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ABSTRACT

STOCHASTIC MODELING AND CONTROL OF

SOME PROBLEMS IN MANUFACTURING

by

Charles James Conrad

Chairman: N. Harris McClamroch

A control theoretic approach to some problems in manufacturing is examined.
This approach is motivated by the recognition of the potential for enhancing system
performance through the use of information feedback and on-line decision making.
The problem of applying the control theoretic approach to manufacturing is dis-

cussed.

A class of stochastic processes, called diffusion-threshold processes, is developed.
Diffusion-threshold processes can be used to describe discrete event phenomena gen-

erated by underlying continuous processes.

Four manufacturing problems are considered in which diffusion-threshold models
are featured. The first problem considers the control of a machining process,
specifically a simple drilling operation, with respect to economic criteria. Policies for
feedrate (feed speed) selection and tool replacement are to be determined. The prob-
lem addresses real issues that are often ignored, such as uncertainty, tool failure,

scrap production and the discrete nature of parts. A diffusion-threshold model for



tool wear/tool -life is utilized. Two types of policies are considered: age replacement
policies in which the feedrate is constant and tool replacement is based upon age; and
feedback policies in which tool wear measurements are occasionally available, the
feedrate is allowed to vary, and tool replacement is based upon the wear measure-
ments. Potential performance improvement (economic and otherwise) resulting from
the additional information and control freedom present in the feedback ‘policies is
investigated. Cost per time and cost per part measures are developed for the age
replacement case. A class of cost functionals, called one step costs, is introduced for
the feedback case. The optimal policies for both cases are described. Comparative
results are presented for a special case of interest, where tool life is assumed to obey a

Taylor formula in the mean.

The results from the first problem are used in the development of two addi-
tional problems. The second problem considers a machine with multiple tools. Age
replacement and feedback policies are analyzed. The third problem considers decen-
tralized control in serial transfer lines. Simulation results for a two machine example

are presented.

The last problem uses a diffusion-threshold process to model work progress on a
job. A supervisor is allowed to make occasional inspections of the job and re-assign
resources. The scheduling of the inspections and the resource allocation are to be
determined. An optimal control formulation of the problem results in a quasi-

variational inequality.

The thesis offers new viewpoints of some contemporary manufacturing problems
and demonstrates how new mathematical tools can be used to approach these prob-

lems.
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CHAPTER 1

INTRODUCTION

A greater awareness of the importance of manufacturing, brought on by increas-
ing global competition and the impact of a deteriorating manufacturing base, has
resulted in a surge of activity in manufacturing research and development. Those
new to the field are discovering what veteran workers and researchers have long
known: manufacturing crosses many discipline boundaries and is rich in challenging

problems.

It might be expected that in any a.réa. as diverse as manufacturing there will be
pockets of intense research activity and great unexplored problem frontiers. This is
the case in manufacturing today. Although incremental improvements in the existing
manufacturing knowledge base are important, the future probably lies in new

approaches and methods.

The intent of this work is to present one approach to some problems in
manufacturing. The problems themselves are minuscule within the context of
manufacturing. The approach, though, is believed to be far-reaching and thus of
more general value to manufacturing. This approach is called control theoretic, since
it draws heavily from control theory. More precisely, the approach recognizes the
importance of information feedback in decision making. The concept of the control

theoretic approach is to borrow from control theory the framework for approaching



the problem of utilizing information feedback in on-line control, and applying it to

problems in manufacturing.

The motivation for wanting to utilize information feedback and on-line decision
making in manufacturing comes from the success of control theory in other areas.
That is, the effective application of the ideas can potentially lead to improved perfor-
mance and/or m'o're desirable system characteristics. However, a concomitant caution
must also be understood, because deterioration of performance is also possible. The

effective use of information in decision making is a difficult problem.

The control theoretic approach is beneficial in another way. The explicit
allowance of information feedback and on-line control induces new views of old prob-
lems. This is particularly evident in the problems considered in this work. New
viewpoints do not always lead to improved perfdrma.nce, but they usually contribute
to increased understanding of the problems. This by itself is beneficial and useful. It
is hoped that this work makes some contribution to the understanding of a class of

manufacturing problems.

1.1. Overview of the Research

The presentation continues in Chapter 2 with an expository chapter on
manufacturing and the control theoretic approach. The concept of intelligent
manufacturing is introduced. In an intelligent manufacturing system, the capability
to acquire and process data in a timely way is assumed. This leads into the main
theme of the work: How can information feedback be effectively used to improve the
performance of manufacturing systems? This question is very general, but provides
the motivation for most of this work. The question is explored through the examina-

tion of several example manufacturing problems.



The control theoretic approach is one methodology that can be used to address
the main theme. The approach is not without difficulty, however. A discussion of
problem issues confronting the control theoretic approach is presented. One particu-
lar source of difficulty is the modeling of manufacturing systems; more specifically,
the development of models of manufacturing systems that capture the important

features and maintain a compatibility with the control theoretic framework is

difficult.

Since modeling plays a key role in the control theoretic approach, a summary of
the important features and characteristics of manufacturing systems is presented.
The list is not exhaustive, but does include features not always captured in manufac-
turing models. These features include complexity, uncertainty, and available control
mechanisms. The presence of both discrete event and continuous time phenomena in

manufacturing systems is also discussed.

A very brief survey of analysis methods available for manufacturing system

study is given, accompanied by a comparison and critique of these methods.

The chapter concludes with a discussion of an important sub-theme that tran-
scends manufacturing: discrete events that arise from underlying continuous time
processes. This view of discrete event systems is important because it allows the
introduction of information feedback and control concepts into discrete event systems

in a very natural way.

Chapter 3 introduces four sample manufacturing problems. The first problem is
called the drilling problem and is the most deeply studied problem in the thesis.
Fundamentally, it is a machining economics problem, but placed in an intelligent

manufacturing context. The drilling problem captures many important manufactur-



ing features in a conceptually simple problem. The objective of the drilling problem is
to determine machining parameters and make tool replacement decisions so as to

achieve good system performance.

The second problem is an extension to the drilling problem where multiple tools
are considered. The third problem poses the question of how to control networks of
machines where each machine is similar to that considered in the drilling problem.
This problem is extremely challenging. Only a very simple example is considered in
this work, resulting in what might best be called speculation. The fourth problem is
called the supervisor’s problem and is a radical departure from the first three prob-
lems. The supervisor’s problem is a type of scheduling problem, but viewed in a very
different way. In particular, an attempt is made to more accurately capture the
dynamics of job progress and to recognize the role played by supervisory personnel in
the manufacturing environment. The problem also serves as a reminder that people

are an important part of manufacturing systems.

Chapter 4 develops much of the mathematical framework that will be used to
approach the posed problems. A class of stochastic processes called diffusion-
threshold processes is introduced. The key features of these processes are a controlled
diffusion process and a threshold boundary in the state space. When the diffusion
first reaches the boundary, a significant event is considered to have occurred. This
generally results in the re-initialization of the diffusion process and a new cycle of

process evolution.

The goal in studying diffusion-threshold processes is to derive a probabilistic
description of the threshold hitting time in terms of the process parameters and the

control policy used. The control policy may include diffusion measurement feedback.



The treatment of general diffusion-threshold processes is difficult and not con-
sidered in this work. Attention is instead restricted to simpler classes of processes
where solutions are obtainable. Included are the cases of constant infinitesimal
coefficients; coefficients constant between diffusion measurement feedback; and gen-

eralizations to multidimensional diffusions with independent components.

The treatment of the piecewise constant coefficient case is considered in Appen-
dix B. This development demonstrates the difficulty encountered when handling
more general diffusion processes. The result for the piecewise constant coefficient case
yields a partial solution to a Brownian motion curve crossing problem. This problem

has appeared in the statistics literature.

Application of diffusion-threshold processes to several categories of problems is
discussed. Furthermore, diffusion-threshold processes play a central role in all the
example problems discussed. An important feature of diffusion-threshold processes is
that they combine discrete event and continuous time phenomena into a single pro-
cess. This allows a different viewpoint of discrete event systems to be formed. The

importance of this is believed to extend far beyond the specific problems considered in

this work.

Chapter 5 considers the drilling problem in detail. An important issue in the
analysis of the drilling problem is the modeling of tool wear and tool life in a produc-
tion environment. A brief history of this problem is presented. The model of tool
wear and tool life must be compatible with the control theoretic approach in order to
apply it to the drilling problem. A diffusion-threshold model is proposed which meets

the requirements.



The introduction of the diffusion-threshold model allows the drilling problem to
be placed in a stochastic control setting. Two classes of control policies are con-
sidered. First age replacement policies are examined. Age replacement policies
assume fixed machining parameters and predetermined ages at which tools are
replaced. These are the traditional policies assumed in machining economics prob-
lems. Procedures for the evaluation of two different performance measures under age

replacement policies are derived.

Next, feedback policies are considered in which tool wear measurements are
occasionally available. The analysis and evaluation of general feedback policies for
the drilling problem is very difficult. This motivates the development of a class of
cost functionals called one step. One step cost functionals assess the costs and profits
associated with producing the next part. They also enjoy the distinct advantage of

being computable.

The optimal policy for one step cost functionals is described. Implementation
issues are discussed along with practical considerations that affect the control prob-
lem formulation. A limitation of the one step approach is that the long term perfor-

mance of the manufacturing system cannot be easily evaluated in analytical terms.

Chapter 6 addresses the problem of performance evaluation for one step policies,
and the comparison of age replacement and feedback based policies. A specific prob-
lem is formulated based on drilling data and realistic economic assumptions. Age
replacement analysis is carried out, and the optimal age replacement policies under
two different criteria are determined. Next, one step costs are evaluated and the

optimal one step policies are determined.



Performance assessment is done by simulation. Two different production situa-
tions are simulated with varying part worth. Age replacement and feedback policies
are implemented based on the optimization results. Variations of these policies are
also simulated. Economic performance and secondary performance characteristics are

compared.

Also given in this chapter are various algorithms used in the computation of the
cost functionals and in the generation of random numbers for the simulations. The
computational algorithms offer a significant speedup over numerical integration tech-

niques.

Chapter 7 discusses the other example manufacturing problems introduced in
Chapter 3. The first two problems rely on the results obtained for the drilling prob-
lem. The multi-tool machine problem is shown to be a generally straightforward
extension of the drilling problem. Results are obtained for age replacement and one

step policies.

The multi-machine problem is considerably more difficult. Attention is res-
tricted to serial transfer lines with synchronous part transfer. A form of decentral-
ized control based on local costs is proposed as one approach to the problem. Simu-
lation is carried out for a two machine problem under decentralized age replacement

and feedback policies. The performance of these policies is compared.

A heuristic dynamic programming type of approach to the supervisor’s problem
is considered. The result is the derivation of a quasi-variational inequality that the
optimal policy must satisfy. This result is similar to results obtained by other
researchers working on different problems. However, the supervisor’s problem has

unique features. This development suggests a different approach to the analysis of



systems described by diffusion-threshold processes.



CHAPTER 2

A CONTROL THEORETIC APPROACH
TO MANUFACTURING

2.1. Introduction

Manufacturing presents to the researcher and practitioner an enormous variety
of problems, covering diverse fields of knowledge and a spectrum of complexity. The
scope of manufacturing is so broad that the development of an all encompassing,
unified approach to manufacturing problems is quite unlikely. Nonetheless, there are
significant classes of manufacturing problems where sufficient commonality is present
such that some general é.pproacha might be developed. This work will only consider
discrete part manufacturing. The word batch will also be used to describe this type
of manufacturing, with the understanding that the size of the batch can be arbi-

trarily large.

Batch manufacturing is not a particularly restrictive classification; in general,
the same breadth of variety and scope is still present. Consequently, batch manufac-
turing includes a diversity of products, technologies, techniques, machines, and skills.
However, large segments of the batch manufacturing community are facing similar

problems. Some of these problems will be considered here.
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2.2. Problems in Manufacturing

Perhaps the most pervasive problem today in batch manufacturing is the need
to increase productivity. Productivity can be considered one important measure of
manufacturing performance. Unfortunately, there is no universal definition of this
measure, but it will be understood to subsume the production of a product in an
economic and timely way, while achieving some level of acceptable quality. A sum-
mary of the preceding statement reveals three fundamental problems in batch
manufacturing: cost, availability, and quality. The relative contribution of each of
these factors and the presence of other factors in the productivity measure is specific

to the particular manufacturing environment.

Manufacturing problems can go far beyond operational issues. Such problems
as product design and facility planning are clearly related to manufacturing. In order
to try to further reduce the scope of manufacturing problems addressed here, only
operational issues will be considered. Productivity will be considered a measure of

operational performance.

There are other operational concerns that may be factors in productivity. These
concerns include: utilization of resources consumed in producing a product; utilization
of production equipment; rate of production; speed of response to changes in the pro-
duct; speed of response to changes in demand; capability of producing a variety of
products; choice of production process; amount of work in process; inventory size;
and required labor to produce a product. The intent here is only to provide a sam-

pling of the types of concerns faced in manufacturing.

An important motivation for research in manufacturing and in particular for

this work is to address the problem of productivity improvement through improve-
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ment in one or more of the factors that may affect productivity. The question, then,

is how to improve the productivity of a manufacturing system.

One of the major deterrents to successfully answering the above question, and
thus another important manufacturing issue, is a general lack of a scientific
knowledge base in manufacturing. The ‘“science of manufacturing’’ has not yet
evolved. The result of this lack of fundamental knowledge is the proliferation of ad
hoc techniques for dealing with manufacturing problems. It comes as no surprise
that much of manufacturing is essentially trial and error, drawing heavily on experi-
ence and experiment. Without analytic tools and techniques to offer guidance, solu-
tion synthesis becomes difficult and problem insight may require long observation, if

it is ever attained.

The intention of this research is to find ways to improve the operational produc-
tivity of manufacturing systems through the use of analytic models and methods.
The specific use of analytic methods will hopefully yield insight into the problems,
result in solution synthesis techniques, and contribute to a scientific knowledge base

for manufacturing.

2.3. Intelligent Manufacturing

Although manufacturing suffers from the previously indicated problems, it has
by no means stagnated. Advances in supporting technologies have had a tremendous
impact on all aspects of manufacturing. Of particular importance are the great
advances made in computer and communication technologies. These technological
achievements have helped to make the use of such devices as robots and CNC
machines economically feasible in many manufacturing environments. Plant floor

communication networks are becoming a reality. The computer related technologies
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are not alone in contributing to manufacturing. Major advances have also occurred
in process technologies, material technologies, material handling, sensor technologies,
and even in the basic structure of the manufacturing system: Flexible Machining and

Flexible Assembly Systems (FMS/FAS).

The advances in the supporting technologies have allowed for new approaches to
the productivity problem. That is, a re-thinking of how manufacturing is done is
now both appropriate and necessary. Since most of manufacturing has evolved by
trial and error, the present solutions are specific to the manufacturing environments
of the past. Changes in the environment dictate investigation of alternate structures
and methods for manufacturing. However, this does not imply that the existing
manufacturing structures are wrong and must be replaced by new structures. As an
example, the assumption that all new machining systems must be flexible is
unfounded and limiting. Underlying this type of assumption is the belief that tradi-
tional manufacturing systems have fully evolved. This belief has no basis. Con-
sideration should be given as to how advancing technologies can be used in all types
of manufacturing. An additional benefit of this consideration is the discovery that

much of existing manufacturing is not really well understood.

It should be clear that prior assumptions about the structure of advanced
manufacturing systems will be avoided in this work. Instead, a more general and
more powerful concept of manufacturing systems will be introduced. This concept
will be called intelligent manufacturing. The concept of intelligent manufacturing
is quite simple. Assume that there exists sufficient data collection, communication,
processing, and storage facilities so that plant floor data can be used to aid in opera-

tional decision making. Furthermore, assume that the manipulation of the data can
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be done in a timely way. Given this data collection and processing structure, how
can the performance of the manufacturing system be improved. Intelligent manufac-
turing assumes the advanced technological support without making assumptions

about the particular manufacturing structure.

Given the availability of the requisite technology, the concept of intelligent
manufacturing has a certain intuitive appeal. This appeal arises from the belief that
an increase in the amount and quality of data available for decision making, and an
increase in the speed at which it can be processed should result in better decisions,
better performance, and greater productivity. This reasoning suffers from one flaw.
The ability to efficiently handle data does not imply a knowledge of how to
effectively use it. It is precisely a deficiency in the knowledge of how to use plant
floor data effectively that has impeded greater advancement in intelligent manufac-

turing.
The central theme of this research is conveyed by the following question:

How can the feedback of information be used to improve the performance of the
manufacturing system?

The question presumes an intelligent manufacturing setting and the capability of
influencing the system through on-line decision making. The methodology for
approaching this question will be called control theoretic. Before explaining this
methodology further, some motivation for the control theoretic approach will be

given.

Fundamental to control theory is the concept of feedback. Feedback of infor-
mation is used in the determination of what actions should be taken so as to

influence the behavior of a system in a desirable way. The similarity between this
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point of view and the central theme motivates the control theoretic approach to

manufacturing systems.

2.4. The Control Theoretic Approach

The control theoretic approach has both advantages and disadvantages for
approaching manufacturing problems. These relative merits and demerits are reveled

by describing what constitutes the control theoretic view.

As previously stated, fundamental to the control theoretic view is modification
of system behavior. This modification can be accomplished by utilizing feedback of
information regarding the condition of the system and exercising on-line strategies to
influence the system behavior. The control theoretic view presumes the existence of
means for exercising this influence. Clearly, the available means represent a limiting
factor in influencing system behavior. Identification of the available means is an
important modeling issue. The control theoretic view also recognizes some important
issues regarding system performance modification. The first is that the effective use
of information feedback is not trivial. The second issue is that information feedback
can be detrimental as well as beneficial. Finally, the magnitude of performance

improvement that can be achieved is limited.

The control theoretic view represents an analytic orientation. The advantage of
this orientation is the potential for gaining insight into classes of mathematical sys-
tems that can be used to model many physical systems. From this insight, analysis
and synthesis methods for constructing and determining the performance of controll-
ers can be derived. However, the control theoretic view still recognizes that the per-
formance of the physical system is what actually matters. The analytic orientation

helps to reduce considerably the amount of trial and error required in order to attain
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the desired system performance.

Unfortunately, there are some difficulties that arise in attempting to apply the
control theoretic approach to manufacturing. The most important of these is
mathematical incompatibility. The most powerful control theoretic results assume
mathematical structures (finite dimensional, lineaf differential/difference equations)
that are not readily applicable to most manufacturing problems. This means that
either we accept poor system models that are familiar and fit the classical framework,
or search for new models that are more appropriate but for which new analytic

methods must be developed. The latter approach will be emphasized in this work.

The problem of construcﬁng compatible mathematical models for manufactur-
ing systems is compounded by the relative lack of analytic models in manufacturing.
Furthermore, those that do exist are generally not adequate for use with the control
theoretic approach. Clearly, a major endeavor in using the control theoretic

approach will be model construction.

One of the main difficulties in applying control theory to manufacturing prob-
lems is that from some viewpoints, manufacturing systems appear as collections of
discrete events. The problem here is that a branch of control theory dealing with
discrete event systems has not yet evolved (except for certain special cases). See [Hol]
for some recent approaches to the discrete event system problem. Also see [Brl| and
[Crl] for the special cases of controlled point processes and controlled queues. This
fundamental inadequacy contributes greatly to the difficulty in applying control
theory not only to manufacturing, but to many other classes of problems with similgr
attributes. One of the goals of this work is to pre;ent some ways of approaching cer-

tain types of systems that can be viewed as discrete event systems. Implicit in this
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effort is the belief that this has value beyond specific manufacturing problems.

Before attempting to construct suitable models of manufacturing systems, it is
worthwhile reviewing some of the properties and characteristics of manufacturing.
The following review is certainly not exhaustive, but it does present some features

that are important. Some of these features are not often discussed in the literature.

The reference [Gel| also presents a control perspective on manufacturing. There
are many similarities but also some important differences between the viewpoint

presented here and the one presented in that reference. See also [Whi]|.

2.5. Some Properties and Characteristics of Manufacturing Systems

Based on the previous discussion, it is apparent that modeling is a major issue if
the control theoretic approach is to be used in manufacturing. The goals of this
modeling effort are to characterize important features of manufacturing systems,
identify the requirements of the control theoretic view, and to develop models that
incorporate these features. In this section, the first two goals will be considered. The
importance or relevancy of features will of course vary with the system being
modeled. Nonetheless, the following provides a list of features shared by many

manufacturing systems.

2.5.1. Complexity

Manufacturing systems, when viewed in whole or even in part, can be enor-
mously complex. A manufacturing system can easily involve many facilities located
internationally and employing (hundreds of) thousands of people. Furthermore, these
facilities may in turn depend on thousands of other suppliers and their respective

facilities. Decision making may involve time intervals from sub-second to decades.
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The processes and technologies involved can be extremely diverse. Even when the
view in restricted to a single facility, the complexity of the system can be overwhelm-
ing. Hundreds of machines and thousands of people can be producing thousands of

products.

From a modeling standpoint, there are at least two approaches to the complex-
ity problem. The first approach is to model the system using extensive aggregation
and simplification. The second approach is to decompose the manufacturing system

into simpler subsystems that are easier to model.

2.5.2. Decomposition

Fortunately, most manufacturing systems can be decomposed into simpler sub-
systems that have less complexity. In general, several levels of decomposition are
possible. As an example, consider a manufacturing system which has a machining
line as a subsystem. The machining line can be decomposed into sets of related
processes or operations; these can be further decomposed into distinct operations or
workstations; these individual operations can be decomposed into sequences of steps
that are necessary to do the operation. This example is only representative; subsys-
tems involving human workers can be similarly decomposed. This decomposition of
manufacturing systems is based on levels of detail. It is not a unique approach.
Another approach is decomposition based on time scales ([Gel]). In this work, levels
in the manufacturing system will refer to levels of detail and breadth of scope unless

otherwise stated.

The impact of decomposition on modeling must be considered. Although
decomposition makes the modeling problem more tractable, it can also lead to certain

views of the system that are incomplete or misleading. That is, depending upon the
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level of decomposition chosen, there can be considerable aggregation, simplification,
approximation, and omission of higher or lower level features. It is the author’s opin-
ion that this has resulted in the evolution of two disparate model classes for many

types of manufacturing systems. More will be said about this later.

2.5.3. Uncertainty

Manufacturing and manufacturing systems cannot be described in a completely
deterministic way. Elements of uncertainty enter into all aspects and at all levels of
the system. Some examples of uncertainty will help demonstrate its pervasiveness.
At the operation level uncertainty manifests itself in the form of machine reliability
and production quality. At higher levels, uncertainty is present in the aggregated
performance of a facility and in the quality and availability of raw materials. At
even higher levels, uncertainty is present in future product demand, capital availabil-

ity, and economic conditions.

Uncertainty is always present in the manufacturing system, but it is not neces-
sarily independent of other factors. That is, uncertainty may affect the operation of
a manufacturing system, but the operation decisions made and the actions taken can
also affect the nature and magnitude of the uncertainty that arises. Consideration

should be given to this potential coupling during the modeling effort.

A very important form of uncertainty in manufacturing is production quality.
Each part may deviate somewhat from what is intended. These deviations may be
inconsequentially small, or so large that the part is unacceptable (scrap or rework
required). There are many sources of these deviations: uncertainty in the raw parts,
the machines, damage in handling, etc. The production of unacceptable parts is a

manufacturing reality. These issues should be considered during model construction.
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2.5.4. Deterministic Influences

The presence of elements of uncertainty in the manufacturing system does not
imply that the system is purely random. A manufacturing system is actually
governed by an order or discipline imposed on it, and by natural physical principles.
Deterministic influences are involved at all levels of the system. Examples of these
influences at lower levels include selection of machining parameters, maintenance
schedules for equipment, and the sequencing of processing steps. At even lower lev-
els, the process evolution is presumed to obey physical principles, though they may
not be well understood. At higher levels, influences include production rate decisions
and activity scheduling. Long term planning decisions can influence the evolution of

the system over long time horizons.

The inclusion of deterministic influences in manufacturing system models is par-
ticularly important when the control theoretic approach is used. This approach is
naturally interested in identifying the means of influencing system behavior, and the

effects of those influences.

2.5.5. Coupling

Decomposition of the manufacturing system for the purposes of modeling does
not in general produce a set of independent subsystems. As stated earlier, decompo-
sition is generally only a simplification of the view of the system. Coupling generally
exists between the subsystems, regardless of how the decomposition is carried out.
Of course, the magnitude of coupling is quite variable, and in many cases nothing is
lost in ignoring it. Manufacturing requires cooperation among the components and
subsystems, so many elements of the system are interdependent. As an example,

when a particular operation is isolated for the purposes of modeling, it is important
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to remember that there are few stand alone operations in manufacturing and that the
actual performance of the operation in a manufacturing context may be very different
from its performance in isolation. The isolated characteristics may not be an ade-
quate description of the operation’s behavior. Generalizing, coupling may affect the

performance of any subsystem.

2.5.8. Dynamical System

Manufacturing systems are dynamical systems, not static. Their temporal evo-
lution depends upon physical laws, deterministic and uncertain influences, and
interaction with other systems. This is a key feature that provides a logical link

between manufacturing and control theory.

Whether or not the dynamics of the manufacturing system need to be modeled
depends upon the level of the modeling viewpoint, the time scales of the features
being modeled, and the time horizon for which the model is intended to hold. In
some cases, static assumptions are reasonable approximations and are simpler to han-
dle. However, static models fail to capture the true character of the system and thus
are necessarily incomplete. Models that capture the dynamical character will in gen-
eral be more complicated, though potentially more accurate. The dynamical charac-
ter of the system to be modeled should be carefully considered so that the dynamics

of the system with time scales relevant to the model intention are captured.

2.5.7. Control Theoretic Compatibility

Manufacturing models that are to be used in conjunction with the control
theoretic approach require a degree of compatibility with the basic assumptions of

the approach. Therefore, the model needs to include explicit control mechanisms that
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can be used to influence the system’s evolution. Furthermore, in order to conform
with the central theme of information feedback, those entities that can be measured

or otherwise assessed also need to be identified.

The identification of the control mechanisms is not sufficient. Also required are
direct and indirect consequences of the manipulation of these mechanisms. This
includes deterministic influences as well as influences on the system uncertainty. The
model should also specify limits or constraints imposed on the influences, and limita-
tions on the available measurements. Measurement limitations include both quality

and availability.

An example of a control input common to many manufacturing systems, but
often overlooked in models, is the production rate or more generally the rate at which
work is done. However, in order to use it effectively as a control input, the direct
and indirect effects of production rate need to be understood and modeled. This par-

ticular control input will be used in this work.

Control inputs can also be of a discrete nature. Some examples of this type

include part routing decisions, pass/fail inspection, and on/off actuator inputs.

Some control mechanisms are best modeled as discrete while others are best
described as continuous. Since a typical manufacturing system has both types of
control mechanisms the model may have to include both continuous and discrete

valued control inputs.

2.5.8. Discrete Event vs. Continuous Process Viewpoint

A popular modeling view of manufacturing systems is to model only the

occurrence of specific events that are of some significance. This is the discrete event
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representation of manufacturing systems. This modeling approach has the advantage
of simplifying the representation of the manufacturing system and easing the burden
of using the model in analysis, simulation, or design. [Gel| has several examples of
this viewpoint. This viewpoint has also influenced manufacturing simulation

language design. See [Pel| as an example.

The discrete event viewpoint has the drawback of neglecting the underlying
dynamics (typically continuous processes) that give rise to the discrete events. Con-
sequently, many discrete event models neglect entirely the additional structure
present in the actual system. This neglect can result in missed potential for system

control and information feedback that may actually be available.

Similarly, most models of continuous time processes fail to represent the
occurrence of significant events (at discrete times) that impact system evolution. A
smsible explanation for this is that most instances of models of manufacturing sys-
tems where continuous processes are used are at the lowest levels (e.g., process
dynamics) where the discrete event view is not considered important. Similarly, the
discrete event view can be regarded as a way to ignore process details that higher

level views are not concerned with.

An important modeling consideration, and one that will surface repeatedly in
this work, is the possibility of hybrid models that capture important features of both
continuous process and discrete event viewpoints. The advantage to be gained by
this approach will include control compatibility while retaining the impact and

importance of significant events.
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2.8. A Brief Survey of Models of Manufacturing System

The intention of this section is to provide a brief survey of classes of models of
manufacturing systems, and to compare and critique these models with respect to the
features previously described as desirable. Refer to [Gel] for a more complete bibliog-

raphy and also to [Su2].

Prior to surveying the models, some remarks are in order concerning the use of
models of manufacturing systems. In particular, there can be a distinction between
models that are used for analysis and those that can be used for synthesis. Analysis
refers to analysis of system behavior. Synthesis refers to producing candidate system
designs. Systems design includes both structural issues (e.g., number and type of
machines) and operational issues. Models that can be used for synthesis, and which
include the previously specified features, are desirable but scarce. Much more com-
mon are analysis models, with synthesis performed by trial and error based upon the

analysis results.

The admittance by a manufacturing system of a decomposition based on levels
of detail has been previously discussed. Detail based decomposition induces a hierar-
chy of views of the manufacturing system, ordered by the breadth of the view and
the detail considered. The models discussed here can be considered as reflections of
the view of the system considered important by the modeler. For descriptive con-
venience, a high-level view will correspond to breadth but lack of detail, and a low-
level view will represent detail but lack of breadth. The models discussed here are res-

tricted to system operational models.

The first class of models considered is the queueing models. These models rely

on the network of queues formulation. In these models, the manufacturing system is
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composed of servers (work stations), queues (buffers), and routes (work paths through
the system). These models have become popular for modeling flexible manufacturing
systems. Queueing models seldom contain details of the processes involved, allowing
for generality. As such, these models have a relatively high view among models of
factory floor operations. See [Bul], [Crl], [Kl1], [Sol], and [Wh1]. The reference

[Crl] is a bibliography of queueing research.

Analytic results for queueing models are only proven under strong assumptions
about service times and input processes. Recently there has been some work suggest-
ing that these models are robust to deviations from these assumptions, indicating a
more general usefulness ([Sul]). Variations of queueing analysis allow for determina-

tion of certain performance characteristics (e.g., expected queue length) quite rapidly.

Several deficiencies of queueing models are evident. Probabilistic part routing
and infinite queue capacitieare often unrealistic assumptions. The probabilistic ser-
vice time assumptions (exponential distributions) are also unrealistic for many sys-
tems. As an example, in machining the process times can be variable, but are cer-
tainly not exponentially distributed. Expanding on this criticism, queueing models
are in some sense “too stochastic”, and sacrifice lower level detail or knowledge that
may be of use. When analytic tractability is sacrificed, representational accuracy
may be improved, but the model is difficult to use for meaningful analysis of the sys-
tem. A major drawback to the use of existing queueing models with the control
theoretic approach is the lack of explicit control mechanisms, and identification of
information that may be available for feedback. In fact, these models assume that
the control policies are somehow “encoded” into the probabilistic descriptions and

queue disciplines. This can be quite awkward to deal with. Queueing models do pro-
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vide a dynamical representation, however.

The next class of models is the Markov chain or Markov process models. In
both models the system is decomposed into machines and buffers. Each machine can
assume one of two states: operational or under repair. The state of the system refers
to the current inventory in the buffers and the state of each of the machines. In the
- discrete time version, production is usually viewed discretely, with parts produced at
some multiple of the time quantum unit (usually one) ([Ge3]). In the continuous time
model, production is usually modeled by a flow approximation ([Ge2], [Kil]). The
transition of a machine from operational to under repair and vice versa is assumed to
be a Markov process, and thus is exponentially or geometrically distributed. These

models can allow for machine blockage and starvation.

Closed form solutions are only available under very specia.i circumstances. How-
ever, some approximation methods are known that can be more generally applied.
These models do incorporate uncertainty through the failure/repair transitions. The
binary state model is somewhat limiting, though, since it does not allow for machine
deterioration due to aging. This comment applies to all models that assume exponen-
tial or geometric failure distributions. It is possible to incorporate production rate
into some of these models. The failure mechanism is assumed to be independent of
the production rate. These models do allow for some control theoretic approaches,

since system state is assumed to be known to the controller ([Ge2], [Kil]).

These models do incorporate many of the discussed features. Some assumptions
are made that may not hold for many manufacturing systems, unfortunately. Some
synthesis methods are available for some of these models. Typically, these are based

on approximations.
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Other classes of network models have been proposed as models of manufacturing
systems. Most prevalent are the Petri net models, including the many variations and
extensions of them ([Dul]). [Kaml| discusses various Petri net type models. These
models offer a graphical representation of concurrent, asynchronous processes, which
are properties of manufé.cturing systems. The variations that have been proposed
include timing information, classes of activities, and stochastic phenomena. Some of
the properties and results that are known about Petri nets can be applied to
manufacturing systems. These include liveness, safeness and boundedness. Petri net
models have also been used as the foundation for simulation models and for the
design of control logic. The Petri net viewpoint is decidedly discrete event. Concepts
of state and control pertain to the components of the Petri net. Lower level details

are generally omitted.

The next category of models involves the sp*ﬁc modeling of individual
processes. The focus here is at a lower level where process details become important
but manufacturing aspects are often ignored. Detailed models of process behavior are
constructed from physical principles or experimentation. Control mechanisms often
enter naturally into these models. Generally these models are close to those types of
models common in traditional control engineering: lumped parameter differential
equations. References exist for many different manufacturing operations. Some

specific references are [Dal], [Kanl], and [Kol].

Drawbacks to these types of models include viewpoint (often ignoring manufac-
turing concerns) and neglect of uncertainty. This latter feature could be included but
typically is not. The absence of uncertainty tends to result in the modeling of nomi-

nal behavior only, ignoring the abnormal behavior that occurs in the manufacturing
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environment. The significance of certain discrete events is usually ignored in these

models.

Models that respect some process characteristics while including more manufac-
turing oriented concerns are also available. Examples of these models are found in
machining economics problems with multi-stage machining systems. See [Erl], [Hal,
[Hil], (Iwl], [Kel], [Lel], [Le2], [Phl], [Shk1], [Takl|, and [Tayl]. In these models,
some low level details concerning tool wear, feedrate selection, and cutting constraints
are used along with some high-level details such as profit and production rates.
These models are used in conjunction with some optimization criteria to determine

the (static) selection of certain parameters (e.g., feed speeds).

These models are typically deterministic and static. Without a dynamical sys-
tem viewpoint, many of the control theoretic concepts are not readily applied. In
some formulations of theses models, uncertainty is included via probabilistic descrip-
tions of the process variables and constraints. This does not change the static char-
acter, however. The intermediate view taken by these models is notable, as it

includes a mixture of levels of detail.

The next class of models is simulation models. Actually, simulation is best
described as a technique for evaluation. However, since simulation does require that
models for evaluation be constructed, it will be considered here. This is a varied
class, and can take on essentially any viewpoint of the system desired. There is no
explicit limit on the amount of detail that can be captured (although there are usu-
ally practical limits). Arbitrary degrees of complexity can be treated, but not
without cost. As more detail is included, more effort is required in preparation, run

time, and analysis. Also, more detail increases the chance of error. Simulation can



28

include all of the desirable features mentioned, though manufacturing simulations
usually don’t. Simulation is the single most common method of analyzing manufac-
turing system performance (other than experimentation with the actual system). See
[Lal] as a general simulation reference and [Pel] for a perspective on manufacturing

simulation from a simulation language supplier.

The generality of simulation makes it difficult to critically evaluate without
specifying a particular problem. Usually, simulation is only used for evaluation
though some techniques have recently appeared that can aid in synthesis ([Hol],
[Ho2|). Simulation can represent a great deal of effort, and does not always result in

useful insight into the behavior of the manufacturing system.

As a side comment, it is worth noting that there exists some dichotomy in the
simulation community between discrete event and continuous model simulations.
Although many simulation languages support both types of systems, it is perhaps &
coincidental that the discrete event view prevails in manufacturing simulation ([Pel]).

Again, this can lead to some restriction in the modeling approaches considered.

With the exception of simulation (which will be excluded from the following dis-
cussion), none of the models discussed really captures all the desirable features and
characteristics previously discussed. Clearly, each has some advantages and disad-
vantages. By extracting the appropriate features of each model type, it may be pos-
sible to develop models that satisfy the requirements. However, changes to each of
these models can represent additional complexity not easily dealt with. Seemingly,

modeling of manufacturing systems is still an open field.
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2.7. Discrete Event Processes Arising From Underlying Processes

Discrete event processes play a prominent role in many manufacturing system
models. This prominent role can have the unfortunate consequence of obscuring the
nature of discrete event processes. It is typically the case that discrete events are the
result of underlying processes that give rise to these events. As an example, consider
the machining of a part. The process of metal removal, which is occurring continu-

ously in time gives rise to the discrete event of part completion.

The discrete event viewpoint presents some compatibility problems with the
control theoretic approach. First, the discrete event view can disguise the presence of
underlying control mechanisms. Thus, available control inputs can be overlooked.
Second, the potential utility of information feedback can be inhibited by the discrete

event view, since the use of information concerning the underlying process is ignored.

The explicit introduction of underlying processes giving rise to the discrete event
provides a convenient link between the discrete event view and the control theoretic
approach. Presuming that the underlying process has control mechanisms and
measurable components, the utility of the control theoretic approach can be explored.
It should be expected, however, that the use of underlying processes to describe
discrete events, particularly stochastic events, may not be simple. This will be con-
sidered in some detail in this work, with particular attention to some discrete event
processes arising in manufacturing. However, the author believes there is consider-

able potential for the application of this approach in areas outside of manufacturing.



CHAPTER 3

DESCRIPTION OF SOME
MANUFACTURING PROBLEMS

3.1. Introduction

In this chapter, several prototype manufacturing problems will be introduced
and discussed. The problems are at once similar and dissimilar to problems typically
discussed in manufacturing. These problems have been constructed with several
intentions in mind. First, each problem embodies some important features or aspects
of manufacturing. Second, the problems are not of the “black box’ variety; rather,
they represent realistic situations. This has been done in order to aid familiarization
and problem visualization. That is, certain features are more clearly evident in a
manufacturing setting that might otherwise be obscured in a purely mathematical
setting. Third, the problems are set in an intelligent manufacturing context, with
features that admit a control theoretic approach. These features are designed to be
realistic or at least reasonable. However, the presence of these features results in a
departure from typical related problem formulations. This will motivate a com-
parison between the traditional and the intelligent manufacturing problem formula-
tions, and also help clarify the concept of the control theoretic approach. Fourth,
each of the problems contains certain phenomena that can be modeled using a class

of stochastic processes central to this work. This modeling relationship will be

30
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explored in some detail for one of the prototype problems.

The presentation of these prototype problems is not meant to imply that they
embody all the important manufacturing problems, nor that they are the only prob-
lems to which the concepts developed in this work can be applied. However, each of
the problems does have some importance in manufacturing. More importantly, each
of the problems offers a viewpoint different than that which is usually presented.
The author wishes to stress the importance of new viewpoints for manufacturing
problems that more accurately convey the actual system or overcome limitations in
past approaches. The primary objective in presenting these problems is to gain addi-
tional insight into some characteristics of manufacturing systems; insight that may

ultimately yield productivity improvement.

Finally, each of the problems provides a vehicle for exploring the control
theoretic approach to manufacturing. A framework will be developed, with particu-
lar emphasis on one of the problems, that demonstrates the application of the control
theoretic approach. Again, the intent is to provide examples, but the framework is

not believed to be limited to the problems considered here.

3.2. Problem 1: The Drilling Problem

The drilling problem represents a simple version of a problem found in metal-
removal manufacturing operations, but with some new extensions. The heart of the
problem is the question of how to operate a machining system in the best way sub-
ject to the limitations of uncertain physical phenomena. In this simplified version,
only a single machine carrying out a single operation will be considered. It is impor-
tant not to divorce the problem entirely from the surrounding manufacturing com-

plex, however. That is, the problem formulation should represent at once aspects of
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manufacturing and aspects of drilling.

Assume there is a metal drilling manufacturing operation. The machine is a sin-
gle tool drill, repetitively carrying out a single identical task. on parts as they arrive.
The task involves the drilling of a single hole in each part. An unlimited supply of
parts for drilling is available. When a part is completed, another part is immediately

available for drilling.

As holes are drilled, the tool wearé and is susceptible to breakage. It is assumed
that there is a limit to the wear beyond which the tool is unacceptable. A br;)ken
tool is considered unacceptable. Evolution of tool wear necessitates the occasional
replacement of the tool. Replacement of the tool involves some costs for both time

and material.

The spindle speed and the feed speed of the drill are variable. The machining
rate, i.e. the rate of metal removal, is proportional to the feed speed. The time
required to complete an operation is inversely proportional to the machining rate.
Assuming that the tool does not break, the time to complete a part is inversely pro-
portional to the feed speed. See Appendix A for a description of relevant drilling ter-
minology.

The dynamics of tool wear are not completely understood. Experiments have
been made from which empirical formulas for tool wear have been derived. These
formulas are known to be only approximate, and considerable variation in tool life is
evident. Furthermore, the material to be drilled has some uncertain characteristics
that also affect tool wear. The empirical formulas for tool life suggest that under the
assumption of a fixed feed (the ratio of feed speed to spindle speed), the tool wear

rate is an increasing function of the cutting speed, and an increasing function of the
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feed speed.

The replacement of tools prior to breakage is feasible. If the tool breaks, it must
be replaced before continuing. Furthermore, tool breakage may cause damage to the
current part, possibly resulting in a scrap part or necessitating rework. Costs are
therefore associated with tool breakage. Tool breakage is an unplanned event, so
replacement of the tool due to breakage may take longer (and thus cost more) than

planned replacement.

The drilling problem is to determine the best policies for operating the drill.
The required decisions are when to replace the tool, and the selection of spindle and
feed speeds used to drill the parts. The criteria for ranking policies is a function of

the various economic considerations. Any of several different criteria may be reason-

able.

The above description of the drilling problem is typical of problems of machin-
ing economics, and as such does not appreciably extend previous considerations of
these problems. The on-line variability of the spindle and feed speeds is not usual,
however. Similar problems can be found in many references, including [Eri], [Hal],

[Hit], (Iw1], [Lel], [Le2], [Ph1], [Shk1], [Tak1], and [Tay1].

The problem will now be extended. Suppose that occasional measurements of
the extent of tool wear are made. Continuous measurements cannot be made while
the tool is engaged in the part however. Measurements may be made between parts,
when the tool is disengaged. The method of wear measurement is not specified. This

new information is to be incorporated into the decision policies.

The essential features of the drilling problem are:
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Mechanical Aspects: The drill is used in a fixed operation carried out repeti-
tively on parts. A fixed volume of material is removed from each part. As
metal is removed from the parts, the tool wears. The tool wear mechanism is
only known empirically, and variation in tool life is evident. As the tool wears,
it eventually breaks or becomes unacceptable and must be replaced. Failure of
the drill necessitates replacement, but can also cause damage to the part being

machined.

Economic/Manufacturing Aspects: The production of parts results in profit,
and the profit rate is related to the production rate. The profit rate is assumed
to be an increasing function of the feed speed. Tool replacement is costly in
terms of time and material. Tool breakage is in general more costly than simple
replacement, due to possible part damage and the unplanned replacement that

results.

Control Aspects: The objective is to determine policies for tool replacement and
for feed speed selection. Tool replacement and changes in feed speed may only

occur between parts, unless there is a tool breakage.

Information Feedback: Tool wear can be measured when the tool is disengaged

from the part, but not during the machining.

The specific use of a drilling operation in this problem is only to facilitate the

presentation of the concepts and is not meant to imply a restriction of the ideas to

that type of machining operation.

There are several important features incorporated into the drilling problem that

are common to many manufacturing systems. Since some treatments of manufactur-

ing problems overlook these characteristics additional emphasis is warranted. First,



35

the discrete nature of parts is represented. This property imposes certain restrictions
on the way manufacturing system analysis can be carried out, and definitely imposes
restrictions on the control policies and availability of information. Second, the rate
of production is specifically cited as a decision control variable in the sense that the
local or instantaneous rate of metal removal can be controlled. Local means in the
absence of other effects (tool failure, tool replacement, etc.). Although in actual
manufacturing processes the production rate will necessarily be constrained by other
physical considerations, its availability as a control input should not be overlooked.
Third, production rate selection impacts the system in other ways. In the drilling
problem, the production rate affects the rate of resource consumption (tool wear) and
affects the likelihood of system failure. Production rate can not be made arbitrarily
large without adversely affecting other aspects of the system’s performance. Fourth,
an instance of failure can result in the production of scrap. That is, not every piece
produced is acceptable, and when certain limits are exceeded the risk of producing
unacceptable parts increases. In the drilling problem, this effect is captured in a par-
ticularly simple way. It should be noted that in actual systems this effect may be far

more subtle.

3.3. Problem 2: Multi-tooled Machines

This problem is a simple but realistic extension of the drilling problem. It is not

usually considered in the machining economics literature, although see [Shk1].

Suppose that the drill discussed in the drilling problem is actually multi-tooled.
That is, suppose that several holes are drilled simultaneously. This type of machine
is very common in high volume production systems. The tools are not independent

and must be controlled as a group. Since all the tools are simultaneously engaged in
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the discrete nature of parts is represented. This property imposes certain restrictions
on the way manufacturing system analysis can be carried out, and definitely imposes
restrictions on the control policies and availability of information. Second, the rate
of production is specifically cited as a decision control variable in the sense that the
local or instantaneous rate of metal removal can be controlled. Local means in the
absence of other effects (tool failure, tool replacement, etc.). Although in actual
manufacturing processes the production rate will necessarily be constrained by other
physical considerations, its availability as a control input should not be overlooked.
Third, production rate selection impacts the system in other ways. In the drilling
problem, the production rate affects the rate of resource consumption (tool wear) and
affects the likelihood of system failure. Production rate can not be made arbitrarily
large without adversely affecting other aspects of the system'’s performance. Fourth,
an instance of failure can result in the production of scrap. That is, not every piece
produced is acceptable, and when certain limits are exceeded the risk of producing
unacceptable parts increases. In the drilling problem, this effect is captured in a par-
ticularly simple way. It should be noted that in actual systems this effect may be far

more subtle.

3.3. Problem 2: Multi-tooled Machines

This problem is a simple but realistic extension of the drilling problem. It is not

usually considered in the machining economics literature, although see [Shk1].

Suppose that the drill discussed in the drilling problem is actually multi-tooled.
That is, suppose that several holes are drilled simultaneously. This type of machine
is very common in high volume production systems. The tools are not independent

and must be controlled as a group. Since all the tools are simultaneously engaged in
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the same part, the failure of any one tool can damage the part. The problem now is
to determine the group machining parameters and tool replacement policies so that
good performance is achieved. Note that group replacement is not in general required
(though it may be specified for convenience reasons). Assume all other conditions are
as given in the drilling problem. This includes the availability of occasional wear

measurements.

3.4. Problem 3: Multi-machine Manufacturing Systems

Not many manufacturing systems consist of only one machine, as presented in
the drilling problem. Typically, many machines are involved, with parts visiting
several or all machines before their processing is completed. Although the machines
can be multi-purpose, assume here that they are single purpose. Also assume that
part routes are predetermined and fixed. This forces attention on operational issues
other than scheduling and routing problems. In particular, the usual FMS problems
are not being considered here. It is possible that buffers exist between some or all of

the machinery, but it is not necessary.

The problem is to determine the appropriate machining parameters; e.g., spindle
speeds and feed speeds, and thus the production rate for each of the machines, as
well as to specify tool replacement policies in order to achieve good system perfor-
mance. Assume that each machine is conceptually the same as that considered in the
drilling problem: on-line control of the machining parameters is possible and occa-
sional tool wear measurements for each machine may be ava_ilable. The status of

machines in the system and current inventory in the buffers may also be available.

Several important issues should be noted. For interconnected machines, tool

failure, repair, and tool replacement decisions at one machine can affect other
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machines through blockage and starvation. Furthermore, the costs for repair and
tool replacement may be dependent upon the system status, and the availability of
required workers or other resources. The worth of a part depends in general on how

close it is to completion.

The multi-machine system described here is representative of many manufactur-
ing systems. However, it is possible that other types of machines are in the system as
well, with different characteristics from those presented in the drilling problem. Con-
sideration is restricted here to networks of machines that are conceptually similar to

that described in the drilling problem.

An additional issue arises in the multi-machine problem that does not appear in
the single machine problem. The structure of the controller also needs to be
specified. Consideration should be given to both centralized and decentralized con-
trollers. Each structure has certain advantages and disadvantages that need to be
examined as part of the problem. As an example, a centralized controller may be
difficult to implement for a large system because of the amount of data that has to

be handled and the computational burden.

3.5. Problem 4: The Supervisor’s Problem

A vital component in manufacturing is often omitted from problem formula-
tions. That component is human workers. There are no manufacturing systems
today that can operate for more than a few hours without human involvement.
Many manufacturing systems are completely dependent upon humans. In order to
bring recognition to the importance of human involvement, the next problem

emphasizes human aspects of manufacturing and downplays the role of machines.
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Consider a manufacturing facility (e.g., a-job shop) that employs a group of
workers and a group supervisor. A job is scheduled for the facility. This job will be
viewed as consisting of a single task. This task may be arbitrarily complicated, how-
ever. A group of workers (one or more) is to be assigned to the task. A supervisor is

>responsible for overseeing the task and the workers. The task has associated with it
various goals and economic considerations. Possible goals in_clude minimizing
costs/maximizing profits, meeting schedules (due dates), and minimizing time in shop.
The task also has uncertainty associated with it. The sources of this uncertainty may
include: how big the task is, how long the task will take, how fast the workers will
work, mistaka in task specification, miscommunication between the workers and the

supervisor and mistakes in carrying out the work.

The supervisor’s role is to assess the work requirements for the task and ;assign
workers and other resources to the task. The supervisor is allowed to make occa-
sional inspections to assess the work progress on the task. These assessments may be
imprecise. Furthermore, these inspections are costly or otherwise constrained and
thus constant inspection is impossible. As examples, work progress may be stopped
during an inspection, or inspections might only be possible once a day. Based on the
assessments, the supervisor is allowed to make adjustments to the manpower and
resources assigned to the task in order to influence the work rate. These adjustments

have some costs or constraints associated with them.

The objective of the supervisor’s problem is to develop policies the supervisor
may use to determine when to inspect work progress and how to assign resources

based upon work progress assessments in order to optimize some performance func-

tional.
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When the supervisor is not present, the above problem is related to typical sto-
chastic scheduling and assignment problems. This class of problems has been con-
sidered by many researchers, and a variety of techniques are available for approach-
ing the problems (e.g., dynamic programming, other mathematical programming,
search techniques, heuristics, etc.). Solutions are not necessarily simple, however.
The usual solution to these types of problems is to produce essentially static assign-
ments and schedules. The problem is that this solution fails to capture the role of
the supervisor. In particular, manufacturing environments are dynamic, and the role
of the supervisor is to react to the dynamics in order to keep the facility operating in

a reasonable way.

Fundamental to studying the supervisor’s problem is the construction of a suit-
able model that incorporates the required features. Unfortunately, the traditional
formulations of scheduling and assignment lack the mechanisms needed to capture

the supervisor’s role. A new model is needed.

The supervisor’s problem is an attempt to capture features common to
manufacturing problems that are not typically represented in traditional formulations
of related problems. The supervisor’s problem recognizes the dynamic nature of the
manufacturing environment and thus extends the formulation beyond the usual
static assumptions. The dynamics of the problem are not deterministic; there is
uncertainty associated with the system. Most importantly, the problem recognizes
the role of the supervisor in the manufacturing environment as a decision maker.
Thus, the concepts of on-line control and information feedback are represented in the

supervisor’s problem.
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3.8. Summary of the Problems

The prototype problems presented here are intended to convey aspects of
manufacturing that are not typically considered in other problem formulations. As
such, these problems depart from the traditional views of manufacturing found in the
literature. The problems are also placed in an intelligent manufacturing setting,
where the availability of information and the capability of influencing the system on-

line is assumed.

The control theoretic approach has been previously proposed as a method for
handling intelligent manufacturing problems. However, in order to utilize this
approach, there is a need for new models of manufacturing systems that incorporate
certain desired features as well as adhere to the control compatibility requirements.
The next chapter is devoted to the study of a class of stochastic processes that will
be used to model the problems proposed here. These stochastic processes are funda-
mental to this work. After introducing and describing these processes, the first pro-

totype problem (the drilling problem) will be studied in some detail.



CHAPTER 4

MATHEMATICAL THEORY OF
DIFFUSION-THRESHOLD PROCESSES
AND THEIR APPLICATION

4.1. Introduction

In this chapter, a class of stochastic processes called diffusion-threshold processes
will be introduced and discussed. The name diffusion-threshold is derived from the
- process construction. A diffusion process evolves in time until some boundary (called
the threshold) is first achieved. The attainment of the threshold signifies an event,
resulting in some discrete action being taken; e.g., re-initialization or suspension of
the diffusion process. The time at which the threshold is first attained is a random

variable called the threshold hitting time or threshold crossing time.

The discussion will begin by considering only real scalar diffusions. These
diffusions can be controlled, however. The thresholds will be constant real values.
The objective is to obtain probabilistic descriptions of the threshold crossing time
based on the diffusion and threshold parameters. In particular, the probability distri-

bution function is to be determined, and the moments are to be computed.

Solutions to this problem are difficult in the general case. This work will focus
on the development of some special cases where analytical solutions can be obtained.

The basic result assumes the case of constant infinitesimal coefficients. Some of the

41
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properties of this special case will be developed and discussed.

The result for constant coefficients is extended to the case of deterministic piece-
wise constant coefficients in Appendix B. The results for this case are significantly
more complicated than the constant coefficient case. The piecewise constant
coefficient case represents an approximation to the more general problem of deter-
ministic time-varying coefficients. The determination of the distribution function for

this more general problem is unsolved.

The incorporation of measurements of the diffusion process into the distribution
function is next considered. These results show how process measurement feedback

can be used to update the threshold crossing probability distribution function.

Multi-dimensional extensions of the diffusion-threshold process are next con-
sidered. Higher dimensional problems are generally difficult, but one special class of
problems will be isolated and developed. Although the class appears to be restrictive,

it will be shown later to have application.

A discussion of some reasons for using diffusion-threshold processes in modeling
will follow. Emphasis is placed on the significance of discrete event generation by the
diffusion-threshold process. Interpretations of the various parameters in the process
will be given from a modeling viewpoint. Several categories of general application of

diffusion-threshold models will help to clarify the potential usage of the process.

The chapter will conclude with alternative solution techniques and a discussion

of generalizations of the process and its relation to impulsive control.
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4.2. General Process Description

4.2.1. Preliminary Definitions

+__A__[

Let (Q,F,P) be a probability space. Define R= (-o0,0), R 0,00), and

RT& [0,00]. A history on (Q,F) is an increasing family of s-algebras {F,, t >0} such

4

that for 0<s<t, F, C F;, C F. Define F, \/OF,, the smallest o-algebra containing
2

the history. Note that F, C F.

Let {W(w,t), we Q, teER +} be a standard Brownian motion, (i.e. a Wiener Pro-
cess), separable and measurable with respect to F®B*, where B* is the Borel o-
algebra on R +, and ® denotes the smallest product o-algebra. A standard Brownian

motion is a real valued scalar Gaussian process such that:

P{W(w,0) ‘0 =1 (4.2.1.1a)
E(W(wt)] =0for teR * (4.2.1.1b)
E[W(w,s)W(w,t)] = min( s,t) for s,tER * (4.2.1.1¢)

Recall that for a Gaussian process, the random variables (W('t), ..., W(-t,)) are

jointly Gaussian for every finite collection (¢y,...,t,) ER T,

Since W(,’) is assumed separable, every sample path is continuous, P-a.s.
Without loss of generality, assume W(w,") to be continuous for all w € Q. (Note that
some authors specifically define Brownian motion to have this property.) The explicit
dependence of the process on w will be omitted when no confusion is created: W(t)
and W, = W (w,t).

An important property of Brownian motion is that it has independent incre-

ments ([Lol], [Karl], [Wol]).
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Let {F¥t R +} be the history generated by {W;}. That is

F¥ & (W, 0<s<t} (4.2.1.2)
the smallest o-algebra generated by the set of random variables {W,, 0<s <t}.

Definition: A stopping time with respect to a history {F,} is an extended random
variable T :Q —R ™ such that {w: T(w)<t} € F, for all t e R". See [Bri], [Lol],

[Wol].

A stopping time T induces a o-algebra denoted FT and defined as

FT& o{S€F:SN{w: T(w)<t} € F,,forallt eR M) (4.2.1.3)

Remark: An important stopping time for Brownian motion is

T,; 2 min{t>0: W, ¢ (a,b)} for a <0<b (4.2.1.4)

Definition: A strong Markov process is a process that exhibits the Markov pro-

perty through stopping times. See [Kar2|, [Lol|, [Wol|.
Remark: Brownian motion is a strong Markov process.

4.2.2. Diffusion Processes

" Brownian motion can be thought of as the prototype for a class of stochastic
processes called diffusion processes. Diffusion processes have continuous sample paths

and the strong Markov property ([Kar2|).

Define a real-valued stochastic process {X;, t € R '} by

¢ ¢

X, =Xo+ [b(r, X)d7+ [o(r, X)dW, (4.2.2.1)
0 0
The last integral is a stochastic integral and will in general be interpreted as an Ito

integral, although other interpretations are also possible ([Fl1], [Wol]). Then, under
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appropriate technical conditions on the coefficients 5 and o, {X;} is called a diffusion.
Growth and Lipschitz conditions (called the Ito conditions) on the coefficients are

sufficient to assure existence and uniqueness. These are not necessary conditions,

however ([F11], [Wol]).

The functions b(-,) and of,) will be called the infinitesimal coefficients of the

diffusion, with 5 called the drift coefficient and o called the diffusion coefficient.

The process X; can be thought of as the solution to the stochastic differential
equation

dX, = b(t, X )dt + oft, X,)dW, (4.2.2.2)

although this is not precise except when defined in terms of the above integral equa-

tion. For more information on general diffusions, see [Fl1], [It1], [Kar2|, [Wol].

There are other ways of defining or characterizing diffusions. The above sto-
chastic integral equation will be the operational definition in this wo’ Conceptu-

ally, though, a diffusion is a strong Markov process with continuous sample paths

([Kar2]).
The important relation between the diffusion and its infinitesimal coefficients is

given by the following:

Theorem (4.2.2.1): Let &(-,) and of,) be Borel measurable on R "XR Assume

there exist positive oy and K such that

| b(t,2) | < KVI+22 (4.2.2.3a)
0<ay<oaft,z) < KV1+ 22 (4.2.2.3b)

| b(t,z)-b(t,y) | <K|z-y | ’ (4.2.2.3¢)
| o(tyz)-oft,y) | <K|z-y | (4.2.2.3d)

(These are the Ito conditions.) Then the diffusion process X; satisfies
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lim %E[X,ﬂ -X | X, =z] = b(t,z) (4.2.2.42)
lim %E[(xm “XP|X = 3] = (t,) (4.2.2.4b)

Proof: See [Wol.

Stopping times can be defined with respect to diffusions. A particular stopping

time that will be used in this work is the following. Let A >0 be a real value. Define

TA:Q-»H_Q-+

T, =inf{t>0: X, >4} (4.2.2.5)
Then T, is a stopping time with respect to the history {F¥}. Note that T, is well

defined because of sample path continuity. Also

{Ty = o} = {w: X; <A for all t >0} (4.2.2.6)

which can be a non-null event. One property of Ito integrals with respect to stopping

times that is used implicitly in this work is the following:

Theorem (4.2.2.2): Let X; be a diffusion satisfying the Ito conditions. Let T be a

stopping time with respect to {F¥}. Then the following holds:

(A T) t

[ olr, X)aW, = [1, <rpo(r, X,)dW, (4.2.2.7)
0 0

where 1, is the indicator function for the event 4.

Proof: See [Ell].

This result is quite intuitive, but not trivial.

4.2.3. Controlled Diffusions

The previous results can be generalized to controlled diffusions ([F11], Kryl]).

Define a real-valued stochastic process {X;, t € R +} by
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3 ¢

X, =Xo+ [b(n X,, u)dr+ [o(r, X,, u,)dW, (4.2.3.1)

0 0
where % (*) is a function which takes values in U, where U is a Borel measurable sub-
set of R Assume that u,(-) is measurable with respect to {F}. Then with appropri-
ate conditions placed on the infinitesimal coefficients, the process {X;} is called a con-
trolled diffusion. The diffusions discussed in this work will be controlled, but will

have an especially simple structure.

4.2.4. Diffusion-Threshold Processes

By combining diffusion processes with stopping times based on threshold cross-
ings, a diffusion-threshold process is constructed. Without loss of generality assume
that Xy = 0. Let A >0 denote a positive threshold value, and T, the stopping time
generated by a controlled diffusion X;:

T, =inf{t>0: X, >4} (4.2.2.5)
At time T, a significant event will be considered to have occurred. This will give rise
to the following effects. If T, occurs, the diffusion process will be re-initialized. That

is, Xr,+ = Xy The instance of the threshold crossing can be thought of as causing a

jump in the state space (instantaneous return process [Kar2|). Alternatively, the
threshold crossing can be thought of as causing a killing of the process, and the re-
initialization as a new selection of w € Q, with a time shift of T,. In order for this to
make sense, assume that 5(-,%) and o(",4 ) are functions of ¢ - to only, where ¢, is the
last re-initialization time. In order to simplify this, assume that a re-initialization
results in a resetting of the diffusion clock to zero. Each process segment consisting
of re-initialization to threshold crossing will be called a cycle. Thus, the diffusion-
threshold process generates a sequence of cycles. In this work, the control will be res-

tricted so that these cycles are probabilistically independent, though this may not be
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true in general. An example sample path for a diffusion-threshold process is shown in

Fig. 4.2.4.1.

An additional discrete control action may also be allowed. It may be possible to
force a re-initialization of the diffusion process at particular times prior to the
diffusion achieving the threshold. This forced re-initialization will otherwise have the

same effect as a re-initialization resulting from a threshold crossing.

The goal in studying diffusion-threshold processes is to obtain a probabilistic
description of the threshold crossing time.vThat is, the goal is to determine the pro-
bability distribution function for the random variable T, as well as compute the
moments. Actually, the problem is somewhat more complicated because the
diffusion-threshold process is controlled, and the relationship between the control and
the threshold crossing time is to be determined. That is, it is actually a family of

distributions parameterized by the control that is to be determined. Similarly, in

t T

Fig. 4.2.4.1 Diffusion-Threshold Sample Path
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order to accommodate measurement feedback a family of conditional distributions

given the diffusion state is to be determined.

The general problem of determining the distribution function is hard ([Bl1],
[Me1], [Krt1], [Sil]). It is known that for sufficiently smooth infinitesimal coefficients,
the solution is associated with a partial differential equation called the backward
equation. Closed form solutions to the backward equation are seldom available. In
this work, the general problem will not be considered. Instead, the focus will be on
certain classes of diffusions where the distribution function can be analytically
obtained. The reference [Bll] is a survey of various level (threshold) crossing prob-

lems.

4.3. Processes with Constant Coefficients

In this section, attention will be restricted to a particularly simple class of
diffusions. This restriction will allow closed form computation of the probability den-

sity function and the moments of the threshold crossing time.

Consider those diffusions where band o are independent of X and ¢ and thus
depend only on the control u,. Also assume that u, = u is constant. That is:

¢ ¢

X, =X, + [bdr + [odW, (4.3.1)
0 0
and
b =1b(u),0<b<0 (4.3.2)
o =o0(u), 0<o<co (4.3.3)

Also assume that Xy = 0<A. Under these assumptions, {X;} is a Brownian motion
with drift. As before let T, be the threshold crossing time. Note that in this case the

stochastic integral can be equivalently evaluated as an Ito, Stratonovich, or
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Riemann-Stieltjes integral, though never as a Lebesgue-Stieltjes integral ([El1], [Fl1],
[Wol]).

For diffusions in the above class, it is possible to compute the density function
for the threshold crossing time. A preliminary result is needed first concerning the
probability of a threshold crossing occurring. The following establishes that under

appropriate conditions a threshold crossing will occur almost surely.

Lemma (4.3.1): Given X; = bt + oW;, b6>0, 0>0, A >0 then
P[Ty<o0] =1 (4.3.4)

Proof: It suffices to prove the result for 6 = 0, since

{w: Ty(w)<oo, b >0} D {w: Ty(w)<oo, b=0} (4.3.5)
For b =0,
{w: Ty(w)<oo0} D {w: gpoW,(w)>é}
> fw: @ w)>2)
O {w: }m“; W, (w)=o0} (4.3.6)
But
Plw: §W,=oo} =1 (4.3.7)

is a standard result for Brownian motion. See [Lol]. Therefore P[T, <oo] = 1.

This lemma asserts that under the assumed conditions P[T, = o] = 0. Thus

the distribution function for T, is not defective on R *.

The main result can now be stated.
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Theorem (4.3.1): Given X, =bt +oW;, b(u)>0, o(u)>0, A>0 the probability

density function for T,, denoted ¢, (¢t |0 ; u) is given by:

3 exP{—(f;a—’t ) } ¢>0
0a(t]0;4) ={V2xot? (4.3.8)

0 <0

Remark: This is a previously known result ([Bl1]). However, a proof will be given
here that the author has not previously seen in detail. This proof will allow the
introduction of certain Laplace transforms that are useful for studying threshold

crossing problems. See also [Mel], [Sil].

Proof: The process X, is Gaussian with density function

fx(z; m xp{ (e _tbt) } (4.3.9)

Choose ¢ >0, z> A, but otherwise arbitrary. By the strong Markov property

¢

fx(ziu)= {fx,|x,(3 | A5 u)ga(n]0;u)dn (4.3.10)
where
z -1y = b(t-n)?
Irixalysu) = —2—-}—% exp{“ 252(,_b,,(; 7)) } (4.3.11)

is a conditional Gaussian density. The explanation of the integral equation (4.3.10) is
the following ([Bl1]). By the strong Markov property, what happens before the thres-
hold crossing is independent of what happens after. Further, the time of threshold
crossing can be thought of as partitioning the set of sample paths. Thus the density
function for the process must equal the integral of the conditional densities for
processes with crossing times at n weighted by the density of processes with crossing

times in (n,n+dn). Note that t and n appear only as a difference in the conditional
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density function. Therefore the integral equation is a convolution and Laplace

transform is a viable solution technique. Denote

Wu(s10;58), f(s;z8), fls;2|A,u)

as the Laplace transforms (in t) of the density functions. Then

ials10;u) = Llizn) (4.3.12)
fls;2]A,)
Now
T _ 1 -z bz - b%
fls; z'“)_L{m exp{-zoz—-t}exp{?}exp{z—}}
1 bz
ey exp{?}F(s -a) (4.3.13)
where ([Ab1])
_ 1 - z?
P =L s {35
= -\71;- exp Zf«ﬁ} (4.3.14)
and
a = :z—bf (4.3.15)
Thus
}:(s jZ,u)= exp{-:;}—%s—];—a)—; exp {—?\/2(3—4)} (4.3.16)
Similarly,

f(a j2|Au)= exp{ﬂz;z-—A)}ﬁ exp {j%ﬁv2ia-a D} ' (4.3.17)

where a is given by (4.3.15). Therefore

qal8]0;u)= exp{%}exp {—TA 2(s-a (4.3.18)

Now
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L“{exp{;— 28}}= A 3 xp{z;it} (4.3.19)
V2rot?
from [Abl]. So
A - A? bA - b2t
aa(t|0; )= 3 exv{ }exp{j;} { Uz}
\/2_1r-¢rtE 20t 2
A - (A - be)?
3 exp{ P } t>0
={ V2rot? (4.3.8)
0 t<0

Remark: The result holds for 5 = 0. It does not hold for 4 <0, since in this case

P([T, = oo| > 0. That is, the distribution becomes defective.

Remark: From the proof of Theorem 4.3.1, note that
(4.3.20)

alt1054) =2 /x4 ;)

This has been previously shown to be true for a class of processes by Borovkov. See

[Bl1] for remarks and references.

Remark: From equation (4.3.8) it is easily seen that
lim ¢, (¢t |0;4)=0,62>0,0>0,A>0 (4.3.21)

t—0*
Theorem 4.3.1 generalizes to non-zero initial conditions, where Xy = z¢ # 0.

Given X; = z¢ + bt + oW;, b(x)>0, o(u)>0, A >z, the proba-

Corollary (4.3.1):
bility density function for T,, denoted g, (¢ | zo ; u) is given by:

- (A -z - 0t)
( Zo )}t>0

A - E2)
oP { 207t
(4.3.22)

3

qalt|2z0;8)= Varot?
£<0
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Proof: Simple extension of the proof used in Theorem 4.3.1.

Remark: The corollary follows, since the infinitesimal coefficients don’t depend on
the state. Therefore the state space is homogeneous to the diffusion. The same argu-
ment applies to the time variable as well. Note that

qu(t|zg;u)=gq(t]0;u) (4.3.23)

where a = A - z,.

From the above, the distribution function for the threshold crossing time given

u is immediate. Define the distribution function for the random variable T, by:

LA ~(A - b
={\/§;W% exp{ (Mri}df (4.3.24)

The moments of T, can be evaluated from the Laplace transform of the density

for 5 > 0. However, b = 0 is a special case.

Theorem (4.3.2): For b =0, E[T,]| = .

Proof: (See also [Rol|)

[~ o0
A -A?

E[TA]={nqA(ﬂl0;u)drr=f T exp{zozn}dﬂ (4.3.25)

° V2ran?

Substituting

A A 3

y == dy =24 %y (4.3.26)
ovn 2

into (4.3.25) gives




1
2A2 1,

Although the threshold crossing will occur with certainty, it may take an arbitrarily

long time to happen with significant probability. This is analogous to a null-

recurrent Markov chain.

For 6 > 0, the moments of T, are finite and can be computed from the Laplace

transform:

E(TH] = (U = i

(s0;u)

The central moments follow easily. The first four central moments are:

=0 s 0 =12, (4.3.28)

BT =% (4.3.29a)
var[T,] = Ab—‘;z (4.3.29b)
w= 222 (4.3.29¢)

hy = 15;47“° . 3'2':"‘ (4.3.20d)

where ug and u, are the third and fourth central moments.

Remark: The mean of T, is simply the distance divided by the rate.

The density function g, is known in the statistics literature as an inverse Gaus-

sian density ([Ch1], [Shr1], [Twl]). However, a different parameterization is usually

used. Define the parameters

wlu) = % (4.3.30)
Mu) = —‘g (4.3.31)
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Substitution into the formula for the density g, gives:

u(t|0;u)= Py m{-x(;‘z.t,‘)?} (4.3.32)

Other parameterizations are also possible.

In this work, the original parameterization will be used in order to retain the

explicit dependence on the diffusion coefficients and the threshold value.

Remark: The inverse Gaussian density is not a version of any of the commonly

known density functions.

Properties of the inverse Gaussian distribution and density can be found in
(Chi], [Shrl], [Twl]. However, in each of these works, the statistical viewpoint pre-
vails and the origin of the distribution in terms of threshold crossings in not

exploited.

In the following graph (Fig. 4.3.1) a comparison is made of the inverse Gaussian

density to some other common density functions.

One particularly remarkable result is the relationship between the inverse Gaus-
sian distribution and the normal distribution. Since this result is not well known but

is used in this work, it is presented here parameterized to conform with this work.

Theorem (4.3.3): Let &(z) = P[X<z]| when X ~ N[0,1]. Then

A th 24b -A th
QA(tlo;u)=<»[;\/1t'lI -1] +exp{7}¢ 7\/_‘;[?1]

Proof: See [Chl].

(4.3.33)

The utility of this equivalence is that it allows the use of many known results

for the normal distribution to be used in the analysis of the inverse Gaussian distri-
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/ inverse gaussian
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all functions

/ normal

0.0 1.0 2.0 3.0 4.0 5.0

Fig. 4.3.1 Comparison of Density Functions

bution. In particular, bounds, limiting properties, and computational procedures for

the normal distribution can be utilized.

It is possible to compute the threshold crossing probability for the case where
the coefficients are piecewise constant. Since this is not used elsewhere in the thesis,

the development is presented in Appendix B. However, the following theorem will be

used.
Theorem (4.3.4): Given X, = bt + oW,, 5(u)>0, o(u)>0. Define

M, 2 sup X, (4.3.34)

1€ 0,¢]

Then the joint density of (X;, M,;) is given by:

gX‘,Mt(mV; t’"’) =
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2
2(2u--r,)3 exp{- (2v—n-bt) }exp{‘ 2:2"7 ”} for v>n, v>0, t >0
2

20t
Vero't (4.3.35)

0 otherwise

Proof: See Appendix B.

4.4. Processes with Measurement Feedback

In the previous section, the availability of information feedback was not con-
sidered. Assume now that occasional measurements of the diffusion process are avail-
able. These measurements are to be used to update the threshold crossing probabil-
ity. As will be seen, the threshold crossing distribution @, gives the updated proba-

bility as well.

Theorem (4.4.1): Given

t ¢

X, = [b(u(n))dr + [o{u(r)dW, (4.4.1)
0 0
such that for ¢’ >0
u(r) arbitrary, r<t' (4.4.2)
s(r)=u',t' <r (4.4.3)
b(u') = b' >0 (4.4.4)
o(u')=1d >0 (4.4.5)
and
Xy =2'<A>0 (4.4.6)
Then

Pt'<T,<t|Xp=z' T, >t'|=Q,(t-t'|z' ;u') (4.4.7)
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Proof: From the Markov property

Pt'<T, <t|Xp=1z2', T,>t'|=P[t' <T, <t | Xp = z'|
=P[Tuy<t-t' |Xg=12' ;u']
= Qu(t-t'|z';u") (4.4.8)
This theorem generalizes to the more important case of feedback control where
the control u(t) is F¥ measurable. This class of control laws preserves the Markov
property so the result still applies. In particular, suppose that u, is a Borel méasur-

able function of the current state. That is

s(=1s(X)0<r<t' (4.4.9)
(1) = u(Xy), constant for t' < 7 (4.4.10)

Then
Plt' <T,<t|Xp=z', Ty >t ;u] = Q.(t-t' |2' ;u') (4.4.11)

That is, measurement of the process decouples the past and future, making future
behavior of the process independent of past control laws. Of course, the future con-
trol must be constant in order to apply the results previously developed (or piecewise
constant to use the results of Appendix B). In this work, the future control will gen-
erally be constant up to the time of the next measurement. This can be thought of

as a type of sample-hold control law.

Remark: The result also holds when ¢’ is a stopping time.

4.5. Multi-dimensional Processes

The treatment of multi-dimensional diffusion-threshold processes is generally
even more difficult than the scalar case. One class of processes for which the distri-
bution function can be obtained will be treated here. Although the class might seem

restrictive, it does in fact have application.
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The general theory of multi-dimensional diffusions will not be discussed here. It
suffices to say that most of the scalar concepts generalize to higher dimensions. The
class of processes considered here is sufficiently simple that the general theory is not

required.

Consider the class of n-dimensional processes defined as follows. Let:
W(t) = (Wilt), - . ., Wa(t)] (45.1)
be an n-dimensional standard Brownian motion with independent components where

superscript T denotes transpose;

B(w(t)) = (by(us(t) ), - -+, balua(t) )T, bi(w)20, i=1, ... ,n (4.5.2)

be an n-dimensional drift vector;

olu(t) ) = diagloy(uy(t) )5« -+, onltnlt)))y 0:()>0, i=1,...,n  (4.53)

be an n X n diagonal diffusion matrix;

P TRt (4.5.4)

be the control vector. Define the n-dimensional diffusion process

¢ ¢
X(t) = [b(u(r) Jdr+ [o(u(r) JaW () (4.5.5)
0 0
Next deﬁne a threshold in R" as the union of hyperplanes

Aé U{iemn :z'-=A’-}, A;>0,1=1,...,n (45.6)

i=1
Let T, be the time when the process X; first hits the threshold 4.
Ty =inf{t>0: X; €A} (4.5.7)
For fixed u the distribution function for the threshold crossing time T, can be

computed.



61

Theorem (4.5.1): Given X(¢) and A as above, and fixed control , then:

P[Ty <] =1 (4.5.8)

and the threshold crossing probability distribution function is given by

Q¢(t|0;1‘_)=l-fI[l-QA,.(tIO;u,-)] (4.5.9)

i=1

Proof: Note that under the assumptions the process X(¢) has independent com-
ponents. The first statement follows easily from Lemma 4.3.1 since T, <T,, where
T,, is the threshold crossing time for component i and threshold 4;. To show the
second part observe that

Ty = min(Ty) (4.5.10)
Thus

P[Ty>t] = P[min(Ty,)>t]

= P[(T)>t,i=1,...,n]

= HLP[(TA‘-PH
= 10 - Que 105 w) (4.5.11)
by independence. Therefore
Qu(t1058) =1-TT - @u(t105 )] (4.5.9)

Remark: This result also generalizes to allow the incorporation of measurement
feedback, provided that all measurements are available at the same time. If this is

not the case, the computation becomes more complicated.
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4.8. Application of Diffusion-Threshold Processes

In this section several modeling applications of diffusion-threshold processes will
be discussed. As will be seen, diffusion-threshold processes can be used to model a
variety of phenomena. The applications will not be specific problems, but general
categories of problems. Some of the motivation for these applications comes from
manufacturing related problems, but certainly the applications are not restricted to
manufacturing. More specific applications will be described in following chapters.
An important aspect of each application is that the use of the diffusion-threshold
model allows the problem to be viewed in a broader context than is typically con-
sidered. The ideas of control and feedback enter the problem in a natural way,

allowing the problems to be placed in a control theoretic framework.

One of the most important characteristics of diffusion-threshold processes is the
generation of discrete events by hitting the threshold. Assuming a threshold hit is
followed by a process re-initialization, a sequence of discrete events is generated. If
the cycles are independent, then the durations of the cycles are also independent ran--

dom variables.

The diffusion-threshold process can be thought of as a discrete event generator.
What makes it more powerful than simply assuming a sequence of random variables
is the presence of the underlying diffusion process. This underlying diffusion is a con-
tinuous process whose state represents the ‘“progress” made toward the threshold.
Furthermore, the presence of this underlying process allows control and measurement

feedback to naturally enter the discrete event generation through the diffusion.

Consider the following interpretation. Let the threshold value represent some

critical value, such as the amount of work to do a job, or the extent of deterioration
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prior to failure for some device. The diffusion state then represents the current
amount of work done, or the current extent of deterioration. The drift coefficient
takes on the interpretation of mean work rate or mean rate of deterioration. The
diffusion coefficient represents the magnitude of the uncertainty in the rate of state
evolution. Conceptually, the diffusion-threshold model overlays a deterministic model

and a noisy model to describe the system evolution.

When underlying processes are used to describe discrete events, the whole
viewpoint towards control of discrete event systems can change. In particular, the
essentially binary viewpoint traditionally taken (the event has or hasn’t occurred) is
replaced by a viewpoint that recognizes that the system evolution is in fact continu-
ous. Feedback of progress measurement now makes sense. Furthermore, the
memoryless feature commonly assumed is replaced by a system that definitely
possesses memory. It is asserted that many physical systems have memory. The fol-

lowing application examples and discussions will hopefully clarify these points.

4.8.1. Failure and Reliability Model

One branch of reliability theory is concerned with the following types of prob-
lems: How long will a component last until it fails? What is the lifetime of a com-
ponent? What are appropriate models for the lifetime and time to failure of a com-
ponent? Each of the above questions can be generalized by substituting “system’ for

“component’’.

The approach usually taken is to consider such questions in a stochastic process
setting. In this approach one describes the lifetime and time to failure of components
by random variables. Reliability of components (and systems) becomes in part a

problem of assignment of probability distributions and in part a problem of
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analyzing various properties related to these distributions.

The problem of assignment is a modeling issue. Sometimes a probability distri-
bution can be selected on the basis of underlying physical properties, but often it will
be selected on an empirical basis. In this case a distribution is assigned that fits the
observed data. This assignment problem is at least bilevel. First a distribution fam-

ily is chosen, then the parameters of the distribution function are chosen (estimated).

Reliability theory often places a special emphasis on the following problem.
Given that a component has survived (gone without failure) for some period of time,
what is the probability distribution of its remaining life, or time to failure? The con-
ditional probability density that describes this conditioned behavior is called the
hazard or failure rate function, and plays a prevalent role in the reliability literature.
Formally, the failure rate function is the conditional density of the failure time, given
that the failure time is greater than some value. There exists much work relating the
failure rate function and the physical characteristics of the components being
modeled. Also related to the characteristics of the failure rate function are the con-

cepts of aging and memory. See [Mul|.

There are many devices, components, and systems for which the above formula-
tion and description of reliability is a reasonable one. The claim made here is that
there are other systems for which this formulation is neither adequate, nor entirely
satisfying. Some of the deficiencies and limitations of this usual formulation of

failure models will be examined.

First of all, an empirical formulation is never entirely satisfactory. One would
prefer a description that incorporates at least some features derived from or

motivated by a physical basis. Sometimes this is not possible due to a lack of under-
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standing and then an empirical description has to suffice. This does not mean that

an empirical formulation is not useful.

The second issue is concerned with the use of a single distribution to describe
failure. Some devices are adequately described by one mode of use or operation.
This means that the device is utilized in an essentially uniform way, and thus can be
described by a single failure distribution. Some devices and systems do not readily
admit such a description. For these devices a range of modes of use is possible.
Furthermore, the mode of use influences the rate of deterioration (wear) of the device,
and thus affects the failure rate of the device. When a single distribution is used to
describe the failure probability of such a device, the description is an aggregate one.
A more specific characterization of device failure would be a parameterized family of
distributions, with the parameter a function of the mode of usage. This would be

particularly useful if the mode of usage can be measured and/or controlled.

The third issue is the conditioning used in the failure rate approach. The infor-
mation structure assumed by the usual formulation is that inspection of the device
reveals only that the device has or has not failed. For many devices, it is reasonable
to assume that this is indeed the only information readily available. Measurement of
deterioration may be physically impossible, impractical, or perhaps the measurement
process is destructive. Some devices, though, can be inspected, and the extent of
deterioration and wear can be determined or at least approximated. For these dev-
ices, it would be desirable to use this additional information in determining the pro-

bability of failure in the future.

These various ideas can be unified into a control theoretic view of reliability

that extends the usual formulation of reliability models. Suppose that the mode of



use of a device is in fact a function of some control input. This usage will be inter-
preted as a rate of wear. This same control input also affects the performance of the
system in some way. Examples might be speed of operation or time in use of a dev-
ice or system. Assume that this rate of wéar and performance are conflicting: higher
or better performance necessitates a faster rate of wear. This rate of wear affects the
probability of failure of the device or system. How can a good compromise between
these two conflicts be determined? Suppose that occasional measurements of the
extent of the wear of the device or system are available. This information (feedback)
is to be used in the determination of a control value that achieves an appropriate
(according to some criteria) balance between performance, rate of wear, and probabil-
ity of failure, given some set of wear measurements. This is a controlled reliability

system.

4.8.2. Diffusion-Threshold Model of Controlled Reliability System

The diffusion-threshold process can be used as a model for the controlled relia-
bility system. Let X; represent the wear, or deterioration of the system at time t.
Let the threshold level A correspond to the wear level at which failure or unaccept-
able performance is considered to have occurred. The drift coefficient corresponds to
a mean local rate of wear, and as such will be assumed to be strictly positive.
Assume that the drift coefficient is a function of some control variable u. The
diffusion coefficient will also be assumed to be strictly positive and a function of the

control. Reference [Krtl] also considers the reliability problem in a similar way.

When the coefficients do not depend on the process X;, the deterministic com-

ponent of the wear at time ¢ is given by:
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t
fb( u,)dr (4.8.2.1)
0

and the stochastic component of the wear at time t is given by:

¢

Xo + [o u,)dW, (4.6.2.2)
0
A simplifying assumption would be X, = 0 P-a.s. This is equivalent to saying that

new components have the same wear, assigned the value zero.

A special case of interest results when b and o depend only on » and u is a con-
stant function. This generates a family of distributions for the random variables
{T4t}. The control u corresponds to the mode of usage and is assumed to remain
constant over the lifetime of the component. In this case the parameterized family of
conditional first crossing densities is given by Corollary 4.3.1. Similarly, a parameter-

ized family of failure rate functions can also be calculated:

altlzosn)  qalt|zo;u)

1-Qult|z0;u) },u(nlzo : u)dn (4.6.2.3)

r(t]ze;u)=

The use of the inverse Gaussian density as a reliability model has been previ-
ously proposed. See [Chl|, and [Shrl].‘ However, these refereﬁces do not consider the
underlying diffusion-threshold model, and instead focus on the use of the inverse
Gaussian distribution as an empirical model. The concepts of control and feedback
are not considered. Under the assumption of constant distribution parameters, esti-

mators for the parameters are developed. See also [Twl] for estimator properties.

In [Ch1], the failure rate function associated with the inverse Gaussian distribu-
tion is examined. Important properties of this failure rate function are nonmonotoni-
city and nonzero asymptotic tail. Comparison is made to the lognormal distribution

in particular. The authors in [Chl] conclude that the inverse Gaussian distribution is
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a reasonable reliability model for many systems, including those with early failure

where an increasing failure rate is not appropriate.

In [Shrl], the inverse Gaussian distribution is considered for a tool life model.
The authors show that this distribution gives a slightly better fit than the lognormal

distribution for a specific tool life data set.

In none of these references is the choice of the inverse Gaussian distribution
strongly motivated by its relation to the diffusion-threshold model. The authors of
[Chl] do mention this connection, however. In this work, the suitability of the
inverse Gaussian or other threshold crossing distribution is regarded as arising from
the underlying diffusion-threshold processes which generates them, and the natural

connection between wear and these processes.

4.8.3. Server Models

Queueing theory is concerned with the modeling of the interaction of servers
and customers, and in particular the waiting of customers when services must be
shared. In modeling this type of problem, queueing theory typically uses a proba-
bilistic description of customer arrivals and service times. Queueing theory, formu-
lated in this way, represents an important modeling technique for many types of sys-
tems: communication networks, computer systems, customer service facilities. See
[Br1] and [KI1] for detailed discussions of queueing theory, and [Crl] for a controlled

queueing bibliography.

Sometimes queueing theory is extended into an area where it is not evident that
the above formulation represents an appropriate system description. One of the
deficiencies that arises is the service time description. The purely probabilistic

description is devoid of underlying structure. That is, what are the dynamics of the



server that give rise to the service time distribution? If the probabilistic structure of
the service time can be generated based on the dynamics of the server, it would allow
the introduction of additional information, parameters, and controls regarding the
server into the problem that are not usually considered. The use of a service time
distribution to describe a server system results in the following viewpoint: either the
service is or it is not complete. No significance is attached to a service that is par-
tially completed. Knowledge of partially completed work does not normally enter the
information structure of the problem. Therefore the conditional distributions of the

service time given the amount of partially completed work are usually not considered.

In many actual service situations, the rate at which work is done by the server
is influenced by many factors. These factors may include effects associated with the
queueing system such as type of service required, number of customers waiting for
service, and the performance of other servers in the system. Some influences may be
thought of as control inputs: speed control of a machine or influencing an employee’s
work rate through various motivational schemes. For many systems, the rate at
which work is done is a natural input for influencing the system. This rate may have
a deterministic or stochastic interpretation. The deterministic interpretation would
be a true work rate; the stochastic interpretation would be a mean work rate. How
can this be incorporated into a probabilistic description of the service time? One
approach would be to parameterize the service time distribution, and let the parame-
ter be some (possibly random) function. The problem with this approach is deter-
mining a reasonable distribution and a method of parameterizing it which preserves

the intuitive sense of work rate.



70

In some systems, it is possible to measure or approximate the amount of work
required for a particular service in advance. When such knowledge is available, it
would be desirable to include it in the service time description. Furthermore, it may
be possible to determine the amount of work remaining on a particular service, while

the service is in progress. This should also be incorporated into the model.

For some systems, it would be appropriate to extend the usual formulation‘_of
queueing problems so as to create a truly controlled queueing model. This model
would include descriptions of the dynamics of the underlying service mechanisms.
From these descriptions, the probabilistic structure for the service times would be
determined. These models would also admit the concepts of partial work completion

and the control of the rate of work.

4.8.4. Diffusion-Threshold Models of Servers

The diffusion-threshold process is now proposed as one model of a service
mechanism. The intention is to model the underlying dynamics of a server by a
diffusion with threshold and show that this formulation allows for the inclusion of
work progress feedback and rate of work as an input. Let the diffusion process X,
correspond to the work completed on the current service at time t. Let the threshold
value A >0 correspond to the amount of work required to complete the service.
ReachingvA corresponds to completing the current service. At the completion of a
service the process either resets or sojourns at A for an arbitrary time (until the next

customer arrives).

The coefficient 5 takes on the physical interpretation of being the (local) mean
work rate. This is presumed to be a function of some control variable u. The

coefficient o represents the magnitude of the uncertainty in the work rate, and the
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magnitude of uncontrolled influences on the server.

Suppose u is taken to be constant for the duration of each cycle of the
diffusion-threshold process. This means that the rate of work for each service can be
varied, but not in the middle of a service. Thus the service times are associated with
the family of random variables { T{}. The distribution of T, is now parameterized by
« and can be conditioned on the state of the current task X, =z < A. This new
model now admits the concept of a controlled queue as described before. The control
input is a (mean, local) rate of work and information feedback may include the state
of the current service which is the amount of work completed on the current service.
Presumably, a controller could use this information and capability in order to achieve
some level of performance, subject to some constraints. [Crl] includes a list of refer-
ences where service control is considered. However, none of the listed works presents

a viewpoint similar to the one given here.

The service time distribution generated by the diffusion-threshold model can be
compared to other distributions commonly used to describe service times, in particu-
lar exponentially distributed service times. For the diffusion-threshold model the pro-
bability of two events occurring “very close” (relative to the mean) in time is essen-
tially zero. This is not so with the exponential distribution. For many physical sys-
tems, it is not likely that a service can take place arbitrarily fast. For these systems,
then, the diffusion threshold model is a potentially more realistic model. Also, the
diffusion-threshold model is not memoryless, and thus better describes service
mechanisms with nearly deterministic service times. Many operations in manufactur-
ing are of this type, particularly repetitive operations found in production and assem-

bly systems.
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4.8.5. System Failure Models

This application represents an extension to the application discussed in Section

4.6.1.

Consider the problem of trying to model the failure of systems, where attention
is no longer restricted to individual components making up the system. In the spirit
of Section 4.6.1, suppose also that the system admits a range of modes of usage or
operation. Each mode of system usage causes each of the components to be subjected
to some individual mode of usage. As before, the component’s failure rate depends
upon the mode of usage. Is it possible to formulate a failure model of the entire sys-
tem that captures these features? Assume failure of the system to be indicative of
the failure of any component which causes the system performance to degrade to an
unacceptable level. Redundant systems or systems with intermediate degradation are
not considered here. Two modeling approaches using diffusion-threshold processes

are proposed.

The first approach is to use a scalar diffusion-threshold model as a reduced
order, aggregated failure model. The representation is essentially the same as before,
although the physical significance of some parts of the model may now be obscured.
Since a scalar random variable is being used to describe the aggregated wear of the
system, there may no longer be a physically meaningful relationship between the
diffusion state and the system. Of course, the threshold value suffers in a similar

way: the assignment of the maximum aggregated wear is no longer a simple problem.

There is a second approach that preserves some of the physical significance of
the models in Section 4.6.2. Suppose the scalar diffusion assumption is removed by

allowing the diffusion to be a vector process in R" and the threshold to be a boun-
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dary in R". Assume that each component of the diffusion represents an actual sys-
tem component. In this case, the boundary might be a union of hyperplanes, as
described by equation (4.5.6). Failure is indicated by the diffusion achieving any part
of the threshold boundary. Since redundant components are not considered here, only
those components whose failure will result in a system failure have an associated
diffusion component and threshold hyperplane. Each component of the system has
an associated component in the vector drift coefficient. The diffusion coefficient is
now a matrix expressing the interaction of all the components of the system. Wear
measurements consist of a vector of wear measurements, one for each component of
the system. For the particularly simple case of full decoupling the probability distri-
bution is given by Theorem 4.5.1. This corresponds to independent component wear

in the system, but equal capability for causing system failure.

4.6.86. Project Models

This category can be thought of as an extension to the service models discussed

in Section 4.6.3.

Consider a project or job requiring the cooperation of workers, and perhaps the
coordination of equipment, resources, deliveries, etc. The completion of the project
requires the completion of a certain amount of work. How can the progress of the
work, the rate at which work is done, and the effect of uncontrolled or unanticipated
influences on the project be modeled? A deterministic model is not generally correct;
this is substantiated by practical experience and observation of the progress of several
large projects, although some projects are less likely to have large variations in their
schedules than others. What is required is the development of a model for the pro-

greﬁs of projects that includes stochastic effects and the impact of work rate
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influence, and from which the probabilistic descriptions for the completion time for
the project conditioned on the current state of the project and the amount of

resources committed can be computed.

A diffusion-threshold process is again proposed as a model. Let the diffusion
state X;, represent the work completed at time ¢, and the threshold A represent the
amount of work necessary to complete the project. As an aggregated variable, the
scalar random variable X; may not have a simple physical interpretation. Let the
control represent the amount of resources committed to the project, effectively con-
trolling the work rate on the project. Thus the drift coefficient would normally be an
increasing function of the control. The control may affect the diffusion coefficient as
well, reflecting the coordination problem associated with large task forces. Projects
with large suspected variance in their schedules can be accommodated by suitable
selection of the diffusion coefficient. Projects with large diffusion coefficients

correspond to risky projects.

An interesting situation in this model is that X; < 0, or locally decreasing X;
has a physical interpretation. Observe that errors or mistakes in the project cause a
possible increase in the amount of work required to complete the project. This is no

doubt familiar to the reader.

4.7. Relation to Other Work and Generalizations

The diffusion-threshold processes discussed in this chapter admit several exten-
sions, some of which have been considered by other authors. Furthermore, there are
related problems which have also been previously proposed by other authors. This

section will try to briefly summarize some of this existing work.
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The use of Brownian motion and diffusions to model various physical
phenomena is not new. In fact, Brownian motion was first an observed physical pro-
cess and then later a mathematical process. The deep mathematical properties of
these processes offer several advantages to the modeler looking for ways to capture
certain types of uncertain, erratic, noisy, or chaotic behavior. Consequently, the list

of applications that have been considered is far too long to attempt to list here.

The concept of controlled diffusion processes is more recent. The references
[Kryl] and [Fl1] present many of the basic ideas of controlled diffusions. However,
both of these references, and in fact most of the existing literature on controlled
diffusions assume continuous perfect measurements of the process and continuously
variable control. These assumptions may be overly restrictive for some applications.
Unfortunately, departure from these assumptions can cause many complications. In

this work, these assumptions will be relaxed. See also [Bel|.

Most references on Brownian motion and diffusions include discussions on stop-
ping times, particularly exit times. The threshold crossing times considered in this
work are exit times. [Kryl|, (Fl1| and [Bel| discuss the relation between stopping

times and controlled diffusions.

Another class of problems that are related to this work are inspection problems
(called surveillance problems by Savage). See [Anl|, [An2], [Sal|. In these problems,
the control is usually of the discrete type: decide when to observe the process; decide
when to re-initialize the process. The stochastic process being observed is often
Brownian motion (though not always) but is otherwise usually not influenced. These

problems are just examples of the very large class of stopping time problems.
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In most of the literature, including the references cited here ([Kryl|, (F11], [Bel])
the controlled diffusion is placed in a stochastic optimal control setting. The solution
techniques generally rely on solving non-linear partial differential equations that arise
from dynamic programming methods. By taking this approach, more general
diffusions than those considered in this work can be handled. However, solutions are
extremely difficult to obtain. Part of the motivation for the work here is to explore

reasonable alternatives to solving partial differential equations.

There is an alternate method to solving PDE’s, however, that still allows a
fairly general class of diffusions. The method uses boundary layer methods to
approximate the probabilistic descriptions of the threshold crossing times. See
[Mat1]. The requirements for this approximation technique are that the diffusion
coefficient be small enough. For many applications, this is in fact the case. This
technique represents a good alternative to solving PDE’s, and yet accommodates

more general diffusion processes.

An important extension to the diffusion-threshold process is the inclusion of
arbitrary jumps in the state. The diffusion-threshold process allows for a re-
initialization action. This can be generalized to arbitrary (and random) jumps under
the category of Impulsive Control [Be2]. These authors consider many examples of
processes where both coefficient influence and impulsive control actions are permitted.
Some of the applications considered in their work are related to applicatiéns dis-
cussed here. However, these authors prefer to place the problems in a quasi-
variational setting. This necessitates the solution of a nonlinear partial differential
inequality, which is very difficult. Furthermore, these authors generally assume con-

tinuous exact measurements and continuously variable controls. Nonetheless, [Be2
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has many common features with the work presented here. The quasi-variational

approach will be used for one of the problems considered in this thesis.



CHAPTER 5

THE DRILLING PROBLEM

5.1. Introduction

In this chapter, one manufacturing problem will be considered in some detail
using the control theoretic approach. This problem is called the drilling problem,
and has already been introduced in Chapter 3. Some simplifying assumptions will be
made here in order to facilitate the presentation of the essential concepts. Crucial to
the development of the drilling problem is the use of diffusion-threshold processes to
model tool wear. The use of this modeling method allows the control theoretic

-approach to be taken.

The drilling problem is properly a machining economics problem. However, the
features of the problem and the modeling and control methodologies used in this
work are considerably different than the usual machining economics approach. The

control theoretic approach imparts a distinctively different viewpoint.

Actually, two different approaches will be considered in this chapter. The first
approach will use the diffusion-threshold model of tool wear, but will otherwise
assume a traditional control policy and information structure. The second approach
will explore the potential of additional control capability and the significance of tool

wear measurement feedback. An example problem comparing both approaches will

78
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be discussed in the next chapter.

The drilling problem is intended as a prototype manufacturing problem. The
specific use of a drilling operation in this problem is only to facilitate the presentation
of the concepts and is not meant to imply a restriction of the ideas to that type of
machining operation. The features of the problem have been designed to reflect
important characteristics of manufacturing systems. In an actual system, some of
these features may differ, typically resulting in a more complex problem. Further,
there are important manufacturing issues that are not represented in the drilling
problem. Nonetheless, the problem is an attempt to convey how the features of
manufacturing problems affect the kinds of problem approaches that can be taken,

and how new approaches can arise from the intelligent manufacturing setting.

5.2. Problem Description

A description of the drilling problem has been previously presented in Chapter
3. Only a brief review of the problem, along with more detailed discussions concern-

ing specific features and assumptions will be given here.

A drill is used in a fixed operation carried out repetitively on parts. A fixed
volume of material is removed from each part. As metal is removed from the parts,
the tool wears. The tool wear mechanism is only known empirically, and variation in
tool life is evidént. As the tool wears, it eventually breaks or becomes unacceptable
and must Abe replaced. Failure of the drill necessitates replacement, but can also

cause damage to the part being machined.

The production of parts results in profit and thus the profit earned is related to
the production rate. However, there are other factors affecting the profit, such as

tooling costs and scrapped parts. Tool replacement is costly in terms of time and



material. Tool breakage is in general more costly than simple replacement, due to

possible part damage and the unplanned replacement that results.

Tool wear measurements may be occasionally available. If they are available,
these measurements are to be used in the determination of operational policies. If
tool wear measurements are available, they are only available when the tool is disen-
gaged from the part. Tool wear measurements are not available during the drilling

operation.

Certain features of the drilling problem are common to many manufacturing
problems. These features will be briefly reviewed here. The discrete nature of parts
is represented and imposes restrictions on the problem. The rate of production is
specifically cited as a decision control variable. Tool failure affects the quality and
quantity of the production output. Production rate and tool failure rate are not

independent phenomena.

The objective in the drilling problem is to determine policies for tool replace-
ment and for feed speed selection to obtain a suitable tradeoff between production

rate and tool failure rate.

Appendix A has a description of the drilling terminology used in this work.
Drilling is a machining process with twé parameters: feed speed and spindle speed.
For this work, the drilling problem will be reduced to a problem with one indepen-
dent parameter. This parameter will be the feed speed. The spindle speed will be
assumed to vary in proportion to the feed speed in order to maintain a constant
ratio; i.e., the feed is assumed constant. This assumption simplifies the analysis, but

does not represent a limitation of the model or the approaches used.
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The term tool failure will mean breakage or wear past an unacceptable limit.
Breakage and in particular early breakage of the tool is arguably a discontinuous pro-
cess, and thus should be modeled by processes that can accommodate discontinﬁities.
~In this work, all tool failures will be aggregated with the understanding that early
breakage (due to defective tools) is a relatively rare event. This is true of most pro-

duction situations.

Feed speed control, tool replacement decisions, and tool wear measurements will
be constrained depending upon the control approach being taken. For the .age
replacement policies, the feed speed will be fixed and tool replacement will be based
upon the number of parts drilled. For feedback policies with variable feed speed, tool
wear measurements will be available prior to starting a part. At that time, the tool
may be replaced, and/or the feed speed may be changed. The feed speed will remain |

constant throughout the operation on a part.

In all cases, an instance of tool failure will cause the current part to be
scrapped. Part repair will not be considered in this work. Furthermore, tool failure
will be considered to be immediately detectable. This is not a hard assumption, but
it simplifies the analysis. A tool replacement must occur after a tool failure before

continuing.

There are many possible performance measures that can be used for the drilling
problem. In fact, even if a single performance measurement is specified, there are
usually secondary considerations that are important but not represented in the pri-

mary measure.

In this work, the primary performance measures will be economic. In particular,

cost per time and cost per part will be used to evaluate control strategies. However,
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there are many secondary considerations that may be significant in a manufacturing
setting. These include: amount of scrap produced, frequency of tool failures, fre-
quency of tool changes, etc. The importance of these secondary considerations is due
to the burden they may place on the manufacturing system through resource require-
ments, additional congestion, or disruption. As an example, frequent tool changes
may necessitate greater tool handling capability and greater tool setup capability.
This is over and above the pure cost of the tool and tool change. Although the
economic issues are important, they are not the entire picture. Unfortunately, some

of the existing literature in machining economics ignores this point.

5.3. Survey of Related Work

Aspects of the drilling problem have been considered by many authors. The
work of Taylor [Tayl| is generally considered the first extensive treatment of tool
wear and machining economics. One result of his work is the Taylor tool life formula

relating tool life to cutting speed.

Much of the work after Taylor presumed that the tool life is deterministically
related to the cutting speed and other machining parameters, using variations of the
Taylor formula. Under the assumptions of a deterministic relation, simple calculus
can be used to arrive at optimal machining parameters for any of several criteria. See
also [Drl] and [Hil] for examples. Many refinements and extensions are possible,
including the consideration of multiple machines, constraints on machining parame-
ters due to finish and power requirements, and tool geometry. Usually these treat-
ments assume that the tool is changed at the end of its life, as given by the tool life

formula, and that tool breakage and scrap parts do not occur.
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More recent work in the area has recognized the stochastic aspects of tool life
and the impact that tool life uncertainty has on machining operation productivity.
In these works, tool life is viewed as a random variable whose distribution is
parameterized by cutting speed and other factors. Some researchers have assumed

particular distributions, while a few have only specified moments of the tool life ran-

dom variable. See [Del], [Erl], [Kel], and [Shk1].

The machining economics problem, whatever the assumption about tool life,
usually considers as performance measures production rate, cost, or time to produce a
part. Various types of constraints have been proposed for inclusion in the problem.
Several things are not usually considered, however. The concept of information feed-
back and on-line control of machine operation is almost never considered. As a
result, most machining optimization problems have assumed constant machining
parameters. On-line variability of machining parameters based on tool wear meas-
urements and other information is not usually considered. Policies for tool change
are invariably defined in terms of information such as the number of parts machined,
or change upon failure. Costs due to scrap and damage, or the status of other
machines in the manufacturing system are not considered in tool replacement policies.

Most importantly, tool wear information is not incorporated into the policies.

5.4. The Tool Wear Subproblem

The problem of tool wear is central to the drilling problem. Without an
appropriate model that captures the essential features of tool wear, the drilling prob-
lem cannot be readily approached in a control theoretic way. Consequently, tool
wear model development is very important. Some background material is presented

in this section that summarizes existing approaches to the tool wear subproblem.
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The tool wear problem has been the subject of much study, and an extensive
body of literature reflects this. There are at least two views of the problem that can
be taken. The first is to explain on a physical basis the mechanisms of tool wear.
The attempts in this area often lead to very complicated formulations for tool wear
as a function of several variables. See [Dal|, [Kanl] and [Kol] as examples. Unfor-
tunately, these models are not complete, describing at best the normal evolution of
some aspects of tool wear under restricted conditions. Since the manufacturing
environment is uncertain, and the information requirements of these models can be

considerable, their current utility in the machining economics problem is debatable.

The second view is that usually taken in machining economics. Precise descrip-
tion of tool wear phenomena is forgaken for empirical formulas that are easier to use,
and that capture the essential character of tool life as a function of machining condi-
tions. The empirical formulation of tool wear can be considered either deterministi-
cally or stochastically. Deterministic formulations are prevalent in the earlier litera-
ture, but more recently the stochastic nature of tﬁol life has been recognized. The
stochastic formulations usually assume that the deterministic formulas properly
represent mean values of tool life. References [Del|, (Hi2|, [Kel|, and [Wal] give vari-
ous viewpoints of the tool wear problem. Also, the references on machining econom-

ics usually give some tool wear model.

The stochastic formulation brings with it another level of complexity. If tool
life is a random variable, its distribution must be specified. Actually, a family of dis-
tributions parameterized by machining conditions must be specified. Many distribu-
tions have been proposed for tool life including exponential, normal, and lognormal.

In general these distributions are arrived at from purely empirical considerations, and
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not from any physical basis. This is not an entirely satisfying situation. It should be
mentioned that some authors have avoided this problem by parameterizing only the
moments of the tool life (usually the mean and variance) and not specifying a distri-

bution.

It is asserted that a new model of tool wear is required in order to accommodate
the intelligent manufacturing approach. This new model must incorporate certain
features. The stochastic behavior of tool life must be recognized. The influence of
machining conditions must enter into the model in a clear way. The distributions
should arise from physical considerations of the process. The results of the model
should agree with observed behavior in a statistical sense. This leads to the develop-

ment of a diffusion-threshold model for tool wear.
5.5. Diffusion-Threshold Model of Tool Wear

5.5.1. Model Formulation

The diffusion-threshold process discussed in Chapter 4 is now proposed as a
model for tool wear in the drilling problem. The following analogy is made. Let the
diffusion process {X,} represent an aggregated wear variable for the tool. It is under-
stood that all of the categories of tool wear are somehow represented by a single vari-
able, and X; therefore represents the magnitude of wear at time t. The feed speed
will be regarded as the control input u;, with the drift coefficient 5(-) being a positive
increasing function of the feed speed. The drift denotes a.local mean rate of wear.
The diffusion coefficient is the square root of the local rate of change of the variance.
Let the maximum allowable tool wear correspond to tﬁe threshold A. When the wear

reaches the threshold, the tool is considered unacceptable and must be replaced by a



new tool. The new tool is assumed to have zero wear. This is the re-initialization
action. Likewise, the decision to replace the tool results in a re-initialization prior to
reaching the threshold. The decision times will take place between parts; i.e., just
prior to the start of a new part. At these decision times, denoted {t;}, information
concerning drill wear may become available. In this work, assume that exact measure-

ments of the drill wear, X, , become available if tool wear feedback is allowed.

5.5.2. Rapproachment with Taylor Tool Life Formula

For the drilling problem and other tool wear problems, a comparison can be
made between the diffusion-threshold model and other more usual models. A com-
parison to the (simple) Taylor tool life formula [Drl] will be considered. The Taylor
formula, in use for many years, is a strictly empirical formula for calculating tool life.
As is shown in Appendix A, for fixed feed the Taylor formula may be written as

uT" = C, (5.5.2.1)

where:
A
u = the feed speed

T £ life of tool

n = an empirical constant dependent upon the part material, tool type, and

machine type

Clé an empirical constant dependent upon the part material, tool type, and

machine type

Assume that replacement is indicated by having reached a certain level of wear
that is fixed for a given tool type. Let this level of wear be denoted by W and let the

wear of the tool at time ¢ be denoted w(t). Also, define the instantaneous feed speed
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by u(t). If the tool life given by the Taylor equation is interpreted as a mean value,
a diffusion threshold model with the same expectation can be constructed. Let the

drift coefficient be given by

w i
b(u) = —Fu" (5.5.2.2)
C{‘
so that
b 1
Elw(t) = [—u(n)"dr (5.5.2.3)
0 01;

When the feed speed is fixed at a constant value u, the expected value for the the

tool life can be computed as

1
_w _|a] 5.5.2.4
EIT) = 305 “[7] ( )
in agreement with the Taylor tool life formula. No restrictions are placed on the

diffusion coefficient ¢ by the Taylor formula.

In this work, ¢ will be assumed constant. Note however that this does not

imply that the variance of the tool life is independent of the feed speed.

5.5.3. Explanation, Justification and Limitations of the Model

Some explanation of the diffusion-threshold model of tool wear is required in
order to justify its use. Further, the restrictions of the model need to be presented so

that limitations on its use are understood.

The diffusion-threshold model of tool wear is motivated by several issues. First,
the difficulty associated with trying to model tool wear deterministically using physi-
cal laws. This difficulty arises from the nature of the tool wear process: it is complex

and chaotic, and it takes place in an uncertain environment with unmeasurable con-
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ditions. These statements are particularly oriented toward the production environ-
ment. Second, there are observed differences in tool wear evolution under similar
operating conditions. Third, the system has a hybrid characterization; that is, there

is tool wear and there is tool failure.

There are several goals that the modeling effort should try to achieve, if possi-
ble. First, the model should capture a suitable analytic dacriptioﬁ of system evolu-
tion. This requires presenting an appropriate view of the phenomena (macroscopic
vs. microscopic) and that the level of detail incorporated into the model be compati-
ble with the intended use of the model. Second, the model should use an established
mathematical base, and the model should be in some way tractable to be of value.
Third, the model should have a certain intuitive appeal, although this ié hard to
quantify. Fourth, the model must be appropriate for use with the control theoretic

viewpoint.

The important characteristics of the diffusion-threshold model are as follows.
Brownian motion represents the prototype chaotic system or system driven by noise.
Without deeper understanding of the problem, Brownian motion is often a reasonable
first approximation for systems that exhibit chaotic or noisy behavior. Diffusions are
then the natural generalizations of Brownian motion. Properties of diffusions that
facilitate mathematical analysis include the strong Markov property and continuous
sample paths. Furthermore, the diffusion-threshold model has a certain intuitive
appeal: a system evolves in time until some limit is reached. Finally, there is some
agreement between experimentglly observed tool wear processes and the diffusion-
threshold model. This is evident in the similarity between the inverse Gaussian den-

sity and densities that have been proposed for tool life without any physical basis;
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e.g., lognormal.

The diffusion-threshold model also invites extension to more general diffusions
with more complex coefficients. This does introduce computational difficulties, how-
ever. The model is thus extensible as additional properties of tool wear are

discovered or proposed. This extensibility is very important.

The model is not without limitations, however. Brownian motion (the
mathematical process) is an abstraction and not a true characterization of the
phenomena at the tool/part interface. Brownian motion is too erratic (since sample
paths have unbounded variation) to truly represent a physical system. The Markov
property inherent in diffusions is probably not valid for tool wear. As an example,
material properties can depend on past histories and not just on current conditions.
Unfortunately, deviation from the Markov assumption is hard to handle mathemati-
cally. Negative excursions of the diffusion are possible, but this has no physical
interpretation in terms of tool wear. However, the probability of sustained negative
values will in general be very small. This is similar to assuming Gaussian distribu-
tions for random variables that in fact are constrained in magnitude. The lack of
known properties for the diffusion coefficient is disturbing, but not really a model
limitation. It is more a limitation of available data. Finally, it is not clear whether
or not the model captures certain types of catastrophic failure correctly. Since the
diffusion process is continuous, it cannot literally represent jump phenomena. How-
ever, it can be argued that small jumps are still accommodated in a probabilistic
way. Whether or not large jumps are accommodated probabilistically depends upon
the diffusion construction (the coefficient selection). Generally, the model will not be

assumed to represent early tool failure due to defective tools or parts. It is possible
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to extend the model to allow for random reinitializations. This extension may cap-

ture premature catastrophic phenomena.

5.8. Age Replacement Policies for the Drilling Problem

In this section, traditional control policies for machining economics problems
will be considered. Traditional policies assume a fixed feed speed and replacement of
the tool after either a tool failure or a predetermined number of parts has been pro-
cessed. In other words, replacement takes place after a fixed machining time; hence
the name age replacement. The diffusion-threshold model of tool wear will be used in
this section. Furthermore, the features of the drilling problem will remain as
described. This results in a problem formulation and solution method that is different
than typical machining economics problems. Therefore, even though traditional poli-

cies are studied in this section, new results are obtained.

The section will begin with a discussion of age replacement policies for
diffusion-threshold processes, and a discussion on renewal theory. The application of

these ideas to the drilling problem specifically wiil follow.
5.8.1. Diffusion-Threshold Processes and Age Replacement Policies

Under age replacement policies, the evolution of the diffusion-threshold process
is influenced by selection of the variable u, and by allowing the process to be reini-
tialized after a certain age has been reached. In this section, all reinitializations will
be to zero. A control policy = consists of a pair (u,t) where u determines the
infinitesimal coefficients in the diffusion and ¢, is the replacement age. If the current
cycle reaches age t, without a threshold crossing, the cycle is terminated. If the
threshold is reached prior to ¢, then that event terminates the cycle. This class of

policies will be denoted age replacement, but the availability of the selection of u
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generalizes the usual use of this term.

In the analysis of the drilling problem under age replacement policies, it will
become convenient to alter slightly the policy definition to an equivalent description.

The reasons for doing this will become evident.

The probabilistic structure of a cycle under an age replacement policy can be
developed. Assume an age replacement policy r = (u,t,). Let T be the random dura-
tion of one cycle under this policy. Then

T = min(Ty ) (5.6.1.1)
where T, is the threshold crossing time and ¢, is the replacement age. The distribu-

tion function F7 is then given by:

Q.(t]0;u) ift<t,
Fi(t) = {1 ‘ if t>¢, (5.6.1.2)
where
¢ (A - hn)2
Qu(t]o;u)=] 4 3 m{ﬁgz—:—")-}dn (5.6.1.3)
* Vamon?

is just the threshold crossing probability distribution. Note in particular that

PT=t]=1-Q,(|0;u)>0 (5.6.1.4)
so that T = ¢, with positive probability.

The expected value of T can be computed from the above:

"

pr = E7T]= [HdFF(t) = [1dQa(¢10; ) + (1 Qu(t 05 4)

t

T A ~(4 - bn)? 2 A —(A - bn)?
=f g exp{JTﬂn)}dq+ t,'f 3 exp{ ( 202"11) }dﬂ(5.6.1.5)
° V2ran? Y V2ron?
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5.8.2. Renewal Processes in the Drilling Problem

The drilling problem, along with many other manufacturing processes, can be
described in terms of a cyclic sequence of events. The nature and number of events
as well as their temporal relationship in any given cycle may be random, however.
Furthermore, more than one cycle of events may be present. In the drilling problem,
two obvious event cycles are the part processing cycle and the tool cycle. Sometimes
it is possible to identify a sequence of cycles that may be adequately modeled as pro-
babilistically independent and with identically distributed duration. For the drilling
problem under age replacement policies, tool cycles can be so modeled. When such a
sequence is available, and is such that it can be used to describe the long term perfor-
mance of the system, then a renewal theory approach is suggested. Placing the prob-
lem in a renewal setting has the great advantage of allowing the use of several power-

ful theoretical results.

5.6.3. Application of Renewal Theory

In this section several key renewal theory results will be applied to the drilling

problem. For a more complete treatment of renewal theory see [Fel|, [Karl], [Rol].

Let {T;} be the set of tool cycle durations. That is, the random variable 7T, is
the duration of the i" tool cycle. Assume that these random variables are indepen-
dent and identically distributed with common probability distribution function FZ(-).

Let

E(T;|=pr < o (5.6.3.1)

Define the set of random variables {S,} by

Se=0 (5.6.3.2)
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Sp= 2T (5.6.3.3)
i=1
The random variable S, then corresponds to the cumulative time of the first n tool

cycles, or the time at which the n** tool cycle completes. The first cycle is understood
to begin at ¢t = 0.
Define the counting process {N;: ¢t >0} by
N, = max{n>0: 85, <t} (5.6.3.4)
The random variable N, is the number of complete tool cycles that have occurred up
to time ¢. Note that the cycle on-going at time ¢ is not counted unless ¢ is its com-

pletion time. The process {NV,} is a renewal counting process.

Define the function m: R " =R ™ by
m(t)=E[ N ] (5.6.3.5)
This function is the renewal function. The value of the renewal function at time ¢ is

the expected number of completed tool cycles that have occurred by time t¢.

The advantage to be gained by placing the drilling problem in a renewal setting
is that long term performance can be assessed using only statistics for a single tool
cycle. Since the computation of single cycle statistics is generally easier (though not
necessarily easy) than the computation of long term statistics, the attraction of the

renewal setting is evident.
The number of tool cycles per unit time satisfies the relation

N,

t=oo ¢

= “i with probability 1 (5.6.3.6)
T
by the strong law of large numbers. The elementary renewal theorem [Rol] states

that the expected number of tool cycles per unit time is similarly described:
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im ) - L (5.8.3.7)

t=oo ¢ wr

Assume now that for each tool cycle, some cost is incurred. Assume that the
cost incurred in one tool cycle is independent of all other cycles and their associated
costs. A dependence between the duration of a tool cycle and the cost for that tool
cycle is permitted. Under these circumstances, the expected long term cost per time

can be computed on the basis of single tool cycle statistics.
Let {c;} be the set of tool cycle costs, with ¢; the cost for the 7* tool cycle.
Assume that these random variables are independent and identically distributed with

El¢j|=p < (5.6.3.8)

Define the cumulative cost function

Nl
=Y ¢ (5.6.3.9)

i=1

The random variable C, is the cost incurred through the first N; tool cycles. Then

the long term cost per unit time is given by the following [Rol|:

c
lim — = % with probability 1 (5.6.3.10)
t—oo ¢ Kr
and
E[C
i ZLO ] _ B (5.6.3.11)
t—co t BT

That is, the expected long term average cost per time converges to a value that may

be computed by considering only statistics for a single tool cycle.

Remark: The above result holds even when the cost is not lump sum. That is,

even if costs are distributed throughout the cycle, the results remain valid ([Karl],

Rol)).
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An extension is required in order to allow for a control structure in the problem.

5.86.4. Controlled Renewal Cost Processes

The renewal theoretic view starts with the collection {T;} of random times. It is
reasonable to inquire into the nature of the physical processes that give rise to these
random variables. If these physical processes can be influenced by external inputs,
then a means exists for controlling probabilisticall}: these random variables. This

gives rise to the concept of a controlled renewal process.

Assume that there are inputs available that affect the probability distribution of
the random variables {T;}, and the associated costs {¢;}. Then as long as the control
policy preserves the renewal structure, the renewal results can be used to evaluate the
performance of the policy. Of course, if the policy does not preserve the renewal

structure, other evaluative means must be employed.

It is sufficient to identify the controls available and their effect on the indicated
random variables. This is sufficient, but not entirely satisfying because}it lacks a
sense of physical cause. Instead, consider a different approach. Suppose that an
underlying process is identified that gives rise to the remewal cycles.. That is, this
underlying process is a model of the dynamics of the system with an explicit
representation of how external inputs affect its evolution. If the underlying process is
such that the probabilistic structure of the renewal can be computed, then the nature
and effect of the control can be inferred instead of being hypothesized. This
motivates the use of diffusion-threshold models to describe the underlying dynamics

of renewal processes.



5.8.5. Analysis of the Drilling Problem under Age-Replacement Policies

Assume a tool cycle begins with a new tool, and ends after the tool is replaced.
During the tool cycle the following events can occur: parts are produced causing tool
wear; the tool reaches the replacement age or else it fails; tool failure produces scrap;
finally, a new tool is installed. Assume that the tools are independent, and tool wear
is described by a diffusion-threshold process. Under age replacement policies, the tool

cycles generate a renewal process.

In order to preserve the interpretation of the variables under control, a slight
alteration in the definition of a policy is required. The continuous variable under
control is the feed speed u. The drift and diffusion coefficient are then functions of
u. Using the Taylor tool life approximation, an appropriate form for the drift is
b = Bu™. The diffusion coefficient & will be assumed constant. In order to conform
with the drilling problem formulation, age will be expressed in terms of number of
parts completed, denoted by n,. This also conforms with typical specifications in an
actual manufacturing environment. Therefore, a policy will be defined as = = (u,n,)
where u € (0,00) and n, € {1,2,...,00}. An implicit assumption is that n, >1; i.e., that
at least one part can be completed by one tool on the average. The special case
n, = oo will denote a failure replacement policy. Under a failure replacement policy,

the tool is replaced only when it fails. The time of replacement is now a function of

both u and n,. Let the processing time for one part be given by ¢, = 4 where V is
u

<

the depth of the hole to be drilled. Then ¢, = n,t, = n,

T"u
Associated with each tool cycle is a cost. This cost consists of any resources

used (including time) minus any profit earned for completed parts. Define the follow-

ing parameters:
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G= profit earned per completed part

R = cost of a tool replacement, including tool and time costs
B = cost of a tool breakage, not including replacement cost
K £ overhead cost rate for machine in operation

tp =1 replacement time

tp =1 repair time

Overhead costs incurred during tool replacement and repair are assumed to be
included in R and B respectively. Note that a total cost of B+R is associated with a
threshold crossing (breakage or unacceptable wear). In the following formulation it is

assumed that all profit for the current part is lost when a breakage occurs. This con-

forms to the assumption that failed tools produce scrap.

The replacement time t, will be a part of every cycle. The repair time tp will
be a part of those cycles with tool failure. It is convenient to introduce the random
variable P as the number of parts produced in one tool cycle (not counting scrap

parts). Let 7 denote the random duration of one tool cycle, and let
T = min( T"n'%, ). The random variable 7 is the duration of the total tool cycle,

including repair and replacement time. The random variable T is the tool life. As
stated earlier, the long term expected cost per unit time can be approximated by the
expected cost per expected time for one tool cycle. The expected long term cost per
time is given by:

A E™[ cost/cycle | _ E'[R + KT + Bljr=r, - GP|

H= " : - "
E™| duration of cycle | ET T

Also of interest will be the expected long term cost per part:

(5.6.5.1)
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E"[ cost/cycle | _ E"[R + KT + Bljz=r,| - GP|
E"|[ part/cycle | ET[ P

Jr 2 (5.6.5.2)

Strictly speaking, there is an ambiguity that arises when T, = n,lu, ; since this

occurs with probability 0, the assumption that the part is scrapped presents no
difficulties. Also note that overhead costs for repair and replacement could have been

explicitly included in the cost function.
In order to compute the performance statistics of interest, the following expecta-

tions must be determined: °

E"T], E1T], ETP]
Note that

E(T|=E7(T|+ETtalirar,| +E ta |

=E"T|+1t QA(n,-E 105 u) + tg (5.6.5.3)

and E*[ T | has been previously computed:

¢

E,.[T]:J: A exp{iA-ﬂuM")z}dn

2 20°
0 ‘/E;Uflz n
ot A -(A - m_\2
+t,f 5 exp{i—-%@—}dn (5.6.5.4)
b V2ron?

The computation of E*[ P | is somewhat more complex. Observe that:

n, -1

P =3 i Yreg givnnyl] + telnt, <1, (5.6.5.5)
j==0

’=

Therefore,
n,-1
ETP|= ZOJ"[ Qu( (G +1)ty 105 8) = Qu(sty |05 )]+ n[1- Qulnety |05 0)]
= "'r[l" QA(nrtl ‘O;u)]“' [nr ’1][ QA("'rtf IO;u)- QA((nr"l)tl |O ) u)] + -

o+ [ Qa2 105 u) - Qulty [05)]



n -1
=n, - 'EOQA (72 105 u) (5.6.5.6)

Using these expressions, the performance statistics J," and J; can be computed. Sub-

stituting into (5.6.5.1) and (5.6.5.2) yields

R+ KE"[T|+BQut|0;u)- GE"P]

f = 5.6.5.7
' BT+ 0@(5]0;5)+ & (5:6:5.7)
Also of interest will be the expected long term cost per part:
R T BQ,(t, ]0;
gr= B EEIT I+ B 1054) (5.6.5.8)

B[P |
with E*[ T | given by (5.6.5.4) and E*[ P | given by (5.6.5.6). In general, numerical

integration can be used to compute these functions for a given policy r. In Chapter
6, algorithms will be given that allow the evaluations to be carried out without

numerical integration. This facilitates rapid evaluation of a policy’s performance.

5.8.8. Optimal Age Replacement Policies

Since the economic cost functionals for the drilling problem under age replace-
ment policies can be evaluated, it is possible to consider optimal age replacement poli-
cies with respect to the cost functionals. An optimal policy =° consists of a pair

(u°,n,) such that J** < J* for all admissible policies .

Since the variable n, is an integer, the optimization procedure is a mixed integer
programming problem and is not straightforward. There are several possible
approaches. The first approach is to use one of the available optimization algorithms
for handling mixed programs. Since the system is of low order, this is not unreason-
able. A second approach is to assume that n, is a positive real number and simply
roundoff the result. Although no statement of the reasonability of this scheme is
presented here, some numerical examples suggest that it is not a bad approach. A

third approach, and one that is used in a later chapter, is an explicit calculation of
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the cost functionals for fixed age replacement to determine optimal costs for that age,
followed by a search among the ages. This can be done graphically and has proven
to be quite effective and very fast. This does rely on fast algorithms for evaluating

the various fur-tions. These will be discussed in a later chapter.

The optimal policy is very simple to describe. All drilling takes place at the
optimal feed speed u°. A counter maintains the number of parts completed by the
current tool. The tool is replaced when the tool fails or when the counter reaches n,’,
whichever occurs first. The replacement of the tool resets the counter. The simpli-

city of the pelicy allows a variety of possible implementations.

5.7. Feedback Policies for the Drilling Problem

In this section, the drilling problem will be examined in an intelligent manufac-
turing setting. In this setting, information and control assumptions will differ from
the usual machining economics problem formulations. This will allow the exploration
of a new class of decision policies. In the next chapter, a comparison between the two
approaches (in Sections 5.6 and 5.7) will be made for an actual problem. Since tool
wear measurements will be assumed available for the policies considered here, they
will l;e called feedback policies. However, variability of the feed speed is also

assumed.

5.7.1. An Optimal Control Problem: General Formulation

Consider the drilling problem previously described. Assume that pieces are
being machined, and that the time to complete each piece depends on the selected
feed speed. Furthermore, assume that measurements of tool wear can be made at the

completion of each piece. At each measurement time, a decision can be made to
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adjust the feed speed, and/or change the drill. Each of these decisions has some cost
associated with it. In addition, there is a penalty cost associated with breaking the
drill. The optimization problem is to make these decisions in such a way as to

minimize some cost functional.

The formulation of cost functionals for feedback policies presents some
difficulties. The cost functional used must capture the important manufacturing con-
cerns and allow for the additional information and control capability indicated.
Ideally, cost functionals similar to those introduced for age replacement policies
would be used. These cost functionals capture the long term performance of the sys-
tem. In order to use the renewal theory setting, it is necessary to restrict attention to
feedback policies which preserve the renewal structure. This is not a serious restric-
tion. A far more serious problem is the computational difficulties encountered when
feedback policies are considered. The probability functions involved are extremely

difficult to compute.

An alternate approach might be to formulate a dynamic programming problem
over one tool cycle (or an even shorter horizon). This again presents major complica-
tions because it involves programming over stopping times with incomplete informa-

tion. Furthermore, the probability functions are again very difficult to compute.

The difficulties associated with these approaches motivates the consideration of
alternate cost functionals. An alternate formulation should yield good performance,
but be computationally tractable. In particular, on-line computability would be
desirable. This is because the actual manufacturing system and its parameters are
stochastically varying in time. Long term optimality would be willingly sacrificed.

These considerations have resulted in the formulation of a class of cost functionals
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different than those introduced previously in Section 5.6.

The class of cost functionals considered in this analysis are called one step. One
step in this context means one part ahead. One step costs incorporate the profits
earned and the costs incurred in producing the next part. The formulation of one
step costs must be carefully considered. In particular they must be formulated so

that behavior extremely detrimental to successive parts is not encouraged.

For this problem, define a control vector u < (u,v) where u€ (0,00) is the feed
speed and v€ {0,1} is the replacement decision, where O corresponds to not replacing

the tool and 1 corresponds to replacing the tool.

Define the following economic parameters:
R = cost of a tool replacement, including tool and time costs
B = cost of a tool breakage, not including replacement cost

a . .
K = overhead cost rate for machine in operation

and the functions:
g(u) £ profit rate for selected feed speed u

Ty (u) =1 processing time for a part corresponding to a constant feed speed u

and the random variables:
My, £ e {X,} the maximum excursion of the process over (¢, ,t,]
1SS

h(Xc,,u, M l‘:..*ﬁT/I"’ﬁ) = tool utilization cost for processing a part

Overhead costs incurred during tool replacement are assumed to be included in

R. Note that a total cost of B+R is associated with a threshold crossing (breakage or
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unacceptable wear). A candidate function for » will be presented later. In the follow-
ing formulation it is assumed that all profit for the current part is lost when a break-

age occurs.

A cost functional can now be formulated:

Minimize J(u,z;) = (1-v)"Jy(u,2x) + v *J3(u,0) (5.7.1.1)
where
Ji(w,a) = E[-g(s) Ty lpyer,<r,| + (B + R) Lz, <441
M Xyer My yer ) + KTy A (Ta-)) | X(b)=2 ] (5.7.1.23)
is the expected one step cost if the tool is not replaced, and
Jg(u.,O) = E[ —g(u)'T, '1[1I<TAI +R + (B + R).]'[TAST/]
+ h(XT!’M[O,TI]’O) + K(T/ /\ TA) 1 X(0)=0 ] (5712b)
is the expected one step cost if the tool is replaced. Note that
(T, A\ T,) =1 min(T,,T;) and that z; is the measured wear. The explicit use of 0 in J,

is only a reminder of its conditioning on zero wear.

Before éxa.mining a special case of this problem, there remains the question of
the reasonability of this cost functional. In response to the earlier comment, this cost
functional contains terms which discourage initial detrimental behavior (high feed
speeds). In particular, high feed speeds may be discouraged through the tool utiliza-
tion cost term, and by the increased probability of a threshold crossing. A threshold
crossing causes a complete loss of profit for the current part, and incurs the addi-

tional costs of replacement due to breakage (R+B).
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5.7.2. Restricted Formulation

A restricted formulation of interest can be obtained under the following assump-
tions. Without loss of generality, assume that t,=0. Let the threshold value A = W,

the maximum tool wear. Let 6(u) = fu™, where >0 and m >1 are constants. This

form of the drift function is motivated by the Taylor tool life formula with m = %

and g = C_u'," Assume that ¢ is constant. Let g(z) = ¢°u, where ¢ >0 is a constant,
1

and T (u)=-uY where V>0 is the depth of the hole to be drilled in each part. In this

case, ¢(u) Ty (u) = gV = G, the profit earned per completed part. Let

h = D‘(Xr,-zo)'l[u,.!q] + DA —zo)'l[urlgu (5.7.2.1)
That is, the tool utilization is proportional to the amount of tool consumed, with a
maximum tool utilization given by A-z,, the remaining tool utility. The constant D
is the tool utilization cost rate. Further note the equivalence of the random vari-

ables:

llu,!<.4| =1lr <1, (5.7.2.2)

Summarizing, the new economic parameters are:
G= profit earned for a completed part

D = tool utilization cost rate

The restricted formulation becomes

Minimize J(u,z9) = (1-v)*Jy(u,zq) + v*Jo(2,0) (5.7.2.3)

where

Ji(u,z0) = E[ -G Yz, <1,) + (B + R) Yy, <1, + D(Xr,~20)' i1, <1,
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+ D'(A—IO)']'[TAST,] + K( T, /\ TA) . X(0)=Ig ] (5.7.2‘48)
and
Jz(u,O) = E[ -G'1[1'!<TA] +R + (B + R)'I[TAST/] + D.XT/‘I[TI<TA]
+D-A '1[1'451',] + K( Tf /\ TA) I X(0)='-0 ] (5.7.2.4b)
and
T, (u) = —Z (5.7.2.5)

The term (T; A T,) can be alternatively expressed as
(T A Ta)= Ty Yz, <z, + Talir <1y (5.7.2.6)
As a consequence of this restricted formulation, the following functions become

relevant.

v
84 (v |zo)=E[1[TA<_z] | 2] =P TAS—u | 2o] (5.7.2.7)

ra(u | zg) = E| (x_:, "0)'1[1:<1A1 | 2] (5.7.2.8)

24 (v | 20) = E T"Imsl'l | 2] (5.7.2.9)

The function s,(u |z) is the conditional probability of hitting the threshold before
part completion. The function r,(u | z) is the conditional expected change in wear for
the tool for those sample paths that do not have a threshold crossing prior to finish-
ing the part, weighted by the probability of a threshold crossing not occurring. The
function z, (u | z) is the expected time of the threshold crossing conditioned on sample

paths that do have a threshold crossing prior to part completion, weighted by the

probability of a threshold crossing occurring.

The functions s,, r,, and z, can each be expressed in integral forms using the
results of Chapter 4. The functions s, and r, follow easily from the threshold cross-

ing density:
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q4 (11 | z; “)dﬂ (5.7.2.10)

ot — elx

alv2) = Qu(~ |25 0) =

|4
(w]z)= [ngs(n|z;u)dn (5.7.2.11)
0

where

_ - m_\2
qalnlz ;)= —— em{w}=qa(n|0;u) (5.7.2.12)
= 20°n
V2ron?
anda=A4 -2,z < A.
The function r, is somewhat more complicated to compute. Let ¢, = -}‘-, .
Without loss of generality assume that z = 0. Then
ra(s|0)=E [le[v <1, | Xo=10]
o o
= fﬂl[v<4]9x, u, (mv)dndv
0 -0
A v
=f fqu‘ ", (nw)dndv (5.7.2.13)
0 -

where g is the joint density function from Theorem 4.3.4. Equation (5.7.2.13) can be

further simplified by splitting the integral into two parts

0 4 A 4
[ fﬂx, u, (nw)dvdn + f i fgx 4 (nw)dvdn (5.7.2.14)

and evaluating. The result is given by

A
A (u ]0) = f”p (Aﬂ‘:")dﬂ (5.7.2.15)
where
p(av u, 7’) =

2\1/;121;6 exp {-—u( n ;a/::;un'-l)z } {1 - exp {.'_2"_':_2':’;’7) }} (5.7.2.16)

When A >z 7 0, the result is given by
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A-3

ra(ulz)= [ np(d-z,u,n)dn (5.7.2.17)

-0

Note that the function p is a Gaussian density times a weighting function. This is

more easily seen by substituting ¢, = lu/ into (5.7.2.16).

The functions J, and J; can be expressed in terms of these functions as follows.

Ji(u,20) = (B + R + D+(A-zq))s4(u | o)

(KT - Gy (tca(u | 20) + Doralu |20) + Kosalu [20)  (57.2.189)
Jy(u,00=(B +R +D:A)sy(u|0)+ R
+ (K-—:‘-f - G)'(l_aA (u ‘0)) + D'rA(u !0) + K'ZA(‘M IO) (5.72.18b)

Clearly, the existence of minima is tied to the properties of the functions s,, r,,
z, and to the choice of parameters in the cost functional. The following gives a

sufficient condition for the existence of a minimum.

Theorem (5.7.2.1): Assume m>1 and that B, R, D, K, V, G are all strictly posi-
tive. Suppose there exists u' such that J(u',zq) < 0 or Ja(u',0) < 0. Then J(x, z,)

has a minimum on (0,00)X% {0,1}.

Proof: The proof of this theorem uses the following properties of the cost function-

als:
lim Jy(u,2) = B + R + D(A - z5) > 0 (5.7.2.19a)
lim Jo(u,0) =B +2R + DA >0 (5.7.2.19b)
lim J(u,20) = o0 (5.7.2.19¢)
u—0*
Hz;sz(u,O) = (5.7.2.19d)

The proof of these properties can be found in Appendix C. Note also that the func-



108

tionals J, and J, are continuous in u for s € (0,00).

Suppose there exists ' such that J «(u',20) < 0. By the above properties, there

exists an interval U = [4),8,] containing u such that for v ¢ U, J,(u,2¢) > 0. Now

J, has a minimum on U (compact set) and

infJy(u,20) <0 < infJy(u,2) (5.7.2.20)

Either J, is the active functional in J in which case the minimum is established or
else there exists »"' such that

Jo(u'"0) < infJy(u,20) < 0 (5.7.2.21)

For this case, apply the first argument to establish a minimum for J, and thus for J.

The same proof applies when there exists «' such that J,(u',0) < 0.

Remark: The theorem says that if the operation can be performed profitably for a

given wear value a minimum exists.

Corollary (5.7.2.1): Assume that the feed speed is additionally constrained such

that « € (0,4,,]. Then J(u,zo) has a minimum on (0,2, % {0,1} for 0<ze<A.

Proof: Using the limiting properties discussed in the previous theorem, there exists

u, such that for 0<u <uy, v € {0,1}, U = (81yUm]

J((“:")ﬂo) > mm( Jl(um’zo)v Jz(“m ’0) ) > ueU,hvlé{o,l}J(LzO) (57222)

and J has a minimum on U X {0,1}.

Remark: The corollary says that under practical constraints on the feed speed a

minimum exists for all wear values in [0,4).

Other more complicated sufficient conditions are also available. In general, if

the piece profit is sufficiently high or the overhead rate is sufficiently low, a minimum
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exists.

The assumption m>1 is used in ‘Appendix C in the proofs of properties
(5.7.2.19a) and (5.7.2.19b). This assumption is satisfied according to Taylor tool life
data for metal machining with all commonly used tools. Reference [Macl] gives typi-
cal values for » in the Taylor tool life formula (5.5.2.1) in the range 0.1 to 0.4, result-

ing in 2.5 to 10.0 as a range of values for m.

5.7.3. Optimal Feedback Policies

The simple way in which the control variable » enters the problem allows the
optimal policy to be given in terms of the functions J, and J,. The optimal one step
policy is of the following form (assuming existence of all minima). Let z be the meas-

ured tool wear. Denote
ey A of A .
Ji(z) = minJ,(s,z) u;(z)= arg minJ,(u,z)

Jz =1 mjnJg(u,O) 4y 2 arg méng(u,O)
Le., the minimizing values of J,(",z) and J,(*,0) are u,(z) and u, respectively. Let
v"(z) be the optimal replacement decision. The optimal one step policy is given by:
(i) if Ji(z) < J2, do not replace the tool (»°(z)=0) and continue at feed speed
4y (2).

(i) if J{(z) > J;, replace the tool (v “(z)=1) and continue at feed speed «,.

(iii) if the tool breaks, replace the tool and continue at feed speed u;.

The values u,(z) and u, must be computed numerically even in the restricted
formulation. There is no known closed form solution. Depending upon the parame-
ters, Jy(,z) and Jy(-,0) may exhibit large flat valleys, and so gradient methods may

not always be appropriate. As will be seen in an example, reasonable suboptimal
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policies may exist for an interval of feed speeds. Therefore, it may be possible to
maintain constant feed speed for a range of wear measurement values with negligible

degradation in performance. This will become evident later.

Implementation of the policy may be carried out in the following way. J; and
u, are constants and may be computed in advance. .Initially, assume that a new tool
is in place. The feed speed for the first part is u,. For each part thereafter, a wear
measurement z is made, and J,(z) and u,(z) must be computed numerically based
on the wear measurement. A table lookup would be a reasonable alternative. Recall
that under the assumption of fixed feed, each selection of the feed speed necessitates
a corresponding selection of the spindle speed as well. The optimal policy given pre-

viously is now used to determine the proper action for the next part.

The above implementation can be extended to the realistic situation of (sto-
chastically) time-varying costs and profit rates. In this case, J;(z), J;, u;(z), and u,
must all be computed for each part on the basis of the current cost functional param-
eters and wear measurement. It is assumed that the cost functional parameters are
supplied by some higher level control and/or authority. In this situation, the higher
level authority could influence tool replacement and higher feed speeds through mani-
pulation of the costs and profit rate. In particular, tool replacement could be vetoed,
in which case the next part would be machined at feed speed u,(z). Also, tool
replacement could be strongly encouraged by a sufficient reduction in the tool
replacement cost. Rationale for manipulating tool replacement policies and feed
speed selection could include tool availability, service availability, the status of other
machines and components in the manufacturing system, part and supplies inventory

levels and part demand. This manipulation represents an indirect feedback of other
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information in the manufacturing system to the drill controller.

In actual practice, the selected feed speed will necessarily be constrained by
other considerations: surface finish, spindle and drive power, and machine, tool, and

part characteristics.

In summary, the optimal feedback policy can be implemented in a manufactur-
ing setting, provided sufficient computational capability is present, and tool wear
measurement feedback is available. By allowing time variable cost and profit param-
eters, indirect feedback of other information about the manufacturing system can be
introduced into the policy. The controller might be implemented in a local processor

at the machine site.



CHAPTER 6

POLICY COMPARISON FOR THE DRILLING PROBLEM:
NUMERICAL EXAMPLES AND SIMULATIONS

8.1. Introduction

In this chapter the methods developed in Chapter 5 for the drilling problem are
applied to an example problem. The example is based on an actual drilling problem
found in [Macl]. Analyses of age replacement policies and feedback policies for this
problem are carried out. The problem parameters are held fixed except for the part
profit value. This parameter is allowed to vary in order to explore the ramifications
of relatively more and less expensive parts. Simulations of the drilling problem under
different operational policies are conducted in order to compare the performance of
different policies. Both primary and secondary performance measures are considered
in the comparison. Two different production scenarios are considered: a fixed batch

size and a fixed time production run.

Algorithms to support the analysis and the simulations are also discussed in this
chapter. Included are computational methods for calculating the various functions in
the cost functionals and random number generators for use in the simulations. In
particular, a random number generator for inverse Gaussian random variables is

presented.

112
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6.2. Problem Description

The drilling operation parameters for this problem have been taken from

[Macl|. They are as follows:

Part Material: 4340 Alloy Steel 341 BHN
Drill: M2 HSS Twist Standard Point
0.25 in x 4.00 in

29° Helix
118° Point Angle
7° Lip Relief

Operation: 0.5 in through hole
heavy oil lubrication

Feed: 0.002 in/rev

Tool life: 0.015 in end point wear

Tool life data is also given in [Macl] for different cutting speeds for the feed
indicated above. In terms of feed speed, the data was in the range u € [2.1, 3.0]
in/min. It is assumed here that the tool life data represents mean values. However,

the reference does not comment on this.

The tool life is assumed to agree with the Taylor tool life formula in the mean
over the data range. That is, the mean tool life and feed speed are assume to be
related by (5.5.2.1):

uT™ = C, (5.5.2.1)
A least square fit of the data resulted in coefficient values of

C, = 3.966 (6.2.1)

n = 0.194 (6.2.2)

Recall that these coefficients are derived under the assumption of constant feed. The

spindle speed is presumed to vary in proportion to u so as to maintain constant feed.
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The tool life is modeled by a diffusion-threshold process with drift coefficient
b(u) = Bu™ and diffusion coefficient o(u). The drift coefficient parameter are easily

computed from the Taylor tool life coefficients and are given by:

m = % ~ 5.2 (6.2.3)
w
A= -C-i; =~ 1.2 x 10°® (6.2.4)

These values were used in all the analyses and simulations.

No information concerning the variance of the tool life is given in [Macl]. This
necessitated estimation of the diffusion coefficient ¢ based upon assumptions. First,
assume that the diffusion coefficient is constant and independent of the control u.
This assumption is motivated by the lack of information regarding alternative func-
tional forms. Now assume a nominal feed speed of 2.6 in/min. This is approxi-
mately mid-range for the available tool life data. At this feed speed, the mean tool
life is about 8.7 minutes. Suppose that the standard deviation for the tool life at this
nominal speed is about 20% of the mean. This corresponds to a standard deviation

of about 1.7 minutes. From (4.3.30b), the diffusion coefficient can be computed:

1

o= [gva.r( TA)]E == 0.001 (6.2.5)
It would be very desirable to have information concerning tool life variance. This
information could be used to determine (empirical) functional forms for the diffusion
coefficient. Note that the diffusion-threshold model for tool wear does allow an arbi-
trary dependence of variance on the feed speed by appropriate choice of the diffusion

coefficient.

Summarizing, the diffusion threshold parameters used for this problem are given
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A = 0.015

g =12x10°
m = 5.2

o = 0.001

The economic parameters used in the drilling problem are based upon the fol-
lowing assumptions. Let the overhead cost rate be 30.00 dollars/hour which equals
0.50 dollars/min. Let the cost of a drill be 1.00 dollar. Assume that the time to
change a drill under normal conditions is 0.5 minutes and that an additional 0.5
minutes is required if a tool failure occurs. In order to determine the effect of part
worth, let the piece profit take on the values 1.00, 10.00, and 100.00 dollars. Sum-

marizing, the parameters are given by:

(overhead rate) = 0.50 dollars/min
(replacement cost) = 1.00 + 0.5 x 0.5 = 1.25 dollars
(repair cost) = 0.5 x 0.5 = 0.25 dollars

K
R
B
G (piece profit) € {1, 10, 100} dollars

Additional operation parameters are given by:

V (depth of hole) = 0.5 in
tp (tool replacement time) = 0.5 min
tp (additional repair time) = 0.5 min

6.3. Age Replacement Policy Analysis

6.3.1. Evaluation of Age Replacement Policies

The results of Section 5.6 can be applied to this problem in order to evaluate
the performance of age replacement policies. From Section 5.6, two performance

measures can be computed. The expected long term cost per time is given by

E"(R + KT + Bljr_r, - GP]
BT

and the expected long term cost per part is given by

I = (5.6.5.1)
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. E[R+KT +Blrar, - GP] (5.65.2)
JP - Er[?‘]

where a policy = £ (u,n,) and
T 2 tool life
7' 2 duration of one tool cycle

P £ number of parts produced in one tool cycle

The expected values of these random variables were previously shown to be

given by (5.6.5.3) - (5.6.5.6):

B¢
E[T|= [nqa(n|0;u)dn+nty(1-Qu(nty|0;u) (5.6.5.4)
0
E T | =E"T|+tQu(nt;|0;u)+tp (5.6.5.3)
n,-1
E(P=n- Y Qity[0;4) (5.6.5.6)

j=0

)
Evaluation of the performance of age replacement policies requires the evalua-
tion of these expected values. In general, numerical integration techniques can be

used. However, expeditious evaluation motivates the design of alternate algorithms

for computing these functions. These will be discussed in Section 6.6.

The expected long term cost per time is plotted in Figs. 6.3.1.1 - 6.3.1.3 against
feed speed for several age replacement values, given in number of parts. Fig. 6.3.1.1 is
for a piece profit of 1.00 dollars, Fig. 6.3.1.2 is for a piece profit of 10.00 dollars, and

Fig._6.3.1.3 is for a piece profit of 100.00 dollars.

The expected long term cost per part is plotted in Fig. 6.3.1.4 for a piece profit

of 1.00 dollar. Since the piece profit only enters this cost functional in an additive
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way, the plots for different piece profit values are not shown.

6.3.2. Discussion of Age Replacement Policies

Examination of the graphs (Figs. 6.3.1.1 - 6.3.1.4) reveals several interesting

features of this drilling problem under age replacement policies.

The first observation is that the two performance criteria, expected cost per
time and expected cost per part, do not lead to the same optimal policies. In fact,
the optimal policies are distinctly different. This result is somewhat surprising, even
though there is no reason to expect different cost functionals to yield similar optimal
policies. The surprise is perhaps due to the intuitive idea that cost per part and cost
per time should be closely related measures. For this problem, it is seen that minim-
izing expected cost per time leads to higher feed speeds and earlier tool replacement
ages than those obtained by minimizing expected cost per part. Closer examination of
Fig. 6.3.1.4 reveals that minimizing expected cost per part is achieved by letting the
age of replacement n, — co. This corresponds to a failure replacement policy. How-

ever, this conclusion may be problem specific and should not be generalized.

As indicated earlier, the optimal policy for expected cost per part does not
depend upon the piece profit. Note, though, that the class of policies considered to

give good performance (relative to the optimum) will depend upon the piece profit.

The optimal policy for expected cost per time does have some dependence on the
piece profit. As the profit increases, the trend is towards more conservative tool
replacement ages, but slightly faster feed speeds. Generally, there exists a range of

policies that will give near optimal performance.
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6.4. Feedback Policy Analysis

8.4.1. Evaluation of Feedback Policies

The direct calculation of expected cost per part and expected cost per time for
feedback policies is very difficult. Consequently, the one step cost was proposed in
Section 5.7 as an alternative performance measure for feedback policies. In this sec-
tion, good one step policies will be determined. Performance of these policies will be

considered in the simulation section.

The results of Section 5.7 can be applied to this problem in order to compute
one step costs as a function of tool wear, feed speed, and replacement decision. From

Section 5.7.2, the equations

Ji(u,%0) = (B + R + D (A ~2q))s4 (u | z0) +
(K-%’ — G)(1-sx (v | 7o) + Dora(u | 2o) + K-z (u | 20) (5.7.2.18a)

Jo(u,0)=(B +R +D*A)s,(u|0)+ R +

(K-lu’ = G){l-ax (5 |0)) + Dory(u |0) + K2, (u |0) (5.7.2.18b)

need to be evaluated in order to determine the one step cost. First, though, there is
an additional parameter in the cost functional that must be determined. This
parameter is the tool utilization cost rate (D). For this problem, this parameter was
determined on the basis of a normal tool replacement cost:

D (tool utilization cost rate) = 1.25/0.015 = 83.33 dollar/in

Calculation of the one step cost was done by discretizing both the feed speed
and tool wear. The wear value was taken from the set
{ 0.0, 0.003, 0.006, 0.009, 0.012, 0.014, 0.0145, 0.0146, 0.0147 } inches

The feed speed was discretized at intervals of 0.2 in/min.
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Examination of the pair of equations (5.7.2.18a) and (5.7.2.18b) show that the
functions s,, r,, and z, need to be computed in order to evaluate the cost function-
als J, and J,. For each fixed piece profit (G), the functions s,, r4, and z, were com-
puted for each feed speed, for each of the tool wear values. In general, numerical
integration can be used to compute these values. However, this is slow computation-
ally, and so algorithms were designed to speed up the procedure. These algorithms

will be discussed in Section 6.6.

Using the computed values for the functions s,, r,, and z,, the function Ji(+y)
can be calculated. For this problem, the family of functions J,(-,z,) was determined
by linearly interpolating between discrete feed speed values. The wear value zo Was
allowed to take on values from the discrete set previously given. The function J2(+,0)
is easily determined from the zero wear J,(-0) function by adding the replacement

cost.

Using graphs of the family of functions J,(*,z,) and Jo(,0), the optimal feed
speed selection and tool replacement decision can be approximated for each tool wear
value. In order to better understand the one step policy, a somewhat different

approach to policy determination was taken.

For each wear value, regions of feed speeds were determined, rather than just an
optimal value. The regions were classified as near optimal (within 1% of optimal per-
formance) and suboptimal (within 10% of optimal performance). These regions were
plotted versus tool wear, with linear interpolation between wear points. The wear
value threshold for tool replacement was also determined. At this wear value, a tool
replacement is called for. Finally, critical boundaries were determined where possible.

A critical boundary indicates the economic break even point where a crossover from
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profitable to costly operation takes place. These results are presented in Figs. 6.4.1.1

- 6.4.1.3 for the different piece profit values.

6.4.2. Discussion of Feedback Policies

Examination of the graphs reveals several interesting properties. When a tool
has little or no wear, the near optimal operating regions are relatively wide, indicat-
ing a relatively large interval from which feed speed selection can be made with near
optimal performance. As the tool wear increases to the high wear region, however,
the near optimal region narrows appreciably. In general, it would seem that the
choice of feed speed is more critical towards the end of the tool’s life than it is for
new and little worn tools. What is perhaps most surprising is the observation that in
some cases constant feed speed can be used throughout the tool’s life while maintain-

ing near optimal performance.

Two effects of piece profit (G) on the policy are readily apparent. First, as G
increases the width of the near optimal region increases for most wear values. Furth-
ermore, as G increases tool replacement becomes more conservative; i.e., replacement
of the tool occurs at lower wear levels. In particular, for sufficiently profitable parts
and cheap tools, one could argue for tool replacement after very little wear (i.e., every
part). Conversely, for cheap tools and cheap parts, replacement is close to the wear
threshold. This is reminiscent of a “run until it breaks” policy. However, the region
of operation for small G is generally narrower, so even a run until breakage replace-
ment policy must be coupled with carefully chosen feed speeds. This seems to agree
with the observation that manufacturing products with low profit margins requires

more careful control of the operation in order to maintain (reasonable) profitability.
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8.5. Simulation and Policy Comparison

Simulations of the drilling problem were conducted in order to evaluate the per-
formance of different policies in different production situations. Because long term
performance of the one step policies cannot easily be determined analytically, simula-
tion represents the most direct way of evaluating and comparing policies. Simulation
allows secondary performance characteristics to be compared as well. Simulation also
provides an environment that allows policy experimentation. Thus, policy tuning can
be carried out in an effort to find policies that perform well and are easily imple-

mented.

6.5.1. Simulation Description

Simulation of the drilling problem is straightforward, with only the random

number generation presenting technical difficulties.

The simulation written uses a tool cycle as an outer event loop. Recall that a
tool cycle begins with a new tool and concludes when the next tool is installed. Tool

failure necessitates tool replacement, but a tool can be replaced voluntarily prior to

failure.

The simulation uses a part cycle as an inner event loop. When a part arrives,
the subroutine responsible for implementing the control policy is given a set of infor-
mation regarding the current situation. This set includes: length of time the current
tool has been in use; number of parts drilled by the current tool; wear measurement
of the current tool. The control subroutine responds with a tool replacement decision
and a feed speed. If the tool is to be replaced, the current tool cycle statistics are
updated, and a new tool cycle begins. The part cycle proceeds with the updated tool

wear measurement and the selected feed speed. First, it is determined whether or not
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a tool failure occurs in this part cycle. This is done by generating an inverse Gaus-
sian random number and comparing it to the completion time for the part. If a tool
failure occurs, the time of occurrence is noted, the tool cycle statistics are updated,
and a new tool cycle begins. If a failure does not occur, the new tool wear measure-
ment is determined. The current tool cycle statistics are updated and the next part

cycle begins.

Different production situations dictate different stopping criteria. In this work,
two production situations are investigated. The first is a fixed time production run
of 4800 minutes. This represents two 8 hour shifts running for 5 days. The second
production situation calls for the production of 1000 good parts. This typifies a
small or medium batch run. As will be seen, operational policies do not necessarily

give comparable performance in both of these production situations.

Statistics collected for a simulation run include: time duration of production
run, number of good parts produced, number of scrapped parts (number of tool
failures), and number of tool changes. From these statistics, various measures of pol-

icy performance are computed and recorded.

Algorithms for the generation of the required random variables will be discussed

in a Section 6.6.

6.5.2. Simulation Policy Descriptions and Results
The policies used in the simulations are summarized in Tables 6.5.2.1 - 6.5.2.3.
The key for policy type is

AR  age replacement
FR  wear feedback replacement
FR/FS wear feedback replacement and feed speed selection
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The results from the simulations are summarized in Tables 6.5.2.4 - 6.5.2.9.

Policy Descriptions: G =1

Policy = Type Replacement Feed Speed
a AR 20 parts 3.0
b AR 40 parts 2.6
c AR failure 2.5
d FR/FS 0.0147 ly(z)
e FR/FS 0.0145 li(z)
f FR/FS  0.0140 I(z)
g FR/FS  0.0135 Iy(z)
h FR/FS 0.0147 ly(z)
i FR/FS 0.0145 ly(z)
j FR/FS  0.01425 lo(z)
k FR/FS  0.0140 ly(z)
l FR 0.0147 2.25
m FR 0.0145 2.25
n FR 0.0147 2.6
o FR 0.0145 2.6
P FR 0.0147 3.0
q FR 0.0145 3.0
r FR 0.0140 3.0
s FR 0.0135 3.0

Table 6.5.2.1 Policies for G =1

where the policies /, and I, are given in terms of the wear measurement z by:

3.0 z < 0012
- = 6.5.2.
h(z) = {3.0 - 375(z - 0.012) z > 0.012 (6.5.2.1)
3.0 z < 0.012
Iy(2) =13.0 - 400(z - 0.012) 0.012 < z < 0.0135 (6.5.2.2)

2.4 - 533(z - 0.0135) z > 0.0135
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Policy Descriptions: G = 10

Policy Type Replacement Feed Speed
a AR 14 parts 3.25

b AR 16 parts 2.6

c AR failure 2.5

d FR/FS 0.0140 l3(z)

e FR/FS 0.0135 l3(z)

f FR 0.0140 3.0

g FR 0.0135 3.0

h FR 0.0140 3.25

1 FR 0.0135 3.25

Table 8.5.2.2 Policies for G = 10

where the policy /; is given in terms of the wear measurement z by:

3.25 z < 0.012 »
hz) = {3.25 - 583.3(z - 0.012) z > 0.012 (6.5.2.3)
Policy Descriptions: G = 100
Policy Type  Replacement Feed Speed
a AR 14 parts 3.3
b AR 16 parts 3.2
c AR failure 2.5
d FR/FS 0.0125 l{(2)
e FR 0.0125 2.5
f FR 0.0125 3.0
g FR 0.0125 3.25
h FR 0.0125 3.5

Table 8.5.2.3 Policies for G = 100

where the policy [, is given in terms of the wear measurement z by:

z < 0.009

z > 0.009 (6.5.2.4)

4.5
'lz) =14.5 - 342.9(z - 0.009)
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8.5.3. Discussion of the Simulation Results

For each production situation, several different policies were tested. Included in
the testing were policies based on age replacement, approximations to the feedback
policies based on one step costs, and variations of these feedback policies. In all cases,
the simulation results for age replacement policies were in good agreement with the
previously computed analytic results. This provided some assurance that things were

working correctly.

The results are presented in tabular form in Tables 6.5.2.4 - 6.5.2.9. The
different columns correspond to different policies used. The policies used are

described separately. Time units are in minutes and monetary units are in dollars.

The discussion here will focus mostly on the case where the piece profit (G) is
1.00 dollar (Tables 6.5.2.4, 6.5.2.5). This case is in some ways the most interesting.
This is because the results from the feedback analysis indicate a fairly narrow region
of near optimal performance. Furthermore, this case represents best the challenge of
producing inexpensive parts profitably. However, many of the remarks also apply to

the other cases.

The age replacement policies are a, b, and ¢. The remaining policies use tool
wear feedback, though some have fixed feed speed. Policy a is based on the expected
cost per time results, and policies b and ¢ are based on the expected cost per part
analysis. Note that policy c is failure replacement. As might be expected, each does
well in a particular production situation. Minimizing cost per part results in good
batch performance, whereas minimizing cost per time yields good long time perfor-
mance. A general comment on age replacement policies is that if they are properly

chosen for the production situation they do very well from an economic standpoint.
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However, there are secondary performance measures that must be compared as well.
Also, although the age replacement policies shown here perform well in particular
production situations, it is the author’s experience that in most manufacturing sys-
tems the same policies are used regardless of the production situation and that these

policies are often very conservative.

The feedback policies show considerable variation in performance. The policies
evaluated were constructed by approximating the true one step optimal policy by
piecewise linear functions. That is, the feed speed was chosen to be a piecewise linear
function of tool wear. Exa.mina.tioh of the one step graphs (Figs. 6.4.1.1 - 6.4.1.3)
shows that this should be a reasonable approximation. The policy closest to the true
one step policy for the case G = 1 is policy A. As can be seen, it does not give a dis-
tinguished performance. In particular, the scrap count is too large. This observation
gives some insight into the one step cost functional, and also into how some good pol-

icy variations can be constructed.

The problem with the one step cost functional is that the cost of tool replace-
ment is too high. This is especially true when the piece profit is relatively low as is
the case when G = 1. By forcing one part to absorb all the replacement cost,
replacement is avoided until it is typically too late. Note that for the case under con-
sideration it is cheaper to scrap the part (1.00 dollar) than to replace the tool (1.25
dollars). Thus, replacement is generally avoided. It would be more desirable to pro
rate the tool replacement cost so that the burden of replacement is more evenly dis-
tributed among the parts that benefit from replacement. The easiest way to effect
this cost disburdenment is to lower the tool wear threshold for replacement. This is

precisely what is done in the feedback policy variations. The policies d, ¢, f, g and A,
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i, J, k represent policies with decreasing tool wear replacement thresholds.

There are other possible policy variations as well. An important practical ques-
tion is what is the contribution of variable feed speed? That is, does tool wear feed-
back used only for replacement coupled with constant feed speed give good perfor-
mance? In an effort to address this issue, some of the feedback policies use constant
feed speed. Note that the one step graphs (Figs. 6.4.1.1 - 6.4.1.3) suggest that this

may in fact be reasonable. Polices ! through s are of this type.

Consider first the timed run production situation (1 week of production). For
this case, the best age replacement policy is a (minimize cost per time). The feedback
policies that will be examined closely are g (variable speed) and s (constant speed).
Policy s gives the best economic performance, with an improvement of 4.1% over age
replacement. However, policy g is probably the best choice. Although this policy
only gives a 3.3% improvement over age replacement, it has much better characteris-
tics. In particular, the drop in scrap production is very significant. Further note that
the number of parts per tool increases and the total number of tool changes
decreases. The effect of the variable feed speed appears to be to trade off production
rate and pure economic gain for less scrap production and fewer tool changes. Policy
g represents a good example of the potential performance of a modified one step pol-
icy. However, if variable feed speed is not practical, than policy s still gives good per-
formance. Finally, note that the other age replacement policies give mediocre perfor-

mance.

Now consider the batch production situation (production of 1000 parts). In this
situation, the best age replacement policies are b and ¢. These policies minimize cost

per part. Although policy ¢ (failure replacement) gives the best economic perfor-
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mance, policy b is probably the one of choice since it has better secondary characteris-
tics. Also, some managers and engineers may find failure replacement distasteful.
Also note that age replacement policy ¢ now gives mediocre performance. As can be
seen, the candidate feedback policy g is economically worse representing a 0.7%
decrease in profit. However, this policy still exhibits superior characteristics in terms
of scrap production and production time. This would generally justify the slight
economic loss. The reason for the slightly poorer performance is that policy g uses
too many tools for this performance measure. None of the variable feed speed poli-
cies considered betters the age replacement policy economically. This motivates
exploration of other feedback policies. Policies n and o were constructed by taking
the feed speed used by the age replacement policy combined with tool wear feedback
replacement. Policies / and m are similar with a slower feed speed, and policies p, g,
r, and s use a faster feed speed. As can be seen, policies , m, n, and o are economi-
cally superior, although by less than 0.5%. Policy o is the one of choice, since it has
equal scrap production, is slightly faster, and uses fewer tools than the age replace-
ment policy. An important point is that the age replacement policies can do very
well, but must be selected for the batch production environment. This suggests that
a properly chosen age replacement policy can be a good choice for some production
situations. It also suggests that other cost functionals should be considered for deter-
mining feedback policies in some batch production situations. Nonetheless, the mer-

its of feedback policy g include good performance in both production situations.

All of the preceding discussion is problem specific. Nonetheless, some important
issues have been raised. First, age replacement policies can give good performance if
properly chosen for the production situation. Second, the one step approach to feed-

back policies can yield improved performance. However, modification of the tool
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replacement threshold may be required in order to reduce the burden of replacement.
Third, the one step approach does not always yield improved performance over
optimal age replacement. Fourth, policies with constant feed speed and tool wear
based replacement can give good performance as well. Fifth, it is important to look
at characteristics other than just economic performance when evaluating a policy.
Sixth, performance can vary with the production situation. When the production
situation is uncertain, a feedback policy may give good all around performance, but

an age replacement policy may not.

There is no reason to expect dramatic improvement by using feedback policies
in the drilling problem. What has been seen is that modest improvements can be
realized. This does not imply that feedback policies are not useful. Since a typical
manufacturing system has many machines, small improvements in the operation of

each machine may be collectively significant.

6.8. Algorithms

Several algorithms have been used to carry out the analysis in this chapter.

These algorithms will be summarized in this section.

6.8.1. Algorithms for Age Replacement Analysis

The performance statistics for the drilling problem under age replacement poli-
cies can be expressed in terms of integrals involving the inverse Gaussian density as a
kernel. In general, numerical integration could be used to evaluate each of the
integrals. However, for problems with large age replacement values (n,), this requires
evaluation of many integrals (n, + 2 integrals). This motivates the investigation of

alternative methods for evaluating the integrals. As will be shown, it is possible to
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transform the integrals and use approximations to avoid all numerical integration.

The  distribution  function  for  the  threshold  crossing time
Q4(t|0; u) = P[T, <t] has been previously given as

t t
Qu(t05u)= [oaln]0;u)dn=[—A— exp -4 -t (4.3.24)
0 o\/ﬁcﬂi 2‘72’7

It can be shown that Q,(¢|0; u) can be expressed in terms of the normal distribu-

tion [Chl]. Let &(z) = P[X <z] when X ~ N(0,1). That is

H 1 ’72
d(z) = f—;exp{—7}dn (6.6.1.1)
Then
_old /Tn_)
Qu(t]0;u)= o-\/‘lt-[A 11}

(4.3.33)

24b A ( th
*""P{',T}°':\/1:;“]

Using a procedure similar to that given in [Chl|, it is possible to show that the

truncated mean can also be expressed in terms of the normal distribution.

Corollary (8.8.1.1):

t
[na4(n|0;u)dg =
0

A th 2Ab A 1] ¢
s \/lt-[A-l '“P{?}“’h\/;[z“]

The above transformations show that all integrals required for evaluating the

_‘: ® (6.6.1.2)

performance statistics can be expressed in terms of the normal distribution function.
Although there is no known non-integral closed form expression for the normal distri-

bution, there are several known approximations that are relatively easy to compute.
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For this paper, the following approximation is used [Abl]:

Approximation (6.6.1.1):

(z) = 1- f(z)[a,t + agt® + ast’] + ¢(z), for0 < z < o0 (6.6.1.3)
where
f(z) = —=exp{- z (6.6.1.4)
Ver 2

is the normal density function and
1 -
b= pove (6.6.1.3)
ao = 0.3326700 (6.6.1.6a)
e, = 0.4361836 (6.6.1.6b)
a; = -0.1201678 (6.6.1.6¢)
a3 = 0.9372980 (6.6.1.6d)
le(z)] < 1x107 (6.6.1.7)

Using this approximation, the performance statistics can be computed without

numerical integration.

6.8.2. Algorithms for Feedback Analysis
The evaluation of the one step cost functional requires the evaluation of the
three functions s,, r,, z,. Note that

sa(u|z) = Qulty |z ;u) (6.6.2.1)
and that

4
z(u|z)= {rm (nz;u)dn (6.6.2.2)

Thus, the results from the previous section can be applied to evaluate these two func-

tions without integration.
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Numerical integration was required to evaluate the function r,. However,
approximations are necessary in order to reduce the integration interval to one with
finite endpoints. Smaller integration intervals also reduce the computational burden.
This reduction was done in the following way. From (5.7.2.17)

ra(u|z)= [np(au,n)dn (6.6.2.3)

-0

where a = A - z and

playu,n) = f(n; ayu)w(n; au) (6.6.2.4)

with f/ a Gaussian density and w a weighting function. Now

.

 w(n)=1 (6.6.2.5)

n—-

for all admissible a and ». So, for 0 < ¢ there exists y such that

1-e<uw(m) <1, forn <4 (6.6.2.6)
Assume that v < a. Then

v a
ra(v|z)= fqp(a,u,n)dn + fnp (ayu,n)dn (6.6.2.7)
-00 1
The second term must be computed numerically. The first term can be approxi-

mated, however.

¥

[ o (au,m)dn =2 (1-¢) [ nf (me,u)dn (6.6.2.8)

-0

where f is a Gaussian density. The integral in (6.6.2.8) can be evaluated as follows.

Substituting

(6.6.2.9)

into (6.6.2.8) yields



7-",
7 1 "/7 2
[ nf (mayu)dng = T [ (ot &+ bty) exP{T}'ﬂf
1-“, 1-“,
_ btf . ‘I _ a\/-g—a\/l—/-
=V Lo Lot e

_ o bt’ - btf
= bt; d [—_a\/?,— J- a\/ﬁf[—-—aﬁ ] (6.6.2.10)

® can be computed using Approximation 6.6.1.1. In the case where ¥ > &, no numer-

ical integration is required.

6.6.3. Random Number Generation

The simulations used to evaluate policy performance require the generation of
random numbers. Two distribution families are involved. First, an inverse Gaussian
random number (with variable parametgrs) is required. Second, a conditioned Gaus-
sian random number is needed. In order to generate random numbers from these dis-

tribution families, two algorithms are required.

6.8.3a. Generation of Inverse Gaussian Random Numbers

The basic idea of this algorithm is to use the acceptance-rejection method [Lal]

on a transformed inverse Gaussian random variable.

Let (4, b, o) be the parameters of the inverse Gaussian distribution from which

A

random numbers are to be generated. Denote p =1 —“:

A2
) A = Let Y be a random

variable with density

- y 1 -y
gY(y)— 1- \/zt?[mexp{ 9 }]’ vy €ER (6.6.3-1)
)
n

Then
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T = -2% [(2X + uY?) + YVdapr + pzyz] = h(Y) (6.6.3.2)
is inverse Gaussian with parameters (4, 5, o) ([Chl]). Now acceptance-rejection can

easily be used to generate Y because of its relationship to a Gaussian density:

2
gr(y) < —\/-?27 exp {'—2”—} vy €ER (6.6.3.3)

Algorithm (6.8.3.1): Let

Z ~N(0,1) U~ U(0,1) be independent

1 Z
fU<=ji-———
=72 ] (6.6.3.4)

A/ L) +2°
I
then Y = Z, else generate new (Z,U) and repeat. Then T = i(Y) is inverse Gaus-
sian.
In practice, acceptance-rejection methods can perform poorly since a random
number of (Z,U) pairs must be generated for each random number. However, this

algorithm performed well in the simulations.

8.8.3b. Generation of Conditional Gaussian Random Numbers

Assuming that a tool failure does not occur, it is necessary to generate the new

tool wear value. This is done by generating the conditional change in tool wear:

Y& (X, - zo) given Ty > ¢, (6.6.3.5)

The random variable Y has a density function fy given by

p(a,u,1)
fr) =117, lzesa) " < ° (6.6.3.6)
0 n2a

where the function p is given by (5.7.2.16). Now p is majorized everywhere by a

Gaussian density with mean bt and variance o?t,. Thus acceptance-rejection with
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Gaussian random numbers is possible.

Algorithm (8.8.3.2): Let

Z ~ N(bty,d*t;) U ~ U(0,1) be independent

if US%L)=w(n;a,u)

then Y = Z, else generate new (Z,U) and repeat.

(6.6.3.7)



CHAPTER 7

APPLICATION OF DIFFUSION-THRESHOLD MODELS
TO OTHER MANUFACTURING PROBLEMS

7.1. Introduction

This chapter will consider the application of diffusion-threshold models and the
control theoretic approach to other manufacturing problems. The problems that are
considered here were introduced in Chapter 3. Each of these problems conveys a
viewpoint different than that which is typically taken in manufacturing problems.
The emphasis here will be on how these different viewpoints can be accommodated
using the concepts developed earlier in this work. The problems considered in this
chapter will not be discussed in as much detail as the drilling problem. The intention
is to develop a framework for approaching certain types of manufacturing problems
using diffusion-threshold models and control theoretic techniques. In so doing, it is
hoped that the potential for new approaches to manufacturing problems is

exemplified.

The problems in this chapter do not have simple solutions. They are not simple
problems. In the first problem, a solution is presented under restricted assumptions.
In the second problem, a simulation based approach is described. In the third prob-
lem, a dynamic programming type of condition is derived. More than anything, these

problems reveal the difficulty of manufacturing problems and the need for new

149
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analytic methods for approaching manufacturing problems.

7.2. Multi-tooled Machines

The multi-tooled machine version of the drilling problem has been previously
described in Section 3.3. The reference [Shkl]| also considers multi-tool problems. In
this problem the machine is allowed to have multiple tools that simultaneously
machine the part. As was previously stated, this is a common design for high volume
special machines. The tools are generally not independently controllable. For this
problem, some simplifying assumptions will be made. The independent control vari-
able will again be the feed speed. The spindle speed of each tool will be assumed to
vary so as to maintain constant feed. This is a more restrictive assumption for the
multi-tooled machine than it was for the single tooled machine. There are practical

examples that adhere to these assumptions, however.

A multi-dimensional diffusion-threshold model of multiple tool wear and failure
is proposed. Assume that each tool can be described by a diffusion-threshold model,
and that the wear processes for each tool are independent. The wear processes of all
tools can be thought of as an n dimensional diffusion, where n is the number of
tools. The drift vector b and the diffusion matrix ¢ are functions of the feed speed u,

which is a scalar.

The failure of each tool corresponds to a threshold crossing of the diffusion pro-
cess component associated with that tool. Failure of the operation is considered to
have occurred if there is a failure in any tool. Thus, a crossing of any component

threshold corresponds to an operation failure.

The parameters in each diffusion-threshold component may be different. This

would be the case if the tools are different, as an example. However, the component
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drift and diffusion coefficients are assumed to be strictly positive for all values of the
control variable x. The component threshold values are assumed to be strictly posi-
tive as well. In this work, it will be assumed that all tools begin and end their opera-

tions at the same time. This is to simplify the calculations.

The results of Section 4.5 can now be applied in order to determine the distribu-

tion function for an operation failure. Let

X(t)2 (X(t),. ... X(t))7 (1.2.1)

be an n-dimensional diffusion process given by

X(t)= [b(u(r) )dr+ { a{u (r) JdW() (4.5.5)

Oty -

where

W(t) = (Wy(t), ..., Wa(t))T (4.5.1)
b(u(t)) = (by(u(t)), ..., ba(u(t)))?, i(u)>0,i=1,...,n (4.5.2)

a(u(t)) 2 diag(oy(u(t) ), ..., ,00(x(t)) )y 0i(8)>0, 1 =1,...,n (4.5.3)
and u the feed speed is a scalar. Let the threshold be given by a union of hyper-

planes

A= {z€R" :5=A}, 4>0,i=1...,n (4.5.6)

i=1

Then the threshold crossing probability distribution function is given by

Qultlzie)=1-TI1-Qult]z ;u)] (4.5.9)

i=1

for z; < A;, i =1,...,n. The density function g, (¢t |z ; u) is given by

altlz;u) =2 Quit]z; )
=3 aaftlzse) T 0-Qultlaiu)] (7.2.2)
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The control analysis methods used in the drilling problem can now be extended
to the multi-tool case. Age replacement and one step analyses will be separately con-

sidered.

7.2.1. Age Replacement Analysis

Age replacement analysis for the multi-tooled drilling problem can be carried
out under the assumption of block tool replacement. This means that all tools are
replaced at the same time, whether the replacement is voluntary or necessitated by
failure. The analysis is considerably more complicated when individual tool replace-
ment is allowed because the renewal framework is then lost. This case will not be
discussed here. Under the assumption of block tool replacement the renewal frame-

work is preserved; thus the results of Section 5.6 can be used.
Assume that a policy = consists of the pair (u,n,), s €R +, n, € {1,2,...} where u
is the fixed feed speed and n, is the age in number of parts at which the block tool

replacement is made. Proceeding as in Section 5.6, the distribution function for the

tool life T under policy = = (u,n,) is given by:

Qu(t]0;u) if t<t, ‘
FA(t) ={1 1>t (7.2.1.1)

where ¢, = n,—zf . Here V is the depth to be drilled by the tools. The expected value
of the tool life T is given by:

"

pr = B[ T )= [tdFF(t) = [tdQy(t]0; u) + t,(1- Qu(t0;w) (7:2.1.2)
0 0
Similarly, the expected duration of a tool cycle E[T| and the expected number of

completed parts in a tool cycle E[P] are given by:

EfT|=E"T|+taQ(nt, |0;u)+t; (7.2.1.3)
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E(P|=n,- 'ioQA_(jtf |0; u) (7.2.1.4)

Therefore, from (5.6.5.1) and (5.6.5.2), both the long term expected cost per time, and

the long term expected cost per part can be computed under policy .

E*(R + KT + Bljrar, - GP]

- 7.2.1.5
Ji BT ( )

. ER +KT + Blr=r,| - GP| 7918
Jy = E'[P] (7.2.1.6)

Although the assumption of block tool replacement is restrictive, it is a common
policy in practice. Some exceptions may occur in the case of early tool failure, how-

ever. Analytically, the assumption greatly simplifies the problem.

7.2.2. Feedback Analysis

Feedback analysis of the multi-tooled drilling problem using a one step cost
functional is also possible. As in the age replacement case, block tool replacement
will be assumed. Some modification to the one step cost functional will be required
in order to accommodate n dimensional diffusions. Assume that wear measurements

of all tools are available.

Define a control u = (u,v), s €R Tve {0,1} where u is the feed speed and v is
the block tool replacement decision. Let z = (z,,...,z,) be the initial wear meas-

urement vector, with z; < 4;,i1 =1,...,n.

Let the one step cost functional be defined as in Section 5.7 with the following
changes. The replacement cost is now the cost of replacing all tools, and the repair
cost is the cost of repair due to any failure. As can be seen by examining (5.7.2.4a)
and (5.7.2.4b), the tool utilization cost term needs to be redefined. That is,

equivalents for D(A - zq) and D (X, = zq) are required.
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Consider a normalized tool consumption for each tool:
(t,) - z:
yaXly)-= (7.2.2.1)
A;
with
Ai -z |
y1=1,...,n (7.2.2.2)

0<Y; <
<I; < e
Y; is the percent of tool i consumed during the operation. A suitable measure of tool

utilization is the maximum percent consumption among all the tools. This is a meas-

ure of the worst case tool utilization, which is in fact what is wanted. Define
(7.2.2.3)

y &

i=l,...,

Then the tool utilization cost becomes R:Y under this criteria. Note that this is

based on a normal replacement cost, the same as in the single tool case.

Similarly, the worst case tool consumption in the event of a tool failure is given

(7.2.2.4)

by R*ypu, Where

4;

5]

A

Ymax .
s=1,...,

The variable y,,, corresponds to the worst case percent tool consumption resulting

from a tool failure. Recall that a tool failure results in replacement of all tools under

the block replacement assumption.
The one step cost functional for the multi-tooled problem becomes:
(7.2.2.5)

Minimize J(u, 2) = (1-v)-Jy(u, 2) + v-J5(u, 0)

where
Ji(u, g) = E[ -G.I[T/<TAJ + (B + R).l[TA_ST/] + R‘Y'I[TI<TA]
(7.2.2.63)

+R 'ymn:'l[TAS T + K'(TI A TA.) | X(0) =z ]

and
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Jg(u., 0) = E[ —G'I[TI<T‘J + R + (.B + R)'I[TLST/] + R'Y'I[T/<TAJ
+ Rymulir <7, + K(Ty A\ Ty) | X(0)=0] (7.2.2.6b)
Similar to the scalar case, evaluation of the one step cost involves the computa-

tion of three functions:

allz)=E[1, v |z]=P| TLS%, | 2] (7.2.2.7)
ra(s|z)=E| Yy g, | 2] (7.2.2.8)
z4(u|z) = E| Taty v z] (7.2.2.9)

The functions s, and z, can be computed since @, and ¢, are known. Thus, only

the function r, needs to considered here.

From the definition,

Ymaz
ra(slz)= [ndP(Y=n,t; < Ty|z;u) (7.2.2.10)
-0
where
P(Y =y, <Tylz;u)= %P(Y Sty < Tylziu)dy  (7.2.2.11)
Now

P(Ysyvtf < TL'Q;“)=P(Y5 Syrtl < TA‘-yi=1:'-~;n‘.z_;u)

=P(Y; <y, M(t;) < A -z,i=1,...,n|0;u) (7.2.2.12)

where M; is the component maximum random variable. Since the components of the

diffusion are independent, (7.2.2.12) can be expressed as

TIP(Y: < v, Milty) < 4 - %105 4) (7.2.2.13)

i=1

Each term of this product

P(Y, <y, Mi(ty) <A -%|0;u8), i =1,...,n (7.2.2.14)

can be computed from the component joint density function, as given in Section 4.3.
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For each 1,

yA;

1]

P(Y; <y, M}(tf) <A -z|0;u)= fp(a,-,u,r,)dq (7.2.2.15)

-0

where p(a;,u,) is given by (5.7.2.16) and o; = A; - z;. Thus

2 pleiumdn =

Y %
A; {-(yA,.-b,-t,)’}[l {‘2“‘("“”‘4‘)}] fory < =
expd i 1) -exp{ ————= ory < —
V2t o; 20}t alty 4 (7.2.2.16)
a;
0 fory > z-
So

2

A

n i , - .~ b.t, )2 2a:(a;: - yA.
’A_(“|£)=2f yA, exp{ (.'IA: b’tl)}[l-exp{ 2:(: yA,)}]

j=1 =00 2ﬂ'tf a; 2a,2tf Uft,
vA\a;
. 1 -(€-b5¢4) -2a;(a; - §)
X J/2nt, ¢ 5 (- ———Yde|dy (7.2.2.17
ia}.]i:#i -{o 27ty 0, exp{ 20,-2t, exp 0’,~2t, §|dy ( )

This can be simplified somewhat by substituting § = yA; in the first term. Then the

expression becomes:

- ! -(0-by ) -2a;(a; - §)
rL(u l—z—) - jgl .‘L \/Zﬁ’tf g exp{ 20,%, } [1 - exp{ d?tt }}

2 ! 1 -(&-bity ) -2a; (a; - &) (7.2.2.18)
X5=E;éj -{o Vert o, exp{ 2}ty }[l—exp{ olty }]d€ 2

This gives the expected maximum percent tool consumption. The expression is

very complicated, but in principle computable. Thus the one step cost functional

under block tool replacement can be computed.

Suppose now that individual tool replacements are allowed. For the case of

feedback policies, there are 2" possible replacement decisions. For each replacement
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decision, there may be a different replacement cost. It is also possible that there are
different repair costs for different tool failures. Consequently, the problem becomes

enormously complex as n gets large. This will not be further discussed in this work.

The multi-tooled drilling problem can be analyzed under both age replacement
and feedback policies in a manner similar to the one tool case. In general, the com-
putations become much more complicated, even under a block tool replacement

assumption.

7.2.3. Numerical Example

The ideas of the multi-tooled problem are demonstrated here in a two tool age
replacement analysis. Assume that each tool is a drill identical to the one considered
in Chapter 6. Thus, each of the two component diffusions has the same parameter
values. In this case, the threshold crossing distribution and density functions are

given in terms of the scalar functions by:

Qalt]0;u)=Qu(t|0;u)2-Qu(t|0;u) (7.2.3.1)

94 (t]0;8) =2¢4(t]0;u)[1-@Qu(t]0;u) (7.2.3.2)

The long term expected cost per part and long term expected cost per time were
computed using the same economic parameter values used in Chapter 6. The piece
profit (G) was chosen to be 1.00 dollar. The results are shown in Figs. 7.2.3.1 and

*

7.2.3.2 respectively.

Comparison of these figures to those for a single tool (Figs. 6.3.1.1 and 6.3.1.4)
with the same economic conditions reveals only small differences. The expected cost
per part graphs (Figs. 6.3.1.4 and 7.2.3.1) indicate that the optimal policy for two
tools uses a slightly slower‘ feed speed than for the one tool case. The expected cost

per time graphs (Figs. 6.3.1.1 and 7.2.3.2) indicate an earlier replacement age for the
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two tool case: 16 - 18 parts vs. 18 - 20 parts.

Generally, the optimal policies for the two tool case are somewhat more conser-

vative than the comparable policies for the one tool case.
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7.3. The Multi-Machine Problem: A Serial Transfer Line Example

Manufacturing systems are rarely as simple as the system considered in the dril-
ling problem. Typical manufacturing systems involve many operations on many
machines, with a variety of support equipment such as material handling and buffer
storage. All of these factors make the analysis of realistic manufacturing systems

much more complex than the analysis of a single machine. |

The intent here is to provide one framework for approaching more general
manufacturing systems, using the concepts developed for the single machine case.
The framework will be demonstrated through an example problem. The approach
taken is strongly motivated by practical concerns for dealing with real manufacturing
problems. That is, the concern is to develop techniques for controlling real systems
in such a way as to improve the performance of the system. Optimality is not an
issue here. The direction taken is very much an extension of the concepts laid down
in the development of the drilling problem. However, the presentation is only one
example of what the author believes is the true potential of the control theoretic

approach to manufacturing.

Consider a multi-ma?hine ma.nufa.cturiﬁg system, where each machine in the
system exhibits properties similar to those present in the drilling problem. That is,
each machine has tooling that wears with use and must be occasionally replaced.
Tool failure can result in scrapped parts. Also, the operational speed of each machine
is a controllable variable. The main difference between this problem and the single
machine problem is that the machines are now interconnected. Thus, the perfor-
mance of any one machine may affect the performance of the other machines and the

performance of the overall system. The problem is to devise ways of operating the
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system so as to obtain good overall performance.

It is intended that the multi-machine problem be viewed in an intelligent
manufacturing setting. That is, assume that information regarding the system (tool
wear, buffer levels, etc.) is available. This information is to be incorporated into the
operational decision process. There is another issue of great significance, however,
that arises in this problem. The issue is the distribution of control and information
in the manufacturing system. This issue is important both analytically and practi-

cally.

The complexity and size of manufacturing systems makes the design and imple-
mentation of systems with centralized control and information difficult. Further-
more, the volume of information that can arise can easily overwhelm the capabilities
of a communication system, especially if the information is required frequently for
control purposes. Also, centralized control can impact system reliability and expan-
dability. Finally, the design and implementation of such centralized systems is very

complex and error prone.

A more desirable situation might be attained with distributed control and infor-
mation. This has many advantages in terms of design, implementation, expandabil-
ity, and reliability. Unfortunately, distributed systems lead to decentralized control,
and this can greatly complicate the problem analytically. Also, it is not immediately
clear how the control and information should be distributed and organized. This

issue distinguishes the single machine and multi-machine problems.

The author believes that the practical advantages of distributed control and
information far outweigh the analytical disadvantages. However, this position can

only be supported if there are ways of eliciting good performance out of a distributed
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system. The problem that will be considered here will have that as its goal.

Returning now to the multi-machine problem, a diffusion-threshold model of
each machine is proposed. This effectively gives rise to a network of diffusion-
threshold processes, and possibly buffers and material handling equipment. This is
still far too general a problem to deal with, so only a very special class of systems will

be considered. This is the class of serial transfer lines.

The serial transfer lines considered here consist of a sequence of machines that
perform operations on the parts. It is assumed that there is no intermediate buffer
storage between machines. The material handling system (the transfer system) is
synchronous; all parts are transferred at the same time to the next machine in
sequence. The machines themselves are independent, however. It should be noted

that this is a common configuration for high volume production systems.

The implications of restricting attention to this class of manufacturing systems
are as follows. First, the production rate of the system can be no faster than the
production rate of the slowest machine in the system. Second, a failure in any one
machine results in a system stoppage until that machine is repaired. Consequently,

each machine in the transfer line can strongly influence the total system.

Analytic treatment of transfer lines under some restricted control policies (i.e.,
traditional) has been considered by other authors. That will not be the goal here.
Rather, an approach that builds upon the results of the single machine problem while
maintaining a distributed structure will be proposed. Since analytic treatment is not

immediately available, simulation will be used to test the approach for one simple

case.
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Machining economics problems for serial transfer lines have been considered in
the literature. Typically, these works have dealt with deterministic formulations of
the problem. In these formulations, tool life usually obeys a Taylor type formula.
The phenomena of tool failure is not generally represented. The policies proposed in
these deterministic analyses are of the age replacement type. One method that has
been suggested [Hil| is the following. The optimization procedure is algorithmic.
Optimize each machine individually with respect to the overall system criteria. From
this, determine the worst case (controlling) machine or machines. Call these the criti-
cal machines, since they determine the production rate. Now relax the operation
speeds of the non-critical machines in order to improve their economic performance.
Whether or not this is the best way to select machining parameters for serial transfer
lines will not be discussed here. Rather, the intent here will be to implement policies
in a related manner for purposes of comparison. That is, suppose that an essentially
local optimization is carried out for each machine in the transfer line, and the
optimal local policies are then implemented at each machine in a decentralized way.
The local policy may be age replacement, or feedback, or something else. This con-
cept gives rise to the following question. How do decentralized age replacement and

decentralized feedback policies compare?

Simulations have been carried out for an especially simple transfer line operating
under decentralized age replacement and decentralized feedback policies. This will be

described shortly. First, a few remarks are required.

It might be expected that most serial transfer lines will have one or more
machines that dominate the system performance. Similarly, there may be one or

more machines that have a relatively weak influence on the overall line performance.
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As an example, a 10 machine line with 4 critical failure prone machines and 6 unim-
portant reliable machines may behave in a manner similar to a line made up of just
the 4 critical machines. This is not proven here, but seems intuitively plausible. In
order to avoid this phenomenon, the simulated transfer line is composed of only 2

identical machines. This also keeps the simulation simple.

7.3.1. Simulation Desecription

A 2 machine serial transfer line with identical machines is considered. Part
transfer is synchronous. Each machine is similar to the one described in the drilling
problem. That is, feed speed is considered a variable that affects the rate of opera-
tion and the rate of tool wear. Each tool is susceptible to failure which necessitates
repair and causes the current part to be scrapped. There are a few differences from
the single machine case, however. Repair and maintenance work takes place serially
on a first request first served basis. This corresponds to a single worker/operator. If
a tool failure occurs on a machine, the other machine may continue until part com-
pletion. At that time, a repair on the failed machine may commence. A repair may
not begin while f:he other machine is still running. If both machines fail, repair
begins after the second failure. If a failure occurs in the first machine, the part is
scrapped and no part will be transferred to the second machine. That is, a hole
appears in the part stream. If a failure occurs at the second machine, the part is sim-
ply scrapped. The first machine has an unlimited supply of parts, and so holes never
appear there. A machine does not cycle if no part is present and hence no tool wear
occurs. A part is completed and credited toward production only if it makes it
through both machines successfully. Without loss of generality, the part transfer is

assumed to take no time.
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The control policies for the two machines are completely decentralized and share
no information. Although the second machine knows when a failure occurs in the

first machine because of the hole, this information is not used in decision making.

The tool wear/tool life models for each machine are identical to the one con-
sidered in Chapter 6. That is, each tool is modeled by a diffusion-threshold process
with coefficients as determined in Section 6.2. The economic parameters are identical
to those in Chapter 6 with a piece profit (G) value of 1.00 dollar. No partial credit

for a part is allowed.

7.3.2. Simulation Results

Simulations were run for two production situations under three control policies.
In all cases, both machines used identical policies. The three policies were taken from
the results in Chapter 6 for the case of a piece profit of 1.00 dollar. It was found
there that age replacement policy a worked best for the long term production situa-
tion and age replacement policy b was recommended for the batch production situa-
tion. Feedback policy g was recommended for overall performance. The results of
the simulations of a two machine serial transfer line are shown in Tables 7.3.2.1 and

7.3.2.2.

For the batch production situation (Table 7.3.2.1), policy b continues to give the
best economic performance. As before, this performance is gained at the expense of
scrap production and production time. Feedback policy g results in less profit, but

has much better scrap characteristics and is 17 minutes faster. Policy a gives the

worst economic performance.

The long term (4800 minutes) production situation (Table 7.3.2.2) shows policy

g to be clearly better in all characteristics except number of tools used. Note that
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policy b now gives better economic performance than policy a. This is an unexpected
result. In the single machine case policy g resulted in a 3.3% improvement over pol-
icy a. Here, though, a 6.8% improvement is realized. Policy g also gives a 4.5%

improvement over policy b as well as producing over 1500 more parts.

Based on the above results, it appears that the decentralized approach to imple-
menting feedback policies has some merit. In particular, for longer term production
runs, the results here indicate that this approach yields appreciable improvement
over the recommended age replacement policy. Furthermore, the improvement is
relatively greater than that seen in the single machine case. This is encouraging. Of
course, neither the age replacement nor the feedback policies considered here are
optimal, but they do represent a reasonable engineering compromise between com-
plexity, good performance, and practical concerns. Clearly, this approach warrants

further investigation in the future.
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Table 7.3.2.1

AR FR/FS
a b g
Production Time| 222 230 213
Profit 788 834 810
Scrap Parts 7 16 0
Tools Used 101 52 83
Parts/Tool 9.917 | 19.17 | 11.99
Production Rate | 4.509 | 4.356 | 4.685

Production in 2 Machine Serial Transfer

Line of 1000 Parts for G = 1

AR FR/FS
a b g
Parts Produced | 21641 | 20911 | 22488
Profit 17049 | 17428 | 18205
Scrap Parts 158 337 0
Tools Used 2182 | 1091 1876
Parts/Tool 9.917 | 19.17 | 11.99
Production Rate | 4.509 | 4.356 | 4.685

Table 7.3.2.2 Production in 2 Machine Serial Transfer
Line for 1 Week (4800 min) for G = 1




169

7.4. The Supervisor’s Problem

The supervisor’s problem was introduced in Chapter 3. The gist of the problem
is the determination of when to inspect and how to assign resources to a project.
The problem formulation allows for the possibility of occasional progress assessment

(i.e., feedback) and re-assignment of resources (control).

The supervisor’s problem is at once dissimilar and similar to the other manufac-
turing problems considered. The dissimilarity is perhaps most apparent. People
have repléced machines; reliabiﬁj:y and failure are no longer central to the problem;
the time to complete a task is now stochastic. However, the problems do have some
similarity. All represent problem situations that arise in manufacturing. All of the
problems capture viewpoints different than those present in usual problem formula-
tions. Finally, all of the problems admit a diffusion-threshold model allowing each

problem to be placed in a stochastic control theoretic setting.

The supervisor’s problem attempts to capture the true role of the supervisor in
scheduling problems. That is, most scheduling problems fail to include the underly-
ing dynamics of the system being scheduled. The supervisor’s problem extracts these

hidden dynamics and brings them to the front.

7.4.1. Diffusion-Threshold Model of the Supervisor’s Problem

A model of use in the supervisor’s problem using diffusion-threshold processes
was introduced in Section 4.6.6. The idea is to model the progress on a project as a
diffusion process, with the threshold representing the required amount of work for
project completion. The infinitesimal coefficients are functions of the amount of

resources committed to the project.
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Project assessment can now be represented as occasional measurement of the
diffusion process. The supervisor has the role of a controller. Based upon measure-
ment feedback of project progress, resources are re-assigned to the project. However,
the supervisor has the additional duty of scheduling the next assessment. Thus, the

interval between measurements is in general random.

Some simplifying assumptions will be made. Assume that the amount of
resources committed to the project is constant between assessments. Thus, the
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