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Abstract. We describe a framework and equations used to model and predict the behavior of multi-
agent systems (MASs) with learning agents. A difference equation is used for calculating the progression
of an agent’s error in its decision function, thereby telling us how the agent is expected to fare in the
MAS. The equation relies on parameters which capture the agent’s learning abilities, such as its change
rate, learning rate and retention rate, as well as relevant aspects of the MAS such as the impact that
agents have on each other. We validate the framework with experimental results using reinforcement
learning agents in a market system, as well as with other experimental results gathered from the Al
literature. Finally, we use PAC-theory to show how to calculate bounds on the values of the learning
parameters.
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1. Introduction

With the steady increase in the number of multi-agent systems (MASs) with learning
agents [5, 9, 10, 31] the analysis of these systems is becoming increasingly impor-
tant. Some of the research in this area consists of experiments where a number of
learning agents are placed in a MAS, then different learning or system parameters
are varied and the results are gathered and analyzed in an effort to determine how
changes in the individual agent behaviors will affect the system behavior. We have
learned about the dynamics of market-based MASs using this approach [34]. How-
ever, in this article we will take a step beyond these observation-based experimental
results and describe a framework that can be used to model and predict the behav-
ior of MASs with learning agents. We give a difference equation that can be used
to calculate the progression of an agent’s error in its decision function. The equa-
tion relies on the values of parameters which capture the agents’ learning abilities
and the relevant aspects of the MAS. We validate the framework by comparing its
predictions with our own experimental results and with experimental results gath-
ered from the Al literature. Finally, we show how to use probably approximately
correct (PAC) theory to get bounds on the values of some of the parameters.

The types of MAS we study are exemplified by the abstract representation shown
in Figure 1. We assume that the agents observe the physical state of the world
(denoted by w in the figure) and take some action (a) based on their observation
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Figure 1. The agents in a MAS.

of the world state. An agent’s mapping from states to actions is denoted by the
decision function () inside the agent. Notice that the “physical” state of the world
includes everything that is directly observable by the agent using its sensors. It
could include facts such as a robot’s position, or the set outstanding bids in an
auction, depending on the domain. The agent does not know the decision functions
of the other agents. After taking action, an agent can change its decision function
as prescribed by whatever machine-learning algorithm the agent is using.

We have a situation where agents are changing their decision function based
on the effectiveness of their actions. However, the effectiveness of their actions
depends on the other agents’ decision functions. This scenario leads to the imme-
diate problem: if all the agents are changing their decisions functions, then it is not
clear what will happen to the system as a whole. Will the system settle to some sort
of equilibrium where all agents stop changing their decision functions? How long
will it take to converge? How do the agents’ learning abilities influence the system’s
behavior and possible convergence? These are some of the questions we address in
this article.

Section 2 presents our framework for describing an agent’s learning abilities and
the error in its behavior. Section 3 presents an equation that can be used to predict
an agent’s expected error, as a function of time, when the agent is in a MAS com-
posed of other learning agents. This equation is simplified in Section 4, by making
some assumptions about the type of MAS being modeled. Section 5 then defines the
last few parameters used in our framework—volatility and impact. Section 6 gives
an illustrative example of the use of the framework. The predictions made by our
framework are verified by our own experiments, as shown in Section 7, and with the
experiments of others, as shown in Section 8. The use of PAC theory for determin-
ing bounds on the learning parameters is detailed in Section 9. Finally Section 10
describes some of the related work and Section 12 summarizes our claims.

2. A framework for modeling MASs

In order to analyze the behaviors of agents in MASs composed of learning agents,
we must first construct a formal framework for describing these agents. The frame-
work must state any assumptions and simplifications it makes about the world,
the agents, and the agents’ behaviors. It must also be mathematically precise, so
as to allow us to make quantitative predictions about expected behaviors. Finally,
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the simplifications brought about because of the need for mathematical precision
should not be so constraining that they prevent the applicability of the framework to
a wide variety of learning algorithms and different types of MASs. We now describe
our framework and explain the types of MASs and learning behaviors that it can
capture.

2.1.  The world and its agents

A MAS consists of a finite number of agents, actions, and world states. We let N
denote the finite set of agents in the system. W denotes the finite set of world states.
Each agent is assumed to have a set of perceptors (e.g., a camera, microphone, bid
queue) with which it can perceive the world. An agent uses it’s sensors to “look” at
the world and determine which world state w it is in; the set of all these states is
W . A;, where |A4;| > 2, denotes the finite set of actions agent, i € N can take.

We assume discrete time, indexed in the various functions by the superscript ¢,
where ¢ is an integer greater than or equal to 0. The assumption of discrete time
is made, for practical reasons, by a number of learning algorithms. It means that,
while the world might be continuous, the agents perceive and learn in separate
discrete time steps.

We also assume that there is only one world state w at each time, which all
the agents can perceive in its completeness. That is, we assume the environment
is accessible (as defined in [26, p. 46]). This assumption holds for market systems,
in which all the actions of all the agents are perceived by all the agents, and for
software agent domains, in which all the agents have access to the same information.
However, it might not hold for robotic domains where one agent’s view of the world
might be obscured by some physical obstacle. Even in such domains, it is possible
that there is a strong correlation between the states perceived by each agent. These
correlations could be used to create equivalency classes over the agents’ perceived
states, and these classes could then be used as the states in W.

Finally, we assume the environment is deterministic [26, p. 46]. That is, the agents’
combined actions will always have the expected effect. Of course, agent i might not
know what action agent j will take, so i might not know the eventual effect of its
own individual action.

2.2. A description of agent behavior

In the types of MASs we are modeling, every agent i perceives the state of the
world w, and takes an action a;, at each time step. We assume that every agent’s
behavior, at each moment in time, can be described with a simple state-to-action
mapping. That is, an agent’s choice of action is solely determined by its current
state-to-action mapping and the current world w.

Formally, we say that agent i’s behavior is represented by a decision function (also
known as a “policy” in control theory, and a “strategy” in game theory), given by
dl: W — A;. This function maps each state w € W to the action a; € A;, that agent
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i will take in that state, at time ¢. This function can effectively describe any agent
that deterministically chooses its action based on the state of the world. Notice that
the decision function is indexed with the time ¢. This allows us to represent agents
that change their behavior.

The action agent i should take in each state w is given by the target function
Al: W — A;, which also maps each state w € W to an action a; € A4,. The agent
does not have direct access to its target function. The target function is used to
determine how well an agent is doing. That is, it represents the “perfect” behavior
for a given agent. An agent’s learning task is to get its decision function to match
its target function as much as possible.

Since the choice of action for agent i often depends on the actions of other
agents, the target function for i needs to take these actions into account. That is,
in order to generate A, one would need to know &} (w) for all j € N_; and w € W.
These 8}(w) functions tell us the actions that all the other agents will take in every
state w. For example, in order for one to determine what an agent should bid in
every world w of an auction-based market system, one will need to know what the
other agents will bid in every world w. One can use these actions, along with the
state w, in order to identify the best action for i to take.

An agent’s §/(w) can change over time, so that 3™ # §!. These changes in an
agent’s decision function reflect its learned knowledge. The agents in the MASs we
consider are engaged in the discrete action/learn loop shown in Figure 2. The loop
works as follows: At time ¢ the agents perceive a world w' € W, which is drawn
from a fixed distribution %(w). Then they each take the action dictated by their 3!
functions; all of these actions are assumed to be taken effectively in parallel. Lastly,
they each receive a payoff which their respective learning algorithms use to change
the 8! so as to, hopefully, better match A!. By time ¢ + 1, the agents have new &/*'
functions, and are ready to perceive the world again and repeat the loop. Notice
that, at time ¢, an agent’s A} is derived by taking into account the &; of all other
agents j € N_,.

We assume that Z(w) is a fixed probability distribution from which we take the
worlds seen at each time. This assumption is not unreasonably limiting. For example,
in an economic domain where the new state is the new good being offered, or in
an episodic domain where the agents repeatedly engage in different games (e.g. a
Prisoner’s Dilemma competition), there is no correlation between successive world
states, or between these states and the agents’ previous actions. However, in a
robotic domain, one could argue that the new state of the world will depend on
the current state of the world; after all, the agents probably move very little each
time step.

New world ¢ € D—Perceive world wt—>Take action J;(w’)

carn Receive payoff
or feedback

Figure 2. Action/Learn loop for an agent.
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Our measure of the correctness of an agent’s behavior is given by our error
measure. We define the error of agent i’s decision function &}(w) as

Q
—
K=
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> D(w) Pr[8i(w) # Aj(w)]

weW

Pr[3)(w) # Aj(w)]- (1]

e(d)) gives us the probability that agent i will take an incorrect action; it is in
keeping with the error definition used in computational learning theory [17]. We
use it to gauge how well agent i is performing. An error of 0, means that the agent
is taking all the actions dictated by its target function. An error of 1, means that the
agent never takes an action as dictated by its target function. Each action the agent
takes is either correct or incorrect, that is, it either matches the target function or
it does not. We do not model degrees of incorrectness. However, since the error
is defined as the average over all possible world states, an agent that takes the
correct action in most world states will have a small error. Extending the theory to
handle degrees of incorrectness is one of the subjects of our continuing work, see
Section 11. All the notation from this section is summarized in Figure 3.

2.3. The moving target function problem

The learning problem the agent faces is to change its 3! (w) so that it matches Af(w).
If we imagine the space of all possible decision functions, then agent i’s 8! and A}
will be two points in this space, as shown in Figure 4. The agent’s learning problem
can then be re-stated as the problem of moving its decision function as close as
possible to its target function, where the distance between the two functions is
given by the error e(d!). This is the traditional machine learning problem.
However, once agents start to change their decision functions (i.e., change their
behaviors) the problem of learning becomes more complicated, because these

N the set of all agents, where ¢ € N is one particular agent.

W the set of possible states of the world, where w € W is one particular
state.

A; the set of all actions that agent ¢ can take.

8t : W — A; the decision function for agent i at time ¢. It tells which
action agent ¢ will take in each world.

Al W — A; the target function for agent i at time ¢. It tells us what
action agent i should take. It takes into account the actions that
other agents will take.

e(8t) = Pr[6f(w) # Al(w) |w € D] the error of agent 7 at time ¢. It is the
probability that ¢ will take an incorrect action, given that the worlds
w are taken from the fixed probability distribution D.

Figure 3. Summary of notation used for describing a MAS and the agents in it.
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Figure 4. The traditional learning problem.

changes might cause changes in the other agents’ target functions. We end up with
a moving target function, as seen in Figure 5. In these systems, it is not clear if
the error will ever reach 0 or, more generally, what the expected error will be as
time goes to infinity. Determining what will happen to an agent’s error in such a
system, is what we call the moving target function problem, which we address in
this article. However, we will first need to define some parameters that describe
the capabilities of an agent’s learning algorithm.

2.4. A model of learning algorithms

An agent’s learning algorithm is responsible for changing ! into 8/, so that it is
a better match of Al. Different machine learning algorithms will achieve this match
with different degrees of success. We have found a set of parameters that can be
used to model the effects of a wide range of learning algorithms. The parameters
are: Change rate, Learning rate, Retention rate, and Impact; they will be explained
in this section, except for Impact, which will be introduced in Section 5. These
parameters, along with the equations we provide, form the CLRI framework (the
letters correspond to the first letter of the parameters’ names).

After agent i takes an action and receives some payoff, it activates its learning
algorithm, as we showed in Figure 2. The learning algorithm is responsible for using
this payoff in order to change & into 8!, making 8! match A! as much as possible.
We can expect that for some w it was true that 8!(w) = Al(w), while for some other
w this was not the case. That is, some of the w — a; mappings given by &/(w) might
have been incorrect. In general, a learning algorithm might affect both the correct
and incorrect mappings. We will treat these two cases separately.

We start by considering the incorrect mappings and define the change rate of
the agent as the probability that the agent will change at least one of its incorrect

t41
61l

y e(st+)
i

9

AT At
e(d}) ' Move

Figure 5. The learning problem in learning MASs.
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mappings. Formally, we define the change rate ¢; for agent i as

The change rate tells us the likelihood of the agent changing an incorrect mapping
into something else. This “something else” might be the correct action, but it could
also be another incorrect action. The probability that the agent changes an incorrect
mapping to the correct action is called the learning rate of the agent. It is defined
as [, where

v, P () = Al(w) | 3!(w) # Al(w)] = . [3]

There are two constraints which must always be satisfied by these two rates. Since
changing to the correct mapping implies that a change was made, the value of /,
must be less than or equal to ¢;, that is, /; < ¢; must always be true. Also, if | 4;| = 2,
then ¢; = [, since there are only two actions available, so the one that is not wrong
must be right.

The complementary value for the learning rate is 1 — /;, and refers to the proba-
bility that an incorrect mapping does not get changed to a correct one. An example
learning rate of /;, = 0.5, means that if agent i initially has all mappings wrong, it
will make half of them match the original target function after the first iteration.

We now consider the agent’s correct mappings and define the retention rate as
the probability that a correct mapping will stay correct in the next iteration. The
retention rate is given by r; where

V., Pr8i(w) = Aj(w) | §j(w) = Aj(w)] = r;. (4]

We propose that the behavior of a wide variety of learning algorithms can be cap-
tured (or at least approximated) using appropriate values for c;, /;, and r;. Notice,
however, that these three rates claim that the w — a mappings that change are
independent of the w that was just seen. We can justify this independence by not-
ing that most learning algorithms usually perform some form of generalization.
That is, after observing one world state w, and the payoff associated with it, a typ-
ical learning algorithm is able to generalize what it learned to some other world
states. This generalization is reflected in the fact that the change, learning, and
retention rates apply to all w’s. However, a more precise model would capture the
fact that, in some learning algorithms, the mapping for the world state that was just
seen is more likely to change than the mapping for any other world state.

The rates are not time dependent because we assume that agents use one learning
algorithm during their lifetimes. The rates capture the capabilities of this learning
algorithm and, therefore, do not need to vary over time.

Finally, we define volatility to mean the probability that the target function will
change from time ¢ to time ¢ + 1. Formally, volatility is given by v; where

¥, PrlA (w) # Aj(w)] = v;. [5]
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In Section 5, we will show how to calculate v, in terms of the error of the other
agents. We will then see that volatility is not a constant but, instead, varies with
time.

3. Calculating the agent’s error

We now wish to write a difference equation that will let us calculate the agent’s
expected error, as defined in Equation [1], at time ¢ + 1 given the error at time ¢
and the other parameters we have introduced. We can do this by observing that
there are two conditions that determine the new error: whether Al (w) = Al(w)
or not, and whether &/ (w) = A!(w) or not. If we define a = A" (w) = Al(w), and
b = 8!(w) = Al(w), we can then say that we need to consider the four cases where:
aAb,an—b,—a Db, and —a A —b. Formally, this implies that
Pr[d/"(w) # A (w)] = Pr[d;" (w) # A (w) A a A b]

+Pr[8 (w) # A (w) Aa A —b]

+Pr[3"(w) # A" (w) A —a A D]

+Pr[d/"(w) # AT (w) A —a A —b], [6]

since the four cases are exclusive of each other. Applying the chain rule of proba-
bility, we can rewrite each of the four terms in order to get

Pr[d (w) # A7 (w)]
= Pr[a A b] - Pr[3/" (w) # A" (w) | a A D]
+ Prla A —b] - Pr[3"'(w) # A" (w) | a A —b]
+ Pr[—a A b] - Pr[8* (w) # AT (w) | —a A b]
+ Pr[—a A =b] - Pr[3" (w) # AT (w) | —a A —b]. [7]

We can now find values for these conditional probabilities. We start with the first
term where, after replacing the values of a and b, we find that

Pr[8;"(w) # A7 (w) | A7 (w) = Aj(w) A Bj(w) = Aj(w)] =1 -1, (8]

Since the target function does not change from time ¢ to ¢ + 1, and the agent was

correct at time ¢, the agent will also be correct at time ¢ + 1; unless it changes its

correct w — a mapping. The agent changes this mapping with probability 1 — r;.
The value for the second conditional probability is

Pr[8;" (w) # A7 (w) | A7 (w) = Aj(w) Adj(w) # Aj(w)] =1— 1. (9]
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In this case the target function still stays the same, but the agent was incorrect. If
the agent was incorrect, then it will change its decision function to match the target
function with probability /;. Therefore, the probability that it will be incorrect next
time is the probability that it does not make this change, or 1 — /,.

The third probability has a value of

Pr(8/"! (w) # AT (w) | A7 (w) # Aj(w) A 8)(w) = Al(w)]
=+ (1 -r)-B). [10]

In this case the agent was correct and the target function changes. This means that if
the agent retains the same mapping, which it does with probability 7;, then the agent
will definitely be incorrect at time ¢ + 1. If it does not retain the same mapping,
which happens with probability 1 — 7;, then it will be incorrect with probability B,
where

B = Pr[5/" (w) # Al (w)[8{(w) = Al(w) A A (w) # Al (w)
A B (w) # Al(w)]. [11]

Finally, the fourth conditional probability has a value of

Prd7 (w) # AT (w) | A7 (w) # Aj(w) A 8j(w) # Aj(w)]

=1 -¢)D+1;+ (¢c; = )F, [12]
where
D = Pr[dj(w) # A" (w)[8}(w) # Aj(w) A AT (w) # Al(w)] [13]
F = Pr[5 (w) # A ()b (w) # Al(w) A A (1) # Al(w)
AL (W) # Al(w) A B (w) # B(w)]. [14]

This is the case where the target function changes, and the agent was wrong. We
have to consider three possibilities. The first possibility is for the agent not to change
its decision function, which happens with probability 1 — ¢;. The probability that the
agent will be incorrect in this case is given by D. The second possibility, when
the agent changes its mapping to the correct function, has a probability of /;, and
ensures that the agent will be incorrect the next time. The third possibility happens,
with probability ¢; — [;, when the agent changes its mapping to an incorrect value.
In this case, the probability that it will be wrong next time is given by F.
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We can substitute Equations [8-10], and [12] into Equation [7], substitute the
values of a and b, and expand Pr[a A b] into Pr[a | b] - Pr[b], in order to get

E[e(d"")] = E[ > D(w) Pr[8i (w) # Af”(w)]]

= Y (w)(Pr[Al! (w) = Al (w)[3! (w) = Al(w)]

-Pr[3i(w) = Aj(w)] - (1 - 1)

£ PE[A () = AL ()3 (1) # Al(w)]

-Pr[3i(w) # Aj(w)] - (1-1)

+ Pr[AT (w) # Al(w)[3!(w) = Al(w)]

-Pr[3j(w) = Aj(w)] - (r; + (1—r,) - B)

§ Pe[AL (1) # AL(w)5!(w) # A (w)]

-Pr[d)(w) # Aj(w)]

“(L=¢)D+1;+ (c; = [))F). [15]

Equation [15] will model any MAS whose agent learning can be described with
the parameters presented Section 2.4, and whose action/learn loop is the same as
we have described. We can use Equation [15] to calculate the successive expected
errors for agent i, given values for all the parameters and probabilities. In the next
section we show how this is done in a simple example game.

3.1.  The matching game

In this matching game we have two agents i and j, each of whom, in every world w,
wants to play the same action as the other one. Their set of actions is 4; = A4;, where
we assume |A4;| > 2 (for | 4;| = 2 the equation is simpler). After every time step, the
agents both learn and change their decision functions in accordance to their learning
rates, retention rates, and change rates. Since the agents are trying to match each
other, in this game it is always true that Aj(w) = 8/(w) and Aj(w) = &;(w). Given
all this information, we can find values for some of the probabilities in Equation [15]
(including values for Equations [11], [13] and [14]) and rewrite (see Appendix A
for derivation) it as:

E[e(3™)] = > Qb(w){rj Pr[dj(w) = Aj(w)]- (1 —r) + (1 —¢))

weW

Pr[8i(w) # Al(w)]- (1 =)+ (1 - r)

-Pr[3!(w) = Al(w)] - (rz- +(1-7)- (E: j))
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+ ¢; - Pr[3i(w) # Aj(w)]

. (1 — 1+ cil; (14 - |1j1;|r_li(21 — )= Ci)} [16]

We can better understand this equation by plugging in some values and simplifying.
For example, lets assume that r; = r; = 1, and /; = [; = 1, which implies that
¢; = ¢; = 1. This is the case where the two agents always change all their incorrect
mappings, so as to match their respective target functions at time ¢. That is, if we
had 8/(w,) = x and &/ (w,) = y, then at time ¢ + 1 we will have 8*'(w,) = y and
S;H(wl) = x. This means that agent i changes all its incorrect mappings to match j,
while j changes to match i, so all the mappings stay wrong after all (i.e., i ends up
doing what j did before, while j does what i did before). The error, therefore, stays
the same. We can see this by plugging the values into Equation [16]. The first three
terms will become 0, and the fourth term will simplify to the definition of error, as
given by Equation [1]. Since the fourth term is the only one that is non-zero, we
end up with E[e(3!")] = e(8!).

We can also let ¢; and /; (keeping ¢; = [; = 1) be arbitrary numbers, which gives
us E[e(3!™)] = c;e(d!). This tells us that the error will drop faster for a smaller
change rate ¢;. The reason is that i’s learning (remember /; < ¢;) in this game is
counter-productive because it is always made invalid by j’s learning rate of 1. That
is, since j is changing all its mappings to match i’s actions, i’s best strategy is to
keep its actions the same (i.e., ¢; = 0).

4. Further simplification

We can further simplify Equation [15] if we are willing to make two assumptions.
The first assumption is that the new actions chosen when either &;(w) changes
(and does not match the target), or when A!(w) changes, are both taken from flat
probability distributions over A;. By making this assumption we can find values for
B, D, and F, namely:

_l-2 A3
Tal-1 T T a2

[17]

The second assumption we make is that the probability of A}(w) changing, for a
particular w, is independent of the probability that 8!(w) was correct. In Section 3.1
we saw that in the matching game, the probabilities of Al(w) and &!(w) changing
were correlated since, if 8;(w) was wrong then §;(w) was also wrong, which meant
J would probably change 8}(w), which would change Aj(w).

However, the matching game is a degenerate example in exhibiting such tight
coupling between the agents’ target functions. In general, we can expect that there
will be a number of MASs where the probability that any two agents i and j are
correct is uncorrelated (or loosely correlated). For example, in a market system, all
sellers try to bid what the buyer wants, so the fact that one seller bids the correct
amount says nothing about another seller’s bid. Their bids are all uncorrelated. In
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fact, the Distributed Artificial Intelligence literature is full of systems that try to
make the agents’ decisions as loosely-coupled as possible [19, 21].

This second assumption we are trying to make can be formally represented by
having Equation [18] be true for all pairs of agents i and j in the system.

Pr(3)(w) = Aj(w) A 8(w) = Al(w)]
= Pr([3}(w) = Aj(w)] - Pr[d)(w) = Aj(w)] [18]
Once we make these two assumptions we can rewrite Equation [15] as:

E[e(3™)] = > @(w)(Pr[A;“(w) = Al(w)] - (Pr[8!(w) = A{(w)] - (1 — ;)

weW

+ Pr[di(w) # Al(w)] - (1 —1,)) + Pr[A]" (w) # Al(w)]
(pelsin = ] (n+ - (5153))

ris sl (2B o

Some of the probabilities in this equation are just the definition of v;, and others
simplify to the agent’s error. This means that we can simplify Equation [19] to:

V] 1 _ |Ai|ri_1)
E[e(st™)] = 1—r + vi<—|Ai| -

+e(3Y) <r,. — I+ v,.<|Ai|(l"|;1ir|")_+1 L cl’)) [20]

Equation [20] is a difference equation that can be used to determine the expected
error of the agent at any time by simply using E[e(3:™")] as the e(3!) for the next
iteration. While it might look complicated, it is just the function for a line y =
mx + b where x = ¢(8') and y = e(3!™). Using this observation, and the fact that
e(3'™") will always be between 0 and 1, we can determine that the final convergence
point for the error is the point where Equation [20] intersects the line y = x. The
only exception is if the slope equals —1, in which case we will see the error oscillating
between two points.

By looking at Equation [20] we can also determine that there are two “forces”
acting on the agent’s error: volatility, and the agent’s learning abilities. The volatility
tends to increase the agent’s error past its current value, while the learning reduces
it. We can better appreciate this effect by separating the v; terms in Equation [20],
and plotting the v, terms (volatility), and the rest of the terms (learning) as two
separate lines. By definition, these will add up to the line given by Equation [20].
We have plotted these three lines and traced a sample error progression in Figure 6.
The error starts at 0.95 and then decreases to eventually converge to 0.44. We notice
the learning curve always tries to reduce the agent’s error, as confirmed by the fact
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Figure 6. Error progression for agent i, assuming a fixed volatility v; = 0.2, ¢; =1, [, =03, r, =1,
|4;| = 20. We show the error function (e(3:™")), as well as its two components: learning and volatility.
The line y = x allows us trace the agent’s error as it starts at 0.95 and converges to 0.44.

that its line always falls below y = x. Meanwhile, the volatility adds an extra error.
This extra error is bigger when the agent’s error is small since, any change in the
target function is then likely to increase the agent’s error.

5. Volatility and impact

Equation [20] is useful for determining the agent’s error when we know the volatility
of the system. However, it is likely that this value is not available to us (if we knew it,
we would already know a lot about the dynamics of the system). In this section, we
determine the value of v; in terms of the other agents’ changes in their decision
functions. That is, in terms of Pr[8}+1 # 8f], for all other agents j.

In order to do this, we first need to define the impact ;; that agent j’s changes
in its decision function have on i’s target function.

Vew 1 = Pr[Aﬁ“(w) # A;(w)|8;.+1(w) # 8;(“’)] [21]

We can now start to define volatility by first determining that, for two agents i
and j

Vuew Vi = Pr[Al" (w) # Aj(w)]
= Pr[A/Y (w) # Al(w)[37! (w) # 8(w)] - Pr[8: (w) # 8(w)]
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+Pr[AT (w) # Al(w)[3 (w) = d(w)]
P8 (w) = 8j(w)]. [22]

The reader should notice that volatility is no longer constant; it varies with time
(as recorded by the superscript). The first conditional probability in Equation [22]
is just I;;. The second one we will set to 0, since we are specifically interested in
MASs where the volatility arises only as a side-effect of the other agents’ learning.
That is, we assume that agent i’s target function changes only when j’s decision
function changes. For cases with more than two agents, we similarly assume that
one agent’s target function changes only when some other agent’s decision function
changes. That is, we ignore the possibility that outside influences might change an
agent’s target function.

We can simplify Equation [22] and generalize it to N agents, under the assump-
tion that the other agents’ changes in their decision functions will not cancel each
other out, making A! stay the same as a consequence. v; then becomes

Vuew Vi = Pr[A7 (w) # Aj(w)]
=1— [T (1= I; Pr[8:* (w) # 8 (w)]). [23]

JeN_;

We now need to determine the expected value of Pr[Sj-“(w) # d(w)] for any
agent. Using i instead of j we have
Voew Pr[8w # 8j(w)]
= Prdj(w) # Aj(w)] - Pr[d{" (w) # Aj(w)|3(w) # Aj(w)]
+Pr[8{(w) = Aj(w)] - Pr[8;" (w) # Al(w)[8j(w) = Aj(w)], [24]

where the expected value is:
E[Pr[5"! () # 8:(w)]] = ce(3!) + (1 ) - (1 = e(8)). 125)

We can then plug Equation [25] into Equation [23] in order to get the expected
volatility

E]=1- ] 1- Ij,-(cje(Sj-) +(1=r)- (1- 6(8[,))) [26]

JEN_;

We can use this expected value of v} in Equation [20] in order to find out how
the other agents’ learning will affect agent i. In MASs that have identical learning
agents (i.e., their ¢, /, r, and [ rates are all the same, and they start with the same
initial error) we can replace the multiplier in Equation. [26] with an exponent of
|N| — 1. We use this simplification later in Section 8.2.
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6. An example with two agents

In a MAS with just two agents i and j, we can use Equation [26] to rewrite Equa-
tion [20] as

E[e@)] = 1=+ Tylere(®)) + (1= - (1= @) ()

+ e(8§){ri — L+ Li(cie(8)) + (1= ;) - (1 - e(3))))

. <|Ai|(li|1_4i’|’i)__: L= "’i) } [27]

We can now use Equation [27] to plot values for one particular example. Let
us say that [, = [, = 0.2, ¢, =¢; =1, r, = r; = 1, |A;| = |A4;| = 20, and we let
the impacts [; and I;; vary between zero and one. Figure 7 shows the final error,
after convergence, for this situation. It shows an area where the error is expected
to be below 0.1, corresponding to low values for either I;;, I;; or both. This area
represents MASs that are loosely coupled, i.e., one agent’s change in behavior does
not significantly affect the other’s target function. In these systems we can expect
that the error will eventually! reach a value close to zero. We see that as the impact
increases the final error also increases, with a fairly abrupt transition between a final
error of 0, and bigger final errors. This abrupt transition is characteristic of these

COO0000000
[SEN NN NS TORNTSE

Figure 7. Plot of Final Error for agent i, given [, =1, =0.2, r,=r;, =1, ¢; = ¢; = 1, |4;| = |4;| = 20.
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types of systems, where there are tendencies for the system to either converge or
diverge, and both of them are self-enforcing behaviors. Notice also that the graph
is not symmetric—/;; has more weight in determining /’s final error than /;;. This
result seems counterintuitive, until we realize that it is j’s error that makes it hard
for i to converge to a small error. If /;; is high then, if i has a large error then ;s
error will increase, which will make j change its decision function often, and make
it hard for i to reduce its error. If /;; is low then, even if I;; is high, j will probably
settle down to a low error, and as it does i will also be able to settle down to a low
error.

If we were about to design a MAS, we would try to build it so that it lies in the
area where the final error is zero. This way, we can expect all agents to eventually
have the correct behavior. We note that a substantial percentage of the research
in DAI and MAS deals with taking systems that are not inherently in this area of
near-zero error, and designing protocols and rules of encounter so as to move them
into this area, as in [25].

The fact that the final error is 1 for the case with I;; = I; = 1 can seem non-
intuitive to readers familiar with game theory. In game theory there are many games,
such as the “matching game” from Section 3.1, where two agents have an impact
of 1 on each other. However, it is known [3] that, in these games, two learning
agents will eventually converge to one of the equilibria (if there are any), making
their final error equal to 0. This is certainly true, and it is exactly what we showed
in Section 3.1. The same result is not seen in Figure 7, because the figure was plot-
ted using our simplified Equation [20], which makes the simplifying independence
assumption given by Equation [18]. This assumption cannot be made in games, such
as the matching game because, in these games, there is a correlation between the
correctness of each of the agents actions. Specifically, in the matching game it is
always true that both agents are either correct, or incorrect, but it is never true that
one of them is correct while the other one is incorrect, i.e., either they matched, or
they did not match.

Another view of the system is given by Figure 8 which shows a vector plot of the
agents’ errors. We can see how the bigger errors are quickly reduced, but the pace
of learning decreases as the errors get closer to the convergence point. Notice also
that an agent’s error need not change in a monotonic fashion. That is, an agent’s
error can get bigger for a while before it starts to get smaller.

7. A simple application

In order to demonstrate how our theory can be used, we tested it on a simple
market-based MAS. The game consists of three agents, one buyer and two seller
agents i and j. The buyer will always buy at the cheapest price—but the sellers do
not know this fact. In each time step the sellers post a price and the buyer decides
which of the sellers to buy from, namely, the one with the lowest bid. The sellers
can bid any one of 20 prices in an effort to maximize their profits. The sellers use
a reinforcement learning algorithm, with their reinforcements being the profit the
agent achieved in each round, or 0 if it did not sell the good at the time. In this
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Figure 8. Vector plot for e(3;) and e(3)), where [4;| = [4;] =20, 1, =1, =02, r,=r; =1, ¢, = 0.5,
¢;=1,1; =0.1, I;; = 0.3. It shows the error progression for a pair agents i and j. For each pair of
errors (e(3}), e(df)), the arrows indicate the expected (e(3™), e(di™)).

system we had one good being sold (|| = 1). As predicted by economic theory,
the price in this system settles to the sellers’ marginal cost, but it takes time to get
there due to the learning inefficiencies.

We experimented with different o; rates® for the reinforcement learning of
agent j, while keeping a; = 0.1 fixed, and plotted the running average of the error
of agent i. A comparison is shown in Figure 9. Figure 9(a) gives the experimental
results for three different values of a;. It shows i’s average error, over 100 runs,
as a function of time. Since both sellers start with no knowledge, their initial actions
are completely random which makes their error equal to 0.5. Then, depending on
a;, i’s error will either start to go down from there, or will first go up some and
then down. Eventually, i’s error gets very close to 0, as the system reaches a market

equilibrium.
We can predict this behavior using Equation [27]. Based on the game description,
we set |A;| = [4;| = 20, since there were 20 possible actions. We let r; = r; = 1,

because reinforcement learning with fixed payoffs enforces the condition that, once
an agent is taking the correct action, it will never change its decision function to
take a different action. The agent might, however, still take a wrong action, but only
when its exploration rate dictates it.

We then let I;; = I;; = 0.17 based on the rough calculation that each agent has
an equal probability of bidding any one of the 20 prices. If A] = 20, then [; for this
situation is the probability that j was also bidding 20 or above, i.e., 1/20, times the
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Figure 9. Comparison of observed and predicted error.
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probability that ;’s new price is lower than 20, i.e. 19/20. Similarly, if A} = 19, then I;
is equal to 2/20 times 18/20. The average of all of these probabilities is 0.17. A more
precise calculation of the impact would require us to find it via experimentation, by
actually running the system.

Finally, we chose /; = [; = ¢; = ¢; = 0.005 for the first curve (i.e., the one that
compares with a; = 0.1). We knew that for such a low «;, the learning and change
rate should be the same. The actual value was chosen via experimentation. The
resulting curve is shown in Figure 9(b). At this moment, we do not possess a formal
way of deriving learning and change rates from a-rates.

For the second curve (a; = 0.3) we knew that, since only «; had changed from
the first experiment, we should only change /; and c¢;. In fact, these two values
should only be increased. We found their exact values, again by experimentation,
to be /; = 0.04, ¢; = 0.4. For the third curve we found the values to be /; = 0.055,
¢;=038.

One difference we notice between the experimental and the theoretical results, is
that the experimental results show a longer delay before the error starts to decrease.
We attribute this delay to the agent’s initially high exploration rate. That is, the
agents initially start by taking all random actions, but progressively reduce this rate
of exploration. As the exploration rate decreases, the discrepancy between our the-
oretical predictions and experimental results is reduced.

In summary, while it is true that we found /; and c; by experimentation, all the
other values were calculated from the description of the problem. Even the relative
values of /; and ¢; follow the intuitive relation with «; that, as «; increases so does /;
and (even more) c;. Section 9 shows how to calculate lower bounds on the learning
rate. We believe that this experiment provides solid evidence that our theory can be
used to approximately determine the quantitative behaviors of MASs with learning
agents.

8. Application of our theory to experiments in the literature

In this section we show how we can apply our theory to experimental results found
in the Al and MAS literature. While we will often not be able to completely repro-
duce the authors’ results exactly, we believe that being able to reproduce the flavor
and the main quantitative characteristics of experimental results in the literature,
shows that our theory can be widely applied and used by practitioners in this area
of research.

8.1. Claus and Boutilier

Claus and Boutilier [6] study the dynamics of a system that contains two reinforce-
ment learning agents. Their first experiment puts the two agents in a matching game
exactly like the one we describe in Section 3.1 with [4;| = |A;| = 2. Their results
show the probability that both agents matched (i.e., 1 — e(8})) as time progressed.
Since they were using two reinforcement learning agents, it was not surprising that
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the curve they saw, seen in Figure 10(a), was nearly identical to the curve we saw in
our experiments with the two buying agents (Figure 9(a) with a; = a; = 0.1, except
upside-down).

We can reproduce their curve using our equation for the matching game
Equation [16]. The results can be seen in Figure 10(b). Our theory again fails to
account for the initial exploration rate. We can, however, confirm that by time 15,
their Boltzmann temperature (the authors used Boltzmann exploration) had been
reduced from an initial value of 16 to 3.29 and would keep decreasing by a factor
of 0.9 each time step. This means that by time 15, the agents were, indeed, starting
to do more exploitation (i.e., reduce their error), while doing little exploration.

8.2.  Shoham and Tennenholtz

Shohan and Tennenholtz [30] investigate how learning agents might arrive at social
conventions. The authors introduce a simple learning algorithm (strategy-selection
rule) called highest cumulative reward (HCR), which their agents use for learning
these conventions. Shoham and Tennenholtz also provide the results of a series of
experiments using populations of learning agents. We try to reproduce the results
they present in their Section 4.1, where they study the “coordination game” which
is similar to our matching game, but with only two actions.

The experiment in question involves 100 agents, all of them identical and all
of them using HCR. At each time instant the agents take one of two available
actions. The aim is for every pair of chosen agents to take the same action as each
other. Agents are randomly made to form pairs. The agents update their behavior
(i.e., apply HCR) after a given delay. The authors try a series of delays (from 0 to
200) and show that increasing the update delay decreases the percentage of trials
where, after 1600 iterations, at least 95% of the agents reached a convention. The
authors show surprise at finding this phenomenon. Their results are reproduced in
Figure 11(a) (cf. Figure 1 in their article). The number of actions for all agents is
easily set to |4;| = 2, which implies that we must have /; = ¢;. By examining HCR,
it is easy to determine that r, = 1 (i.e. if an agent took the right action, it will only
get more support for it). At first intuition, one’s impulse is to set I;; = 1 for every
pair of agents i and j. However, since there are 100 of them, and only pairs of them
interact at every time instant, the real impact is [; = 1/99.

We will now convert from their units of measurement into ours. In Figure 11(a)
we can see that their x-axis is called the update delay, which we will refer to as d.
This value is the number of time units that pass before the agent is allowed to
learn. For d = 0 the agent learns after every interaction (i.e., on every time f),
while for d = 200 the agent takes the same action for 200 time instances and only
learns after every 200 iterations. This means that we must set /; = (1/p(d + 1))
where p > 0. The value of p depends on their learning algorithm’s performance,
but we know that it must be a small number (<50) greater than 0. Through some
experimentation we settled on p = 6 (other values close to this one give similar
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Figure 11.  Comparing theory (b) with results from [30] (a).

results). Since in their graph they look at 0 < d < 200, we must then look at /,
where 1/1206 < [; < 1/6. Finally, we find the value of d in terms of /; to be

1
d=_r -1 [28]
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The y-axis of Figure 11(a) is the success, i.e., number of trials, out of 4000, where
at least 95% of the agents reached a convention. We will refer to this value as s.
We know that in s/4000 of the trials at least 95% of the agents have error close
to 0 (i.e., reaching a convention means that the agents take the right action almost
all the time), and for the rest of the trials the error was greater. We can approxi-
mately map this to an error by saying that in s/4000 of the trials the error was 0
(a slight underestimate), while in 1 — s/4000 of the trials the error was 1 (a slight
overestimate). We add these two up (the 0 makes the first term disappear) and
arrive at an equation that maps s to e(d;).

(@)~ (“n0 ) 29

The mapping from d to s is given by their actual data. Their data can be fit by
the following function:

(d —100)?

— 3900 — 4d —
s 100

[30]

Plugging Equation [28] into Equation [30], and the result into Equation [29], we
finally arrive at a function that maps their experimental results into our units:

4000 — (3900 —4(1/pl; = 1) — (w))

Final =
inal error 2000

[31]
for the range 1/1206 <[, < 1/6.

Now that we have values for ¢;, [, r;, I;, |A;|, a range for /;, and an equation
that maps their experimental results into our units, we can plot both functions, as
seen in Figure 11(b). The x-axis was plotted on a log-scale in order to better show
the shape of the experiment curve, otherwise it would appear mostly as a straight
line. For our theory curve we used Equations [20] and [26], and iterated for 1600
time units, just like in the experiment, and plotted the error at that point. For the
experiment curve we used Equation [31]. We plotted both of these curves in the
specified range for /,. The reader will notice that our theory was able to make
precise quantitative predictions. The maximum distance from our theory curve to
the experimental curve is 0.05, which means that our predictions for the final error
were, at worst, within 5% of the experimental values. Also, an error of about 5%
was introduced when mapping from their success percentage s to our error.

8.3. Others

There are several other examples in the literature where we believe our theory
can be successfully applied. Ishida [16, Chapter 3.7] gives results of an experiment
where two agents try to find each other in a 100 by 100 grid. He shows that if the
grid has few obstacles, it is faster if both agents move towards each other, while
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if there are many obstacles, it is faster if one of the agents stays still while the
other one searches for it. We believe that the number of obstacles is proportional
to the change rate that the agents experience and, perhaps, to the impact that
they have on each other. When there are no obstacles the agents never change
their decision functions (because their initial Manhattan heuristics lead them in the
correct path). As the number of obstacles increases, the agents will start to change
their decision functions as they move, which will have an impact on the other agent’s
target function. If, however, one of them stays put, this means that his change rate
is 0, so the other agent’s target function will stay still, and he will be able to reach
his target (i.e., error 0) quicker.

Notice that the problem of a moving target that Ishida studies is different from
the problem of a moving target function which we study. It is, however, interesting
to note their similarities, and how our theory can be applied to some aspects of that
domain.

Another possible example is given by [29]. They show two Q-learning agents
trying to cooperate in order to move a block. The authors show how different a rates
(B in their article) affect the quality of the result that the agents converge to. This
quality roughly corresponds to our error, except for the fact that their measurements
implicitly consider some actions to be better than others, while we consider an action
to be either correct or incorrect. This discrepancy would make it harder to apply our
theory to their results, but we still believe that a rough approximation is possible.
Our future work includes the extension of the CLRI framework to handle a more
general definition of error—one that attaches a utility to each state-action pair,
rather than the simple correct/incorrect categorization we use here.

9. Bounding the learning rate with sample complexity

In the previous examples we have used our knowledge of the learning algorithms to
determine the values of the agent’s ¢;, /;, and r; parameters. However, there might
be cases where this is not possible—the learning algorithm might be too complicated
or unknown. It would be useful, in these cases, to have some other measure of the
agent’s learning abilities, which could be used to determine some bounds on the
values of these parameters.

One popular measure of the complexity of learning is given by the Probably
Approximately Correct (PAC) theory [17], in the form of a measure called the
sample complexity. The sample complexity gives us a loose upper bound on the
number of examples that a consistent learning agent must observe before arriving
at a PAC hypothesis.

There are two important assumptions made by PAC-theory. The first assumption
is that the agents are consistent learners.® Using our notation, a consistent learner
is one who, once it has learned a correct w — a mapping, does not forget it. This
simply means that the agent must have r;, = 1. The second assumption is that the
agent is trying to learn a fixed concept. This assumption makes A = A! true for
all z.
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The sample complexity m of an agent’s learning problem is given by

m> %(m %) [32]

where |H| is the size of the hypothesis space for the agent. In other words, |H |
is the total number of different 8,(w) functions that the agent will consider. For
an agent with no previous knowledge we have |H| = | 4,|"!. However, agents with
previous knowledge might have smaller |H|, since this knowledge might be used to
eliminate impossible mappings. If a consistent learning agent has seen m examples,
then with probability at least (1 — v), it has error at most e.

While we cannot map the sample complexity m to a particular learning rate /,,
we can use it to put a lower bound on the learning rate for a consistent learning
agent. That is, we can find a lower bound for the learning rate of an agent who
does not forget anything it has seen, and who is trying to learn a fixed target func-
tion. Since the agent does not forget anything it has seen, we can deduce that its
retention rate must be »;, = 1. Since the target function is not changing, we know
that Pr[A™(w) # Al(w)] = 0 and Pr[A! (w) = AY(w)] = 1. We can plug these
values into Equation [19] and simplify in order to get:

E[e(3]")] = e(8]) - (1 — 1) [33]

We can solve the difference Equation [33], for any time #, in order to get:
Ele(d!)] = 6(8?) (1 =1 [34]

We now remember that after m time steps we expect, with probability (1 — v), the
error to be less than e. Since Equation [34] only gives us an expected error, not a
probability distribution over errors, we cannot use it to calculate the likelihood of
the agent having that expected error. That is, we cannot calculate the “probably” (vy)
part of probably approximately correct. We will, therefore, assume that the y chosen
for m is small enough, so that it will be safe to say that, after m time steps, the
error is less than €. In a typical application one uses a small vy because it guarantees
a high degree of certainty on the upper bound of the error.

Since we can now safely say that, after m time steps, the error is less than e,
we can then deduce that the /; for this agent should be small enough such that, if
n = m, then E[e(8")] < e. This is expressed mathematically as:

e(d) - (1-1)" <e [35]

We solve this equation for /; in order to get:

L>1- (%a?)y/m' [36]

This equation is not defined for ¢(3!) = 0. However, given our assumption of a
fixed target function and r, = 1, we already know, from Equation [33], that if an
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agent starts with an error of 0, it will maintain this error of 0 for any future time
t > 0. Therefore, in this case, the choice of a learning rate has no bearing on the
agent’s error, which will always be 0.

Equation [36] gives us a lower bound on the learning rate that a consistent learner
must have, given that it has sample complexity m, and based on an error €, and a
sufficiently small y. A designer of an agent that uses a reasonable learning algorithm
can expect that, if his agent has sample complexity m (for € error), then his agent
will have a learning rate of at least /;, as given by Equation [36]. Furthermore, if
a designer is comparing two possible agent designs, each with a different sample
complexity, but both with similarly powerful learning algorithms, he can calculate
bounds on the learning rates of both agents and compare their relative performance.

10. Related work

The topic of agents learning about agents arises often in the studies of complex-
ity [7]. In fact, systems where the agents try to adapt to endogenously created
dynamics are being widely studied [2, 15]. In these systems, like in ours, the agents
co-create their expectations as they learn and change their behaviors. Complexity
research uses simulated agents in an effort to understand the complex behaviors of
these systems as observed in the real world.

One example is the work of Arthur et al. [2], who arrive at the conclusion that sys-
tems of adaptive agents, where the agents are allowed to change the complexity of
their learning algorithms, end up in one of two regimes: a stable/simple regime
where it is trivial to predict an agent’s future behavior, and a complex regime
where the agents’ behaviors are very complex. It is this second regime that interests
complexity researchers the most. In it, the agents are able to reach some kind of
“equilibrium” point in model building complexity. These same results are echoed
by Darley and Kauffman [8] in a similar experiment. In this article we have not
allowed the agents to dynamically change the complexity of their learning algo-
rithms. Therefore, our dynamics are simpler. Allowing the agents to change their
complexity amounts to allowing them to change the values of their ¢, /, and r
parameters while learning.

However, while complexity research is very important and inspiring, it is only par-
tially relevant to our work. Our emphasis is on finding ways to predict the behavior
of MASs composed of machine-learning agents. We are only concerned with the
behavior of simpler artificial programmable agents, rather than the complex behav-
ior of humans, or the unpredictable behavior of animals.

The dynamics of MASs have also been studied by Kephart et al. [18]. In this work
the authors show how simple predictive agents can lead to globally cyclic or chaotic
behaviors. As the authors explain, the chaotic behaviors were a result of the simple
predictive strategies used by the agents. Unlike our agents, most of their agents are
not engaged in learning, instead they use simple fixed predictive strategies, such as
“if the state of the world was x ten time units before, then it will be x next time so
take action a”. The authors later show how learning can be used to eliminate these
chaotic global fluctuations.
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Matari¢ [22] has studied reinforcement learning in multi-robot domains. She
notes, for example, how learning can give rise to social behaviors [23]. The work
shows how robots can be individually programmed to produce certain group behav-
iors. It represents a good example of the usefulness and flexibility of learning agents
in multi-agent domains. However, the author does not offer a mathematical justifi-
cation for the chosen individual learning algorithms, nor does she explain why the
agents were able to converge to the global behaviors. Our research hopes to provide
the first steps in this direction.

One particularly interesting approach is taken by Carmel and Markovitch [4].
They work on model-based learning, that is, agents build models of other agents
via observations. They use models based on finite state machines. The authors show
how some of these models can be effectively learned via observation of the other
agent’s actions. The authors concentrate on the development of learning algorithms
that would let one agent learn a finite-state machine model of another agent. They
have not considered the case where two or more agents are simultaneously learning
about each other, which we study in this article. However, their work is more general
in the sense that they model agents as state machines, rather than the state-action
pairs we use.

Finally, a lot of experimental work has been done in the area of agents learn-
ing about agents [27, 36]. For example, Sen and Sekaran [28] show how learning
agents in simple MAS converge to system-wide optimal behavior. Their agents use
Q-learning, or modified classifier systems in order to learn. The authors implement
these agents and compare the performance of the different learning algorithms for
developing agent coordination. Hu and Wellman [12, 14] have studied reinforce-
ment learning in market-base MASs, showing how certain initial learning biases
can be self-fulfilling, and how learning can be useful but is affected by an agent’s
models of other agents. Claus and Boutilier [6] have also carried out experimen-
tal studies of the behavior of reinforcement learning agents. We have been able to
use the CLRI framework to predict some of their experimental results [33]. Other
researchers [13, 20, 32] have extended the basic Q-learning [35] algorithm for use
with MASs, in an effort to either improve or prove convergence to the optimal
behavior.

We have also successfully experimented with reinforcement learning simulations
[34], but we believe that the formal treatment elucidated in these pages will shed
more light into the real nature of the problem, and the relative importance of the
various parameters that describe the capabilities of an agent’s learning algorithm.

11. Limitations and future work

The CLRI framework places some constraints on the type of systems it can model,
which limits its usability. However, it is important to understand that, as we remove
the limitations from the CLRI framework, the dynamics of the system become much
harder to predict. In the extreme, without any limitations on the agents’ abilities, the
system becomes a complex adaptive system, as studied by Holland [11] and others
in the field of complexity. The dynamic behavior of these systems continues to be
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studied by complexity researchers with only modest progress. It is only by placing
limitations on the system that we were able to predict the expected error of agents
in the systems modeled by the CLRI framework.

Our ongoing work involves the relaxation of some of the constraints made by the
CLRI framework, so that it may become more easily and widely applicable, without
making the system dynamics impossible to analyze. We are targeting three specific
constraints.

1. The values of ¢;, [;, r;, and I;; cannot, in all situations, be mathematically deter-
mined from the system’s description. We have found that bounds for the c;,
l;, and r; values can often be determined when using reinforcement learning or
supervised learning. However, the bounds are often very loose. The values of the
I;; parameter depend on the particular system. Sometimes it is trivial to calculate
the impact, sometimes it requires extensive simulation.

2. The CLRI framework assumes that an agent’s action is either correct or incor-
rect. The framework does not allow degrees of correctness. Specifically, in many
systems the agents can often take several actions, any one of which is equally
good. When modeling these systems, the CLRI framework requires the user to
designate one of those actions as the correct one, thereby ignoring some possibly
useful information.

3. The world states are taken from a uniform probability distribution which does
not change over time. The environment is assumed to be episodic. As such, the
framework is limited in the type of domains it can effectively describe.

We are attacking these challenges with some of the same tools used by researchers
in complex adaptive systems, namely, agent-based simulations and co-evolving utility
landscapes. We believe we can gain some insight into the dynamics of adaptive
MASs by constructing and analyzing various types of MASs. We also believe that
the next step for the CLRI framework is the replacement of the current error
definition with a utility function. The agents can then be seen as searching for the
maximum value in the changing utility landscape defined by their utility function.
The degree to which the agents are successful on their climb to the landscape peaks,
depends on the abilities of their learning algorithm (change rate, learning rate, and
retention rate), and the speed at which the landscape changes as the other agents
change their behavior (impact).

The use of utility landscapes will allow us to consider an agent’s utility for any
particular action, rather than simply considering whether an action is correct or
incorrect. The landscapes will also allow us to consider systems where agents can-
not travel between any two world states in one time step. That is, the agents’
moves on the landscape will be constrained in the same manner as their actions
or behaviors are constrained the actual system. Finally, the new theory will likely
need to redefine the CLRI parameters. We hope the new parameters will be easy to
derive directly from the values that govern the machine-learning algorithms’ behav-
ior. These extensions will make the new theory applicable to a much wider set of
domains.
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12. Summary

We have presented a framework for studying and predicting the behavior of MASs
composed of learning agents. We believe that this framework captures the most
important parameters that describe an agents’ learning and the system’s rules of
encounter. Various comparisons between the framework’s predictions and experi-
mental results were given. These comparisons showed that the theoretical predic-
tions closely match our experimental results and the experimental results published
by others. Our success in reproducing these results allows us to confidently state the
effectiveness and accuracy of our theory in predicting the expected error of machine
learning agents in MASs.

Since our theory describes an agent’s behavior at a high-level (i.e., the agent’s
error), it is not capable of making system-specific predictions (e.g., predicting the
particular actions that are favored). These types of system-specific predictions can
only be arrived at by the traditional method of implementing populations of such
agents and testing their behaviors. However, we expect that there will be times when
the predictions from our theory will be enough to answer a designer’s questions. A
MAS designer that only needs to determine how “good” the agent’s behavior will
be, could probably use the CLRI framework. A designer that needs to know which
particular emergent behaviors will be favored by his agents will need to implement
the agents.

Finally, while we have given some examples as to how learning rates can be deter-
mined for particular machine learning implementations, we do not have any general
method for determining these rates. However, we showed how to use the sample
complexity of a learning problem to determine a lower bound on the learning rate
of a consistent learning agent. This bound is useful for quickly ruling out the pos-
sibility of having agents with high expected errors, and of stating that an agent’s
expected error will be, at most, a certain constant value. Still, if the agent’s learn-
ing algorithm is much better than the one assumed by a consistent learner (e.g., the
agent is very good at generalizing from one world state to many others), then these
lower bounds could be significantly inaccurate.

13. Derivation for matching game

If we can assume that the action chosen when an agent changes 8!(w) and that the
result does not match Al(w) (for some specific w) is taken from a flat probability
distribution, then we can say that:

4=z

We will now show how to calculate the fourth term in Equation [16]. For the
matching game we find that we can set:

D=1-1, [38]
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F=l+(1- zj)(:jf:—:;). [39]

Having | A4;| = 2 implies that ¢; = /;, this means that for this case we have
I=c)D+Li+(c; = L)F =1L+ 1 —-c)(1-1). [40]

For the case where |A4;| > 2, which is the case we are interested in, we can plug
in the values for D and F and simplify, in order to get the fourth term:

(Al - 1) + LA -1) —¢,
ity i i j 1‘ 41
=2 [41]

(1=—c)D+ 1L+ (c,—)F=1—-1,+

Notes

1. Notice that we are not representing how long it takes for the error to converge. This can easily be
done, and is just one more of the parameters our theory allows us to explore.

2. a is the relative weight the algorithm gives to the most recent payoff. « = 1, means that it will forget
all previous experience and use only the latest payoff to determine what action to take.

3. See [24, p. 162] for a formal definition of a consistent learner.
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