulated:

Minimize J(u,2; ) = (1-v )-Jy(u, 2 ) + v-Jo(u 0) (5.1)
where
Jiv,5)=E[-g(u}T) 41, <1+ (B + R)Yyr, <yar )+ (5.2a)
b(Xy 4, My g1 3) + K(Tp A (Ta-t)) | X(t)=2 ]
is the expected one step cost if the tool is not replaced, and
Ju,0)=E|-g(s)T, 'I[T/ <r,)t R+(B+R )-.1[74 <1l + (5.2b)
b(Xr, Mp,1,)0) + K(T; A Ta) | X(0)=0]
is. the expected onme step cost if the tool is replaced. Note that
(Ty A To) = min(T,,T,) and that z, is the measured wear. The explicit use of 0 in

J, is only a reminder of its conditioning on zero wear.

Before examining a special case of this problem, there remains the question
of the reasonability of this cost functional. In response to the earlier comment,
this cost functional contains terms which discourage initial detrimental behavior

(high feed speeds). In particular, high feed speeds may be discouraged through
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the tool utilization cost term, and by the increased probability of a threshold
crossing. A threshold crossing causes a complete loss of profit for the current

part, and incurs the additional costs of replacement due to breakage (R+B).

5.2. Restricted Formulation

A restricted formulation of interest can be obtained under the following
assumptions. Without loss of generality, assume that ¢, =0. Let the threshold
value A = W, the maximum tool wear. Let 6 (u) = fu™, where §>0 and m>1 are

constants. This form of the drift function is motivated by the Taylor tool life

formula with m = -:-‘- and 4= -é—"—;— . Assume that ¢ is constant. Let g(u) = g-u,
1

where ¢>0 is a constant, and T, (u )=—K where V>0 is the depth of the hole to
“ / u

be drilled in each part. In this case, ¢(u)- T, (u) = gV = G, the profit earned per
completed part. Let

h=DXr,~2o)lpy <4+ DA~z lpyy 24 (5.3)
That is, the tool utilization is proportional to the amount of tool consumed, with
a maximum tool utilization given by A-z,, the remaining tool utility. The con-
stant D is the tool utilization cost rate. Further note the equivalence of the ran-

dom variables:

gy, <4y =1z <1,

The restricted formulation becomes

Minimize J(u,z) = (1-v)-Jy(u,2o) + v-Jo(u,0) (5.4)

where
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J,(u ,zo) = E[ °G'1(r/ <TA] + (B + R )'1“" < 1'/ ] + D'(Xr/ —Zo)'l”-l <TA] + (553)
D(A-zo) Y7, <1, %+ K(T; \ T,) | X(0)=2z,]
and
JAu,0)=E| —G'I[rl <1t R+(B+R )'IITAST/) + D'er 'l(rl <1t (5.5b)

D-Ar, <11+ KA(T; A Ta) | X(0)=0]

and
14
Ty(w)=—

The term (T, A Ti) can be alternatively expressed as

(T) A Ta)=T; Yr, <r* Taliry<rp) (5.6)

As a consequence of this restricted formulation, the following functions become

relevant.
Vv
8A(“|zo)=E“m5_v]| 2ol =P[T4<— | Zo] (5.7)
ralu |zo) = E[(va -20)‘11%’ <,y | %0l (5.8)
2|20 =E[Tal, v | 2] (5.9)

The function s, (s |z) is the conditional probability of hitting the threshold
before part completion. The function ry (u | z) is the conditional expected change
in wear for the tool for those sample paths that do not have a threshold crossing
prior to finishing the part, weighted by the probability of a threshold crossing not
occurring. The function z,(u | z) is the conditional expected time of the thres-
hold crossing for those sample paths that do have a threshold crossing prior to
part completion, weighted by the probability of a threshold crossing occurring. It

can be shown that the functions s,, r,, and z;, can each be expressed in the

The Drilling Problem 21



RSD-TR-4-86

following integral forms.

v
3A(“|3)=f/(A—z,u,n)dr; (5.10)
)
LA
z(uv]z)= fﬂf(A—z,u,n)dr) (5.11)
0
where
Ao Bu™ )2
I(arur")= - 3 exp{ ('az:;u ") } (512)
7 n
V2ron?
and
A
ralv|z)= fnp(A—z,u,n)dr; (5.13)
where

U
plavu,m) = V2rVe 22V 2V

Since A and x only appear as a difference, it is convenient to introduce

Xp { —uln- BVuTTy }[1 -exp{-——i——-ua 2o 1) }] (5.14)

a=A-1z2,2<A. Note that f is the threshold crossing density and that p is a

Gaussian density times a weighting function.

The functions J, and J, can be expressed in terms of these functions as fol-

lows.
Jy(u,z9)=(B+ R+ D(A-24))8,(u | 20) + (K--%,- - G)(1-84(u | zo)) + (5.15a)
Dorg(u | zo) + K24 (u | 20)
J{u,0)=(B+R+DA)sy(u|0)+ R+ (K-uv- -G)(1-8,(u |0)) + (5.15b)

Drg(u |0)+ K24 (s | 0)
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Clearly, the existence of minima is tied to the properties of the functions s, ,
ra, z4 and to the choice of parameters in the cost functional. Under the assump-
tion of m>1 and strictly positive cost parameters either of the following two con-

ditions is sufficient for the existence of a minimum.

(1) Suppose there exists u' such that Jy(u' ,z0)<0 or Jy(u' 0)<0. Then J(u,z,)

has a minimum on (0,00)X {0,1}.

(2) Suppose there exists u, such that u<u, necessarily. Then J(u,z() has a
minimum on (0,u, | x {0,1} for 0<z,<A.

Note that condition 1 says that if the operation can be performed profitably
for a given wear value a minimum exists. Condition 2 says that under practical
constraints on the feed speed a minimum exists for all wear values in [0,4).
Other more complicated sufficient conditions are also available. In general, if the
piece profit is sufficiently high or the overhead rate is sufficiently low, a
minimum exists.

The assumption m>1 is satisfied according to Taylor tool life data for metal

machining with all commonly used tools. Reference [6] gives typical values of n

in the range 0.1 to 0.4, resulting in 2.5 t0 10.0 as a range of values for m.

5.3. Optimal Drilling Policies

The simple way in which the control variable v enters the problem allows
the optimal policy to be given in terms of the functions J, and /,. The optimal
one step policy is of the following form (assuming existence of all minima). Let x

be the measured tool wear. Denote
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Ji(z) = muinll(u z)  uy(z) £ erg minJ (u,z)

2 minJAu,0) u] 2 arg minJ(u 0)
The minimizing values of Jy(,z) and J,(-,0) are uj(z) and u; respectively. Let
v’(z) be the optimal replacement decision. The optimal one step policy is given
by:
(1) if J{(z) < J3, continue with the current tool at feed speed uf(z). v*(z)=0.
(ii) if J{(z) > J3, replace the tool and continue at feed speed u;. v*(z)=1.

(iii) if the tool breaks, replace the tool and continue at feed speed u;.

The values uf(z) and uj must be computed numerically even in the res-
tricted formulation. There is no known closed form solution. Depending upon
the parameters, J, .and J, may exhibit large flat valleys, and so gradient methods
may not always be appropriate. As will be seen in an example, reasonable subop-
timal policies may exist for an interval of feed speeds. Therefore, it may be pos-
sible to maintain constant feed speed for a range of wear measurement values

with negligible degradation in performance. This will become evident later.

Implementation of the policy may be carried out in the following way. J;
and u, are constants and may be computed in advance. Initially, assume that a
new tool is in place. The feed speed for the first part is u;. For each part
thereafter, a wear measurement z is made, and J{(z) and u{(z) must be computed
numerically based on the wear measurement. A table lookup would be a reason-
able alternative. Recall that under the assumption of fixed feed, each selection of

the feed speed necessitates a corresponding selection of the spindle speed as well.
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The optimal policy given previously is now used to determine the proper action

for the next part.

The above implementation can be extended to the realistic situation of (sto-
chastically) time-varying costs and profit rates. In this case, Ji(z), J2, u{(z), and
4 must all be computed for each part on the basis of the current cost functional
parameters and wear measurement. It is assumed that the cost functional
parameters are supplied by some higher level control and/or authority. In this
situation, the higher level authority could encourage or discourage tool replace-
ment and higher feed speeds through manipulation of the costs and profit rate.
In particular, tool replacement could be vetoed, in which case the next part
would be machined at feed speed uj(z). Also, tool replacement could be strongly
encouraged by a sufficient reduction in R. Rationale for manipulating tool
replacement policies and feed speed selection could include tool availability, ser-
vice availability, the status of other machines and components in the manufac-
turing system, part and supplies inventory levels and part demand. This mani-
pulation represents an indirect feedback of other information in the manufactur-

ing system to the drill controller.

In actual practice, the selected feed speed will necessarily be constrained by
other considerations: surface finish, spindle and drive power, and machine, tool,
and part characteristics.

In summary, the optimal feedback policy can be implemented in a manufac-

turing setting, provided sufficient computational capability is present, and tool

wear measurement feedback is available. At the least, the policy incorporates
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tool wear measurement in the decision process. By allowing time variable cost
and profit parameters, indirect feedback of other information about the manufac-
turing system can be introduced into the policy. The controller might be imple-

mented in a local processor at the machine site.

5.4. Numerical Example

An example optimal control problem has been worked out based upon actual
drilling and manufacturing data. The restricted formulation is used for the cost
functional. All results have been computed numerically. The results have been
summarized in graphical form. Operating regions of feed speed for different wear
values are presented. As will be seen, this provides more insight than simple

plots of u* vs. wear.

The drilling operation parameters and data have been taken from [31].

They are as follows:

Part Material: 4340 Alloy Steel 341 BHN

Drill: M2 HSS Twist Standard Point
0.25 in x 4.00 in
29° Helix
118° Point Angle
7° Lip Relief

Operation: 0.5 in through hole
heavy oil lubrication

Feed: 0.002 in/rev

Tool life: 0.015 in end point wear
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The tool life is assumed to agree with the Taylor tool life formula in the
mean. This formula is given by (4.16). The coefficients n and €, were deter-
mined from tool life data provided in [31] for u € [2.1, 3.0] (in/min). A least square

fit of the data resulted in

n = 0.194

Recall that these coefficients are derived under the assumption of constant feed.
The spindle speed is presumed to vary in proportion to u so as to maintain con-
stant feed. The drift function in the diffusion threshold model is given by

b(u)=pu™ with

m=-l— ~ 5.2
n

ﬂ=l ~ 1.2x10°
Cm

1

These values were used in the drift function.

No information concerning the variance of the tool life was provided. This
necessitated estimation of ¢ based upon reasonable assumptions. Assume first a
nominal feed speed of 2.6 in/min. This is approximately mid-range for the data
available. For this feed speed, the mean tool life is about 8.7 min. Assume that
the standard deviation for tool life at this nominal speed is about 20% of the
mean; this corresponds to a value of about 1.7 min. From (4.15b), ¢ can be com-

puted:

1
be 2
o= [7 var (T, )] ~ 0.001

Clearly, it would be desirable to have information concerning tool life variance.
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Such information could be used to compute ¢ and also to test the assumption of

constant o.

Summarizing, the diffusion threshold parameters used for this problem are

given by:
A =0.015
g=12x10°
m= 5.2
o = 0.001

The functions #4, r,, and z, in the cost functional can be computed using
the above parameters independently of the economic considerations. Wear value
z, was taken from the set { 0.0, 0.003, 0.006, 0.009, 0.012, 0.014, 0.0145 } and u
was taken from | 0.51 7.5 ] at intervals of 0.2. A Romberg integration method was

used.

The economic parameters in the cost functional were based on the following
assumptions. Assume an overhead cost rate of 30.00 (dollars/hour) = 0.50
(dollars/min). Let the cost of a drill be 1.00 dollar. Assume that the time to |
change a drill under normal conditions is 0.5 min with an additional time of 0.5
min under the assumption of tool breakage. Assume a »tool utilization cost rate

based on the normal replacement cost. The parameters are thus given by:

K = 0.50 (dollars/min)

R = 1.00 + 0.5 x 0.5 = 1.25 (dollars)
B = 0.5 x 0.5 = 0.25 (dollars)

D = 1.25/0.015 = 83.33 (dollars/in)

In order to determine the effect of part worth on the policy, G was allowed

to take on the values 1.00, 10.00, and 100.00 dollars. For each fixed G, the cost
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functionals were computed and the operating policy was determined. Note that
tabulation of the functions s,, r4, and z, allows easy investigation of the effects

of varying the economic parameters.

The functions J,(u,z,) were computed for each of the wear values, for each
fixed G. The function J,(u,0) is easily computed from the zero wear J,(u,0) func-
tion. For each G, the family of associated curves was thus determined. For each
wear value, near optimal and suboptimal feed speed operating regions were deter-
mined. The wear value threshold for tool replacement and a critical upper boun-
dary indicating the economic break even point were also determined. These
results are presented in Figs. 5.1-5.3. The near optimal region indicates a cost
within 1S¢ of optimal, and the suboptimal region indicates a cost within 10 of

optimal.

Examination of the graphs reveals several interesting properties. When a
tool has little or no wear, the near optimal operating regions are relatively wide,
indicating a relatively large interval from which feed speed selection can be made
with near optimal performance. As the tool wear increases to the high wear
region, however, the near optimal region narrows appreciably. In general, it
would seem that the choice of feed speed is more critical towards the end of the
tool’s life than it is for new and little worn tools. What is perhaps most surpris-
ing is the observation that in some cases constant feed speed can be used

throughout the tool’s life while maintaining near optimal performance.

Two effects of piece profit (G) on the policy are readily apparent. First, as

G increases the width of the near optimal region increases for most wear values.
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Furthermore, as G increases tool replacement becomes more conservative; i.e.,
replacement of the tool occurs at lower wear levels. In particular, for sufficiently
profitable parts and cheap tools, one could argue for tool replacement after very
little wear (i.e., every part). Conversely, for cheap tools and cheap parts, replace-
ment is close to the wear threshold. This is reminiscent of a ‘‘run until it
breaks” policy. However, the region of operation for small G is generally nar-
rower, so even a run until breakage replacement policy must be coupled with
carefully chosen feed speeds. This seems to agree with the observation that
manufacturing products with low profit margins requires more careful control of

the operation in order to maintain (reasonable) profitability.
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Piece Profit = 1.00

75 T

tool replacement boundary
eritical boundary (no profit)
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feed speed (in/min)

0.0 0.003 0.006 0.009 0012 0.015
wear (in)

Fig. 5.1 G=1
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Piece Profit = 10.00
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Piece Profit = 100.00

7.5

feed speed (in/min)
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tool replacement boundary
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0.0 0.003

0.006

wear (in)

0.009 0.012

Fig. 5.3 G =100
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6. MODEL EXTENSIONS

The drilling problem as proposed here can be extended in many ways. Some

possibilities include:

(1)

(3)

(4)

34

The information used in formulating the optimal control problem could be
changed. The measurements of X, may be available only every n decision
times, or delayed, or the measurements might be noisy. The measurement

of X, might be costly.

The indicated optimization\ problem was one-step ahead. This could be
extended to multistep decision processes or optimal open loop feed speed
selection and replacement policies. These may require the use of dynamic

programming approaches, in general, for solution.

Other types of machining operations could be considered, in some cases
without modification of the model or optimization formulation. Other
manufacturing problems might be approached by alternate application and

interpretation of the diffusion-threshold model.

The model could be extended to multi-tooled machines and multiple
machine operations. "The former is not usually considered in machining
economics problems, but the later has been considered in the traditional
ways by many researchers. Multiple manufacturing operations might be
modeled as a network of diffusion-threshold processes or as a single aggre-

gate diffusion-threshold process.
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(5) The model could be extended to include independent control of the spindle
and feed speeds subject to constraints. The tool wear would be a function of
both speeds, but the processing time for an operation would be a function of
the feed speed only. Comparison to more general» tool life formulas (e.g.,

extended Taylor formulas) could be made.

7. SUMMARY

A problem in manufacturing called the drilling problem has been formulated.
The drilling problem combines elements of traditional machining economics prob-
lems and elements of intelligent manufacturing. A drilling operation is carried out
on arriving parts. The drill wears and is susceptible to breakage. Drill wear
measurements are availableﬁ at discrete times. The problem is to determine tool

replacement policies and to select feed speeds.

A new stochastic model for tool wear, called a diffusion-threshold model, is
introduced. This model is compared to a Taylor tool life formula. Conditions

are given so that the two models agree in the mean.

The diffusion-threshold model for tool wear allows a stochastic optimzl con-
trol formulation of the drilling problem. One step costs, which look one part
ahead, are introduced in the optimal control problem as one type of optimization

criteria.

A restricted formulation of the drilling problem is considered in detail. Suf-
ficient conditions for the existence of optimal one step policies are given. These

conditions are met in actual machining problems. The associated optimal policies
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are developed in terms of the given problem data.

A numerical example using actual tool and manufacturing data has been
worked out. Feed speed operating regions and tool replacement boundaries are
presented graphically. The results indicate that feed speed selection is more criti-

cal when the tool wear is high.

The control theoretic approach used in the drilling problem shows how sto-
chastic modeling can be applied to a manufacturing problem and how informa-
tion feedback can be accomodated in on-line control for intelligent manufacturing

systems.
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APPENDIX

This appendix summarizes relevant terms used in drilling and in the paper.
These terms are typical of what is found in machining data handbooks. U.S. cus-

tomary units and typical metric units are indicated.

Fig. A.1

d = drill diameter (in or mm)
w = spindle speed (rpm)
u = feed speed (in/min or mm/min)

V £ cutting speed - the tool/material relative velocity at the outer tool

edge (surface feet per minute (sfm) or m/min)

f 2 feed - the amount of linear travel of the tool per revolution (in/rev or
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mm/rev)
In U.S. customary units the cutting speed is given by

ndw

V= ETE (afm) (A.1)
The feed is given by
/== (A.2)
Note that
V= % (A.3)

so that only two of the variables u, f, and V are independent. Machining data

guides often give recommended values for f and V.
The simple Taylor tool life formula for fixed feed is given by [6]:

VIt = ¢ (A.4)

which can be expressed as (4.16):

o1t = 2LC _ ¢, (A.5)
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