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ABSTRACT

Methods of plastic analysis of structures which were originally
developed for materials in which yield is unaffected by mean stress are
extended to materials which exhibit a dependence. Well known experi-
mental evidence suggests that this more general material model would
be appropriate for some soil and rock structures, and may be of use
for such diverse materials as concrete, ice, and plastics.

The analysis is concerned with the ideal rigid/plastic model of
the mathematical theory of plasticity. The complete mathematical de-
scription of a rigid/plastic material must include a yield criterion
which specifies the states of stress for which flow is possible and
a flow rule which relates these states of stress to the velocities
which are associated with them. For this description the Coulomb
yield criterion, which is linearly dependent on mean stress, is chosen
because of its mathematical simplicity and because of a record of
succesgsful application to plane strain problems of soll mechanics.
The flow rule which is assoclated with the Coulomb yield criterion by
the ideal rigi&/plastic theory predicts dilatation of the material in
the deforming region of a structure. This feature is absent in pre-
vious analyses based on materials in which yield is insensitive to
mean stress and where, as a consequence, deformation occurs at con-
stant volume.

Attention is confined to structures such as beams, plates, and
shells where the stress state can adequately be described as plane.
A basic shell element is considered in detaill and the nature of the
yield surface expressed in terms of generalized forces is delineated.
The analyses used here are generalizations of those used for materials
which are independent of mean stress. These generalizations are needed
to account for the dilatation of the deforming material.

The yield surface developed for the shell element is employed
in the limit analysis of a long cylindrical shell loaded by a ring of
pressure. Two different cases of loading are compared: one in which
the ring of pressure is applied from the inside and the other with
the ring of pressure applied from the outside. A natural consequence
of the dependence of the Coulomb yield criterion on mean stress is that
the 1imit load for the externally applied load is greater than that
for the internally applied load.

The limit load analysis of ideal plasticity predicts only the
loads at zero deformation and the associated initial velocites. For

vii



many structures this information is sufficient; however, there are cases
in which information concerning continuing motion is desirable. For
example, the expansion pressures of an annular plate by in-plane pres-
sure can be adequately described only by considering finite displace-
ments. This problem illustrates the modifications which must be made
in the plastic analysis when using the Coulomb yield criterion and
its associated flow rule for finite displacements. The limit load of
an annular plate i1s found for all ratios of the outside radius to the
inside radius. In addition, the stress distribution, velocity, dis-
placement, thickening, and extent of the deformable region are found
for finite displacements limited only by the range of wvalidity of the
assumption concerning plane stress conditions.

viii



CHAPTER I

INTRODUCTION

In the theory of continuum mechanics, there are two types of re-
lations: (1) basic principles which are valid for all materials (e.g.
conservation of mass, conservation of energy, balance of momentum,
ete.), and (2) constitutive equations which describe the particular
material being considered. The constitutive equations which describe
a rigid/plastic material are the yield criterion which determines under
what states of stress motion is possible and a flow rule which relates
these states of stress to the strain rates. Therefore, when attempting
to solve boundary value problems in plasticity, a yield criterion and
flow rule must be chosen which adequately describe the most important
aspects of the particular material being studied.

Most of the boundary value problems which have been solved using
the theory of plasticity have utilized the Tresca or Mises yield cri-
teria or an approximation to one of these. These criteria are used
because they can represent adequately the yielding of metals and their
alloys in most of which yield is unaffected by a superimposed hydro-
static pressure (e.g. see R, Hill [1]). However, when the theory of
plasticity is applied to soil mechanics problems, the Coulomb yield
criterion is used because it approximates the available experimental

data [2-4] very closely. The most significant difference between the



Coulomb yield criterion and the Tresca or Mises yield criteria is that
the Coulomb yield criterion is linearlj dependent on mean stress whereas
the yield criteria of Tresca and Misés are independent of mean stress.
There are materials such as cast iron, concrete, some plastics, ice,
and compacted snow which cannot be adequately described by using any
yield criterion which is independent of mean stress. At present, there
is not enough experimental evidence to completely describe the yield
criteria associated with these materials. But the fact that these
materials. exhibit different tensile and compressive yield stresses
[5-10] is sufficient to determine that they cannot be described by
either the Tresca or Mises: yield criteria without anisotropic effects.
The Coulomb yielé criterion does predict different tensile and compres-
sive yleld stresses and therefore might be used to describe these ma-
terials. Also, from the standpoint of solving boundary value problems
involving these materials the Coulomb yleld criterion seems to be a
logical choice because of. its mathematical simplicity and because it
has been used succesgfully in soll mechanics problems. Materials such
as cast iron, concrete, plastics, ice, and compacted snow can be used
as -structural materials. Therefore, it is of some interest to deter-
mine to what extent problems involving beams, plates, shells, etc. can
be analyzed using the Coulomb yield criterion.

“With the hope of obtaining most of the important features of struc-
tural problems, the solutions obtained in this work will involve a ma-

terial which is rigid/perfectly plastic and which obeys the Coulomb



yield criterion. Of course, to obtain plasticity solutions, to all
but statically determinate problems, a flow rule must be used together
with the yield criterion. For the work done here, the ideally plastic
flow rule associated with the Coulomb yield criterion will be used.
For the ideally plastic flow rule, the plastic potential from which
the strain increment vectors are derived is identical with the yield
criterion. Graphically this can be interpreted as requiring that the
strain increment vector is normal to the yield surface on any regular
regime* and on a éingular regime,*¥* the strain increment vector can
be any  linear combination with positive coefficients of the strain
increment vector of the adjacent regimes. The use of the ideally
plastic flow rule is desirable because it is the only one for which
the uniqueness of the limit load has been established. Also, methods
for determining upper and lower bounds on the limit load have been
developed when this flow rule is used (e.g. see W. Prager [11]).

The use of the Coulomb yield criterion together with its associated
flow rule does present difficulties which are not present when using
either the Tresca or Mises yield criteria. First, the Coulomb yield
surface can change both size and shape as the material properties
change, whereas the Tresca and Mises surfaces can only change size.
This leads to solutions which are two parameter families of the material

properties in contrast to the one parameter families obtained from the

*Regime with a continuously turning tangent.
*¥Regime with no unique normal.



Tresca and Mises criteria. ‘Secondly, the flow rule associated with the
Coulomb yield criterion predicts dilatation, whereas the flow rules
associated with the Tresca and Mises criteria predict incompressibility
of the material. Thevproblem of dilatation is made more difficult be-
cause there are different expressions for the dilatation associated
with differentfregimes of th¢ yield surface.

The difficulties in obtaining solutions to plasticity problems
are in many ways common to all problems of non-linear continuum
mechanics. However, there are two questions peculiar to plasticity
that must be answered tentatively before a problem can be started,
namely, "Which facets of the yield surface will be involved?" and
"What is the size“and shape of the deformable region?” The‘first
question can sometimes be’gircumvented by using the ﬁpper and lower
bound theorems of plastici#y in conjunction with an approximate yield
surface. The approximate surface may have fewer facets and therefore
the problem of deciding which facets are involved in the solution is
simplified. It is more difficult to find a general technique which
is helpful in answering the second question: However, there are
certain special situations (egg, rotationally symmetric problems)
where the shape of the deformable region can easily be determined.

The purpose of this work is to determine to what extent the tech-

niques of solving structural problems must be modified when using the

Coulomb yield criterion, which is linearly dependent on mean stress,

together with its asgsociated flow rule which predicts dilatation of the



plastic material. Also, the effect of these material properties on the
stresses, velocities, size and shape of the deformable region, étc.,
will be illustrated by three examples.

First, the limit analysis of beams and plates in cylindrical bend-
ing will be considered. The analysis will involve only the axial stress
in the beam and therefore, the tensile and compressive yield stresses
will be sufficient to describe the yielding process. Therefore, the
results of this analysis will be valid for any yield criterion which
predicts a different yield stress in tension and compression indepen-
dent of what the criterion predicts for more complicated stress states.
The Coulomb yield criterion is only one example of a yield criterion
which has this property. The inherent simplicity of the yielding
process in a beam allows one to gain an insight into some of the ef-
fects of mean stress as a preparation for considering more complex
problems. In this analysis the yield surface for a beam of rectangular
cross-section will be found in terms of the moment and axial force.
This yield surface will be used to determine the limit load for two
beams with different end conditions. The first beam considered will
be loaded by a concentrated force at the center and restrained from
rotation, but not extension, at both ends. Secondly, a beam will be
considered in which the ends are restrained from both rotational and
extensional motions. The limit loads will be obtained for each case:

They will differ because the tensile and compressive yield stresses are

different.



Second, a limit analysis of a cylindrical shell will be considered.
In this problem all aspects of the Coulomb yield criterion and its
flow rule will be utilized. The analysis will be concerned with both
the regular regimes (i.e. flats) and singular regime (i,e..corners) of
the Coulomb yield surface. Also, the flow rule will be used and there-
fore, the additional difficulty of dilatation of the plastic material
will be encountered.

The yield surface for a cylindrical shell will be found in terms
of the longitudinal and circumferential normal stress resultants and
the longitudinal moment. This yield surface will be used to obtain
the limit load for a cylindrical shell loaded by a ring of pressure.
Two different cases will be considered. One in which a ring of pres-
sure is applied from the inside and the other with a ring of pressure
applied from the outside. The 1limit loads for the two types of load-
ing will be different as a result of the dependence of the Coulomb
yield criterion on mean stress.

Third, the plastic analysis of an annular plate, loaded by in-
plane pressure at the inside radius, will be considered. In this ana-
lysis, as in that of the cylindrical shell, both the regular and singu-
lar regimes of the yield surface will be used together with their
associated flow rules. The limit load for the annular plate will be
found for all ratios of the outside radius to the inside radius. In
addition to the limit load, the stress distribution, velocities, dis-

placements, thickening, and the extent of the deforming region will be



found for finite displacements limited only by the assumption of plane

stress.



- CHAPTER II

LIMIT ANALYSIS OF BEAMS AND PIATES IN CYLINDRICAL BENDING

In the limit analysis of frames the influence of the axial forces
is usually neglected because the limit moment of a section is not
gignificantly reduced by a moderate axial force (E.T. Onat and W.

Prager [12]). In the analysis of straight beams no axial force is de-
veloped at the limit load. Iarge axial forces may be developed, even

at very moderate deflectiong if the members are fully constrained axially,
by continuing the loading beyond the limit load (R.M. Haythornthwaite
[13,14]). These axial forces are developed because of geometry changes
which occur during the loading and the load-carrying capacity of the
beam is increased because of the axial forces. A similar situation
occurs in plates when membrane forces are introduced at loads above the
limt load (E.T. Onat and R.M. Haythornthwaite [15]). It is possible to
introduce some axial force in a structure at the limit load as has been
shown by E.T. Onat and W. Prager [16] who considered the limit analysis
of arches and found that the limit load was significantly reduced due

to the axial forces. For all of the work discussed above, the material
was assumed to have a yield criterion which was independent of mean
stress. The development of membrane forces in all of these problems was
due to the special geometry before yielding as in the case of the arch
or to the changes in geometry which occurred during loading above the

limit load.



For the present analysis, a beam will be considered and it will
be assumed that the material from which the beam is made has a yield
criterion which depends on mean stress, i.e. the compressive yield
stress of the material will be assumed to have a greater value than the
tensile yield stress. These two yield stresses will completely define
the yielding process because only the axial stress on the beam will be
considered in this analysis. The results of this analysis will apply
to all materials which have a different yield stress in tension and
compression independent of the yield criterion needed to analyze more
complex stress states.

With appropriate end conditions a beam of this material is found
to develop significant axial forces at the limit load. The axial
forces will be developed because of the material properties and not
because of geometry. Before the solution of a special problem is under-
taken the yield curve for the beam must be expressed in terms of the

bending moment and axial force.

A, YIELD SURFACE

To find the yield curve in terms of the moment and axial force
the beam in Fig. 2-1 is considered. The beam is symmetric about the
y axis and the z axis passes through the centroid of the cross-section.
The stress-strain diagram for the material is shown in Fig. 2-2. A
typical fully plastic stress distribution is shown in Fig. 2-3 and for

this stress distribution the moment, M, and the axial force, F, can
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be related to the yield stresses, Y., and Yy, by the equilibrium equations

Ph ho
M = f Yy bydy- f Y. bydy (2.1)
-h1 Bh
and Bn ho
F = f Y, bdy -f Y bydy. (2.2)
-hi Bh

When b(¥) is known, the integrations in Equations (2.1) and (2.2) can
be carried out and M can be related to F by eliminating B from Equations
(2.1) and (2.2). If a rectangular cross-section is assumed, then b(¥) =

b, hy = hy = h/2, and Equation (2.1) and (2.2) become

2p
M= -(n) g LE ]+ Y] (2.3)
and
F = BbhlYi+Y,] - %1- [¥,-Y]. (2.4)

It will be convenient to make the following changes of variables

2 2
N Y| = |Y ] forN">1 (2.5)
t c -
and
M F
m = ‘meeam————— f = R 2'6
ph A&y, 7 bhYy (2.6)

With these changes in variables, m can be related to f by eliminating

B between Equations (2.3) and (2.L4):

2
2mN

(N=+1)

2

iRl = N (2.7)

Equation (2.7) applies for all values of f, but is restricted tom > O,

in view of the particular stress distribution assumed (see Fig. 2-3).
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However, the parallel analysis for the case m < O is straight forward

and the entire yield curve can be represented by

2|m|N2
(N=+1)

+ 2 + f(N2-l) = N5 (2.8)

Equations (2.8) are plotted in Fig. 2-4 for N° = 1 and N° = L. The

maximum value of m is given by

(N2+l)3

"ex = T2 (2.9)

8N

and it occurs at

2

1-N
f = . (2.10)

2
2

When N = 1, the yield stresses in tension and compression are equal
and there is no influence of mean stress.

Introducing the new variables

2

2 Ne-1
! = f + =
N2+1 NT+L
and (2.11)
2
m' = -—§E;—— m
- 2
(n"+1)°2

the expression for the yield curve, Equation (2.8), becomes

(f')2 + |m'| = 1. (2.12)

This expression may be characterized as the canonical form of the yield
curve in the sense that it applies for all criteria for which the yield
stresses in tension and compression are different, because the material
properties are absorbed in the variables m' and f'. Therefore, Equation

2
(2.12) always has the form shown in Fig. 2-4 with N = 1.
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Fig. 2-4. 7Yield curve for a rectangular beam for N° = 1 and N° = k.
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B. SOLUTIONS

Two problems will be considered to show how the end conditions
can cause an axial force at the limit load.n The first problem will be
that of a beam restrained from rotation at the ends and loaded by a

concentrated load P at the center as shown in Fig. 2-5. The beam will

y

7% SL09

Fig. 2-5. A beam restrained from rotation at the ends and loaded by a
concentrated load P at the center.

collapse when hinges have formed at A, B, and C. The hinges at A and
C will be associated with the point f = 0, m = -(l+N2)/2 of Fig. 2-4
and the hinge at B will be associated with point f = O, m = (1+N2)/2
of Fig. 2-4. The hinges will be at a height Ph from the x axis. This

height can be found by setting F = O in Equation (2.k4):

2
N -
Bh = —Tl— h. (2.13)
2(N"+1)

Because these hinges are not co-linear, the beam will fail by both ro-
tation and expansion of the beam. The failure can be understood by
imagining that the hinges are connected by rigid bars AB and BC and
as the load is increased above the limit load, the end of the beam must

move outward. This is consistent with the yield curve of Fig. 2-4 be-

2 ‘
cause at the points f = 0 and m = +(L+N )/2 the normal to the yield
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curve has a component in the f direction which implies that there must
be an axial strain rate in the beam.

From the horizontal equilibrium it is known that the magnitude of
F is constant. Therefore from the symmetry of Fig. 2-4 the moments
at sections A, B, and C are equal, and the limit load for the beam can

then be found from moment equilibrium to be

P = — . (2.1k)

In the absence of axial force, the moment My at point B of Fig. 2-5
is associated with m = (1+N2)/2 and can be found from Equation (2.6):
2 2 2
bh YN (14N )

My = . (2.15)

2

Eliminating MB from Equations (2.14) and (2.15) gives

i 2bh2Yz(1+N2) (2.16)
which is the load at which the beam will yield.

However, if the end conditions of Fig. 2-5 are changed so that in
addition to there being no rotation, there is also no extensional
strain, the beam cannot fail as above. The hinges must move until
they are all co-linear and the beam will fail by pure rotation at the
ends and under the load. ' The points of the yield surface that are
associated with pure rotation are at the maximum moments. Therefore

the equal moments at A, B, and C are found by combining Equations (2.6)

and (2.9):
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MB -

phZy, (140%)°
8

(2.17)

Now by eliminating My between Equations (2.14) and (2.17) and denoting

the load for this case by Pi, it is found that

bh&Y; (1+N2)3
P, = —_t (2.18)
2L
Now the ratio P1/P is given by
2,2
Py . (1), (2.19)
F A

The axial force a@ssociated with Pj can be found from Equation (2,10)
and (2.6):

bh (1-N°)

= . (2.20)

Equation (2.19) is shown graphically in Fig. 2-6 to illustrate the
increase in the limit load caused by restraining the ends against axial
movement.

The results presented here are immediately applicable to the case
of rectangular plates supported on two sides and loaded by a line load,
parallel to the supported sides, at the mid-span.

Although this analysis does not make use of the Coulomb yield cri-
terion or its flow rule, it does point out some of the effects that can
be encountered when using this criterion in more complex analyses such

as that for the cylindrical shell which i1s considered in the next chapter.
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CHAPTER IIT

LIMIT ANALYSIS OF A CYLINDRICAL SHELL

The state of stress in a shell is described by the normal stress
resultants, moments, and shear stress resultants. Within the limits
of thin-shell theory, transverse shear resultants are considered only
in the equations of equilibrium, i.e. there are no strain rates associ-
ated with these shear resultants. If the shell and loading are rota-
tionally symmetric, then the principal directions of stress are known
and for these directions the twisting moments and in plane shear stress
resultants vanish. Thus the state of stress in a thin shell can be de-
fined by four generalized stresses: the principal stress resultants,
N; and No and the principal moments, M; and Ms. For limit analysis
problems, the condition of yielding may be represented as a surface in
a Cartesian space whose coordinates are the generalized stregses.

Similarly, the strain rate field in a thin shell can be expressed
in terms of four generalized strain rates: two principal extensional
strain rates, él and €5 and two principal rotation rates K1 and Ko
These strailn rates are related to the yield surface by a flow rule
which states that the strain rate vector whose components are the
generalized strain rates is normal to this surface.

Limit analysis was first applied to shell theory by D.C. Drucker
[17], who found the limit load for a long, cylindrical shell loaded

by a ring of pressure. This analysis makes use of the Tresca yield

18
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criterion and because there is no axial thrust developed, the yield
surface for the shell can be expressed in terms of the longitudinal
moment and circumferential normal stress resultant. A linearized ver-
sion of the yield surface associated with the Tresca yield criterion
was used by G. Eason and R.T. Shield [18] for solving problems using
a cylindrical shell of any length loaded by a ring of pressure. Fur-
ther, this problem has been considered by A. Sawczuk and P.G. Hodge,
Jr. [19], who compare the limit loads for the yield surfaces of Mises,
Tresca, and various linearizations of these.

P.G. Hodge, Jr. [20] and E.T. Onat [21] extended Drucker's work
[17]) on cylindrical shells to problems in which axial thrust could be
developed and used linearized versions of the yield surface expressed
in terms of the longitudinal stress resultant, longitudinal moment, and
the circumferential moment. A method of obtaining the four dimensional
surface for a general shell of revolution by considering all possible
strain patterns for an element of the shell was developed by E.T. Onat
and W. Prager [22]. They used this method together with the Tresca
yield criterion to obtain the yield surface for such a shell. Several
approximations to this general yield surface have been introduced by
P.G. Hodge, Jr. [23]. The yield surface for a general shell of revo-
lution and a linearized version of it were obtained by P.G. Hodge, Jr.
[24] for the Mises yield criterion. D.C. Drucker and R.T. Shield [25]
have shown that a good approximation to the yield surface for any shell

of revolution can be obtained by using a linearized version of the
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yield surface for a cylindrical shell.

In the present work a cylindrical shell which obeys the Coulomb
yield criterion and is loaded by a ring of pressure will be considered.
The Coulomb yield criterion has been expressed in terms of principal
stresses by R.T. Shield [26]. When the yield criterion is viewed in
principal stress space, 1t leads to a yield surface which is an oblate
hexagonal pyramid whose axis is the octahedral axis. Because the
problem that will be considered here is a problem of plane stress, in
cylindrical coordinates, only ﬁhe plane stress section of this yield

surface is presented in Fig. 3-1 (see R.T. Shield [26]).

Fig. 3-1. Plane stress section of Coulomb yield criterion.



A. GENERALTIZED STRESSES AND STRAIN RATES
Figure 3-2 shows a cylindrical shell element with the stress re-

sultants which act on it. If the loading is axially symmetric, then

Fig. 3-2. Cylihdrical shell element.

the shear resultant SO is zero. Also, there is no rotation of the nor-
mal in the O direction and therefore, the moment My does no work and
will not appear in the equations for the yield surface. From the usual
assumptions for thin shells there is no strain associated with Sy so

it becomes a reaction which can be found from equilibrium. Hence Sy
will not appear in the formulation of the yield surface. Thus the
only generalized stresses which will appear in the expressions for the

yield surface are My, Ny, and Ng.
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For the velocity field of the plastic flow the usual assumption.
will be made that the particles originally on the normal to the unde-

formed middle surface continue to remain on a normal to the middle

surface.
The velocity field can be described by the two velocities U and W,

where U is the velocity in the X direction and W is the velocity in the

radial direction with the outward direction taken as positive. The

strain rates in the middle surface are then

= (3.1)

——

X ax

m-e
i}

and

(5;2)

e
©

]
o =.

where R is the radius of the middle surface. The rate of change of

curvature of the middle surface in the X direction is
2y
a (3.3)

= —

X" axe

[

Thus the strain rates throughout the thickness can be written as

. @
eg = —R‘ (B'h)
and
&b aw
& = e—— 7 ht
s yon pees (3+5)
The

where z is measured positive outward from the middle surface.

L.
generalized strain rates are €y ég, and EX‘

The rate at which energy is dissipated in plastic flow per unit

area of the middle surface can be written in terms of the generalized
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stresses and strain rates as

'Y ° .
D = Myky + Nyey + Ngege (3.6)

B. YIELD CRITERION AND FLOW RULE

The gtate of stress at any point of a thin shell is taken to be
that of plane stress. Therefore, the plane stress section of the
Coulomb yield criterion is shown in Fig. 3-1. For a yield state of
stress on a flat side the strain rate vector is normal to that side
and at a corner the strain rate vector can be any linear combination
with positive coefficients of the strain rate vectors of the adjacent
sides.

Inspection of Fig. 3=-1 will reveal that when a state of stress is
on a flat side the strain rate vector is uniquely determined, but when
the stregs is in a corner the strain rate vector is not unique. Also
if a strain rate vector is given which is associated with a flat side
the stress is not uniquely determined but if a strain rate vector is
given which is associated with a corner then the state of stress is
unique. In gpite of the fact that there is no one-to-one correspon-
dence between the yield states of stress and the flow mechanisms the
rate d at which energy is dissipated per unit volume 1s completely de-
termined by the flow mechanism and is given by (See R.T. Shield [26])

d = Ccot g [&1+&x+83] = [[&1]+[éa]+[&s]|1C cos ¢ (3.7)
where C is the cohesive strength, ¢ is the angle of friction, and

€1, €p, €3 are the principal strain rates. Equation (3.7) can be
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written in another form by introducing Yf, the yield stress in tension,

and YC the yield stress in compression, where

Y't = 2(tan(% - %ﬂg)
and

Y. = 2¢C T4+l
C tan()_l_ 255)

2
From these definitions it follows that IYCI = N lYfI where N = tan

(%.+<% ¢). Using these two equations, it is possible to show that

2Ccos p = 24l | o* (3.8)

Yf * Yc
where o¥* would be the yield stress in tension and compression if they
were equal. Now-the energy dissipation per unit volume can be written
as

qa = a* (
2

esl). (3.9)

éll + léal +

The three principal strains can be related (see R.M. Haythornthwaite
[27]) depending upon the relative values of the strain rates by one

of the two equations

€yt t N ¢, = 0 for e, > 0 and e >0 (3.10)
or

Sy, L oy :

ﬁz + eB ey = 0 for eg < 0 and ey < 3,11)

where éa, éﬁ) and €, are the principal strains.*

7

*The subscripts &, B, and y are used because only the relative values
of the principal strain rates are important in these equations and it
is impossible to assign say e; to be ey for all cases.
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The three principal strain rates for this problem are éX’ ég,
and éz. It is possible to express éX and éO in terms of the gener-

alized strain rates as follows

ex = €x * zky (3.12)
and
e, = € - (3.13)

With the aid of Equations (3.10) or (3.11), (3.12), and (3.13)
éz can be expressed in terms of the generalized strain rates.

It is also possible to find the rate of energy dissipation per
unit volume in terms of the generalized strain rates from Equation
(3.9) and then by integration through the thickness it is possible to
find the rate of energy dissipation per unit area of the middle sur-
face, Therefore the result of integrating Equation (5.9) through the

thickness must be equivalent to Equation (3.6), and one obtains

b h
» o ° 2 G* ? ° ) ° .
D o= Mk AN EMNE = f[d]dz == (ell‘+vle2.|.+'le3.l.)dz, (3.1L4)
-h b
2 2

The right side of Equation (3.1L) can be expressed in terms of the
generalized strain rates. Typical distributions of the generalized
strain rates éX? ég, and éZ are shown in Fig. 3-3. These distributions
are obtained by choosing distributions for ég and éX which are con-
sistant with the assumption that normals remain normal and then find-
ing e, from either Equation (3.10) or (3.11) depending upon which

applies.
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Using the distribution of strain rates shown in Fig. 3-3, in

Equation (3.14) it is possible to write
h

‘ h
2 ~rh 2 gh
g.]_)_ . . [ . L3 ° 20 2
b (eytzby)az + | (Extziy)dz -[(Egl=ey+alZex)dz
-b -b rh -h
2 2 2
rh h (3.15)
. 7
+f(59+ Ltz )z +l_f(é reytrig)ds
Na X Ne © TR
gh rh

Carrying out the integrations in Equation (3.15) and then comparing the
coefficients of the generalized strain rates of Equation (3,15) with

those in Equation (5.6) the stress resultants can be written as

o*n (14 [ + 21,

. N. =

2
N - Eﬂl_(;‘;L) [-r-N%g +%(1-N2)], (3.16)
2

and

*¥n2(14N2 1
R LAT) [-2rZ-onB™+ =(143) ],

My =
X ane 2

In the following the bénding moments and the normal stress resultants
2, 2 2
will be made dimensionless by dividing them by My = o*h (14N )/8N and
2 2
Np = o*h (14N )/EN » respectively. The notation my, ny, and ng will be
used for the dimensionless quantities. Therefore, Equations (3.16)

can be written as

ny = -r-Ng +%(1-N2), (3.17)

= .or2.oN2g2 + % (1412),

and
mX—-
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Equations (5.17) are a parametric representation of one part of the

yield surface for a cylindrical shell (face 2 of Table I). The equa-
tions do not represent the entire yield surface because they were de-
rived for a particular flow mechanism (that shown in Fig. 3-3). Equa-

tions (3.17) are valid when

_<_q<r<

R

. (3.18)

]
n =

If r is always associated with the zero of éX and q is associated with
the zero of éz, there is another flow mechanism for which Equation
(3.18) is valid, but which is associated with equations which are dif-
ferent from those in (3.17). This flow mechanism is shown in Fig. 3-L.
That part of the yield surface assoclated with this flow mechanism is

given by (face 3 in Table I), i.e.

i
l’lO = N2q - '2_-,
ny = Ner+g+ -é-(l-N?), (3.19)
and
m, = oNZr2+2qc. l-(N2+l).
X 2"

Two more sets of equations can be derived which are similar to

those of Equations (5.17) and (3.19), but they are only valid when

-

<r<g<= (3.20)

SR
nj—

These two faces of the yield surface are given as faces 1 and 4 in Table I.
There are other cases which must be considered. They occur when

g = r. The equations for faces 5, 6, 7, and 8 in Table I are derived

from the equations for faces 1, 2, 3, and L, respectively by setting q
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TABIE T

PARAMETRIC EQUATIONS OF THE YIELD SURFACE FOR A CYLINDRIAL SHELL

Face ng ny my Inequalities
1]q+1 rlcg + 2(1-87) | erfrege- L) | - & <rge L
) 2 2 2= =0
2 b
olog# 2 | cran®q + L(16®) | —orZog@dr L(w2a) | - L <garc L
2 2 2 2= T2
2 2 1 2
3 | gl - %N &g+ S(1-1) 2raNc+og4- -;-( 1+N2) L<garc
e~ ~oe2
2 1 1 2
b |—gN2e INT| aenBag + -5(1-1\12) ~orfZ2g” + E(1+1\r ) % <r<g< -:éL-
> s
) 2 2 2 2 2
5 |q +1 a(10%)+ L1 | 2g®(147)- L(za®) L<roge L
2 2 2 5= =2
1 2 _ 2 1, 2
6 |-q += ~q(1407) + 5(1_1\1 )| —2q2(149%)+ =(N°+1) | - I<q=r< L
2 . 2 2 o 2
2
7 |on®- %N q(147%)+ H(1-13) | 2¢3(140%)- %(Ngﬂ_) Z<q=r< %
2
2 . 2 2
8 |-gn2 In®| _q(12)+ 2(1-12) | -2g2(1°)+ L(140®) | - Lermg< L
2 2 o o= =2
equal to r. This implies that for z = gh = rh, éX = éz 0, but from
the Equations (3.10) and (3.11) this implies that &, = Therefore,
ng does no work.
For faces 1, 2, 3, and 4 it is possible to eliminate g and r

from the three parametric equations
of Ngs Dy and My These equations
L in Table II. Also it is possible

in terms of Ngs Dy and my these are

and obtain one equation in terms

are shown as faces 1, 2, 3, and

to put the inequalities of Table I

recorded in Table II.
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TABLE II

EQUATION OF THE YIEID SURFACE FOR A CYLINDRICAL SHELL

Face 8 Yield Surface Inequalities
T mx-2l ny-N2ag- -]2;(1-2N)]2-2N2-[ng- 32+ %(1+N2) - 5 < ny-Nen- %(1.2N2)<nQ - %5%
2 -my-2[ 0, W30+ %(1-21\12)]2-21«2[% ng]3+ %‘-(Nzﬂ.) - % < % g < —myagN+ %(1-21\!2 ) < %
3 Ty~ % [-nx - %g - %(2-!12)]2-2[% + -]2-']2+ %(N2+1) - %5 %% + % < % - %%-—eﬁl-g (21%) < 32‘-
L -my - %E [-ny - _;% + -]2:(2-1\12)]2-2[%02- + .Z.ﬁ %(mvz) - % <X+ %% + 2—}113(2.1\:2) < -;-g- - i 5%
5 g - =2 g 010%)1% 02 -5 s mﬁ{ﬁﬁ? <3
6 -my - # [ny = 5(1-°) 1+ S(ra)) -2 'ZZﬁi}lI;l;rz) <3

For faces 5, 6, 7, and 8, n

o cannot appear in the equations of the

yield surface because it does no work and therefore q is eliminated be-
tween the equations for ny and Mye These are shown as faces 5 and 6
in Table II. There are only two faces because ignoring ng in faces 5,
6, T, and 8 of Table I, it is seen that faces 5 and T are the same as
are faces 6 and 8. It is also possible to express the inequalities for
these faces in terms of ny and these expressions are shown in Table II.
The flow rule can be obtained for each of the faces in Table II
and these are shown in Table III. The appropriate inequalities for

these faces are also shown.
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TABLE III

EQUATIONS OF THE FLOW RULE FOR A CYLINDRICAL SHELL

Face Flow Rule €t €x ¢ kx Inequalities

1 N2 [ng-ng(14N2)47°] 1 mhpﬁm-gbmﬂ]x 1 -% gwm%f%ueﬁ)<%-%5%

2 NU{ny-n (10E)E] ¢ MlogdPng- Z(1-20%)] & -1 -1 <L g < ongrag®s Jia®) <

L %‘;—E[Nznx-no(lmz)_ma] : N—“ﬁ[nx- %‘; - %(2-1\12)] t -l - % < % + _“N% + _éwl_a(a_Na) < ;0_; _ %5_2_
6 0 Tale- S0 ¢ a1 i “QZE;‘)“” <2

The equations in Table II define a closed convex surface in a stress
space which has rectangular Cartesian coordinates ny, nmys and nge It is
also important to note that as N2 takes on different values the yield
surface for a different material is obtained (i.e. for different values
of the ratio of Yo to Y4) and the shape of the yield surface will change.
Three cross sections of the yield surface for N2 =1 and N2 = L are
shown in Figs. 3-5, 3-6, and 3-7. With N2 = 1, this yield surface coin-
cides with the Tresca yield surface and the same three cross sections
have been found before (e.g. see E.T. Onat [21]). The effect of mean

stress on the yield surface can be seen by comparing the curves for



Q
A
B'B
—
C — ,/’ L \\\ ﬁA
cr 7 NAY
4 \
| |
-2 -1' :1 |2
= i | | *"mx
| !
D'\ JF!
D F

Fig. 3-5. Section of the yield surface for a cylindrical shell
with ny = O for NZ = 1 and N2 = L.
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Fig. 3-6. Section of the yield surface for a cylindrical shell
with my = O for NZ = 1 and N2 = L.



55

~.p

Fig. 3-T.

Section of the yleld surface for a cylindrical shell with

n =0 for N° = 1 and N® = L.

&



36

2
N® = 1 with those for N~ = k. For easy comparison the yield surface has
been non-dimensionalized so as to always have the curve pass through

unity when ng and ny are positive.

C. ANALYSIS OF A CYLINDRICAL SHELL LOADED WITH A RING OF PRESSURE
The problem to be considered here is that of a long circular

cylindrical shell loaded by a ring of pressure as shown in Fig. 3-8,

Rigid Region  Plastic Region Rigid Region
\\\\\\‘\\\\\\\\\‘\{\\\‘\\\\\ SOOI

25,

25

1
|
|
|
|
1
|
| o
|

!

|
|
|
- + -
|
[
|
|

S
DS NN N NN NN NN NN N NN NNNANN

h X1 X1

e

Fig. 3-8. Cylindrical shell loaded by a ring of pressure.
It will be assumed that the shell is long enough so that end effects
can be neglected. The problem, then, is to find the extent of the
plastic region, the collapse load, and the stresses and velocities in
the plastic region. To complete the solution, it will be necessary to
find stresses in the rigid region which satisfy the conditions of
equilibrium and are at or below yield at every point of the shell.

The behavior of a rigid/perfectly plastic cylindrical shell is
governed by two equations of equilibrium, the yield surface, and its

associated flow rule. In this problem there is no axial thrust de-
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veloped; therefore, the yield surface and flow rule are expressed in
terms of n, and m, (see Fig. 3-5).
To obtain the equilibrium equations in non-dimensional form, both

the shear stress resultant SX and the coordinate X must be non-dimen-

sionalized. If this is done by writing

S —
Sy = X and 2X = xx/—Rh.
(h>1/2 o*h(N2+l>
R L2

the equations of equilibrium can be written as

0 (3.21)

!
sy T 1ng

and

(3.22)

n
o

My - Sy
where the prime denotes differentiation with respect to x.

The two faces of Table I which will be needed are 1 and 2, i.e.
regimes AB and BC for N° = 4 and A'B' and B'C' for N = 1 in Fig. 3-5.
It will be convenient to use them in parametric form but a change in
parameter will be helpful. Since ng vanishes in this problem, g and r

can be related, and then if p = q - %, the equations for face 1 become

n@ = l+p

and m, = oNZp[p(LHN2)+2] (3.23)

for - £ _ < p <O,
e T T

For face 2 it is convenient to teke p = q + %.with the results
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ng = l-p
and my = -2N%p[p(1+0%)-2] (3.24)

for 0<p<. L -,
- T 14Ne

For this problem there are only two generalized strain rates:

ég and éx each of which can be expressed in terms of W. If a dimen-

W

gionless velocity w = 2 is introduced then
R

= W and ke = w'. (3.25)

These are the two components of the strain rate vector which must be
normal to the yield surface. The tangent vector has the components
dmy, and dne Therefore, the condition that the strain rate vector be
normal to the yield surface is given by
w'dm, + wdng = O. (3.26)

The two equations of equilibrium (3.21) and (3.22) together with
the two faces of the yield surface given by Equations (3.23) and (3.24),
and the flow rule expressed in Equation (3.26), will be used in the

solution of this problem. The boundary conditions associated with the

problem shown in Fig. 3-8 are

s, = sgpatx = 0, (3.27)

w' = O or a hinge circle exists at x = O, (3.28)

wi = o™ " " " x=x, (3.29)
and .

w = Oatx = Xi. (3.30)
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Because the yield surface has been expressed in parametric form

the equilibrium Equations (3,21) and (3.22) can be written as

— p'+n, = O (3.31)
a)
dp
and
dmx '
— - 8 = 0. 32
T . (3.32)

Y
2 2 dm,,
sx_so+2fng—a-£dp = 0. (3.33)
Po

Where o is the value of p at x = O and boundary condition (3.27) has
been used. Now if s1 and p; are respectively the values of sy and p at

x = x1, Equation (3.33) gives
: 1

dmX
2 = Sf + 2\/“ ng —55 dp. (3.34)

(e}
Po

It will be shown later that sy is proportional to w. Therefore boundary

condition (3.50) implies that s; = O and the limit load can be written

as
P1 dmX 1/2
8, = [ef ny —gp ! (3.35)
Po
and the shear stress is found to be
b1 dmy 1/ 2 )
8, = [2U/\ By 5 dp]™ . (3.36)
b

Since my, Ng, and sy are known as functions of p, their dependence
on x will follow once the functional relation between p and x has been

established. This can be accomplished by using Equation (5.32)
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dmy dp
— —— - I}
dp dx X
and therefore
p d
1 My
X = —) —— dp. 3.
| f (57) 5 (3.37)
Po

A complete solution for the stresses in the plastic region will be
found‘as soon &s P and py are known and they will be determined from
the boundary conditions (3.28) and (3.29). However, before this can
be done the wvelocity w must be considered. Assuming that Yo and pay

are known, the extent xi, of the plastic region can be written as

P1
_ 1, dmx
Xy = f (SX) . dp. (3.38)
pO

It can be shown that a velocity field of the form
w = Cisyg (3.39)
satisfies the requirements of the flow rule expressed in Equation (3.26),

which can be written as

Clsi'm% + Clsxni = 0,

Now substituting m) from Equation (3.22) and sy from Equation (3.21)
gives

- ClnésX + Clsxné = 0O,
Therefore, Equation (3.39) for the velocity satisfies Equation (3.26)
and all that remains to be considered are the boundary conditions (3.28),
(3.29), and (3.30). First, the boundary condition (3.30) gives sy =

0 at x1 = O as was assumed above. Now Equations (3.28) and (3.29) imply

that
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Cis! = Oatx = Oand x = Xi1. (3.40)

If Equation (3.L40) holds, then Equation (3.21) implies that ny = O
at x = 0 and x = x1. The two points on the yield surface of Fig. 5-5
for which ng = 0 are on flats but on these flats ég =0 =w. Since the
velocity vanishes this cannot be part of the plastic region. There-
fore, Equations (3.28) and (3.29) must be satisfied by having hinge
circles at x = 0 and x = x;. Hinge circles can be formed at regimes
A,A' and C,C' of Fig. 3-5 and the plastic region from x = 0 to x = X3
is then associated with regimes AB, BC or A'B', B'C' of Fig. 3-5.

The velocity field is now complete and the stress solution can be
completed because p is the vélue of p associated with points C or C'
of Fig. 3-5 and p1 is the value of p associated with the points A or

A' Of Figv 5"5, ice.

Py = - L and P11 = L = . (3.41)
1+N2 1+N~=

Figure 3-5 is only usable for NZ = 4 or N2 = 1 but Equations (3.L41)

are valid for all values of N2, Now that p1 and py are known, the

1limit load can be obtained using Equatiin (5.55). Thus 1/2
THe |
8= EL/ilfp)[¢N2(1+N2)p+MN2]dp + 2Jf(1-p)[-hN2(1+N2)p+uN2]dp
=L o]
1+N2
or
L 3N+ 1/ 2

The value of the shear stress sy can be found as a function of p from

Equation (3.36):
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— /o
5, = [2 f (l-p)[—hN2(1+N2)p+MN2]dp}
p

or
(51\1 2 p ]_+N 2) , p(on) ~>]1/2 (5.
l+N2 ) o 5. 5)
for
0<p=< e
and 1
_]_+N—2 0 1/2
s, = |2 f (1-p)[-uN2(1+N2)p+uN2]dp + 2 f (.1+p)[hN2(1+N2)p+uN2]dp
o] b
or
5 = 8N2<5N2+2 L paa®) | piea) 5 /2
T \gaw?)? 3 2
(3.Lk)
for
1
- <p<O
1482 -
It is now possible to find x as a function of p from Equation
(3.37):
P
- [(1+0)p #+ 1dp (5.15)
x = J_-g-f SN0 mp3(.l+1\T2) i 22(oE) - /2 -5- 5
S | 6(12) 3 2
1+N
for
- ]2' <p< 0
N +1
and
Q 2
oN f [(10%)p + 1ldp
X = = '

Jo Y FW _ P () | pP(en?) ..p}l/e

Far|6(1°)* 3 2
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. p
L & \/h [-(1%)p + 1lap /
Jo g [5N2+2 _pP(1v®) | pP(em®) -]l #
6(140°)2 3 2
or
o 2
. f [(1+7)p + 1ldp
NE ree e pPead) Ve
| — - - -p
- 6(14N°) 3 2
14N2
+ a3 ((3N2+2)l/2 - [-2(1+N2)p+3N2+2]1/2} (3.146)
for
<p <=
(¢] S P s l+]_\]'2 .

The integralsin Equations (3.45) and (3.46) are elliptic. The
functional relation between x and p was established by numerical in-
tegration, whereupon m., ng, Sy, and %x were known as functions of x.
The extent of the plastic region, xi, can be found by replacing p by
1/(148%) in Equation (3.46). The solution of this problem for the
Tresca yield criterion is the special case of the above solution for
NZ =1 (e.g. see [19]).

If the ring of pressure in Fig. 3-8 is given the opposite sign
(i.e. if the pressure is directed radially'inward), the above analysis
will not be applicable. The conditions of equilibrium as expressed
in Equations (3.21) and (3.22); the flow rule as expressed in Equation

(3.26); and the boundary condition, (3.27), (3.28), (3.29), and (3.30)

are all applicable, but instead of using regimes AB and BC of Fig. 3-5,
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the regimes which will be needed are DE and EF (also the regimes with
the primes may be used).
For regime DE (i.e., face 3 of Table I), it is convenient to in-

troduce p = g + 1/2 because then

= N% -1

n, (p-1)

and ) 1 N2

m, = 2plp(F==—)-2] (3.47)
N2
for )
0 < <

=F= 14N2

For regime EF (i.e., face 4 of Table I), it is convenient to in-

troduce p = q - 1/2 because then

2
ng = -N (p+1)
and vl+N2
m, = =2plp(=—%)+2] (3.48)
N
for 2
- N <p <O0.
e =7 -

Following the line of reasoning put forth above, the velocity W
is given by Equation (5.59), the gtress point for x = O is at regime

F and the stress point for x = x; is at regime D. For these conditions

2
Py = - il
14+N2
and (3.49)
2
P11 = N .
1+N2

It is now possible to find the limit load 50 from Equationl(5.35) by

using Equations (3.47), (3.48), and (3.49):
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> - ol
5o = 2VE| [ el E et + [ -1 -l |
N& o
e
or
2 2

The value of the shear stress s, can be found as a function of p from

Equation (3.36) using Equations (aéh7), (3.48), and (3.49):

Tae 1z
s = oVon U (p-1)[ (EX @4]4

X N2
D
or 1/2
r4(an®3) _ p?(1r%), p2(an®) |
s = ov2 - + % (3.51)
X 6(140%)2 3 2 :
for :
N2
0<p<
<P
2
and N /
0 2 1+y2 v
s, = 2va [e) il + [ -0l e
. >
D
or
- /2
N'4_- 2+ 3 N2 2 TZ
I <(2N232) L) | pr(ArH) e
§ 6(14) 5 ? (3.52)
for
-N»2
- <p <O,
N2 = -

It is now possible to find x ag a function of p from Equation (3.37):

2
. D [(NN;l)p + 1]dp
X = \/—;; f2 N2<2N2+5) p3(1+N2) PE(QNE"HL) QNEP l/2
_ N 6(1+N2)2 3 2 (5-53)

Na+1
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for

2
- N2+1 Sp=sO
and 5
o7 ()L )dp
N j o [Plats) 20t | pfert) gy /2
- 2\ 2
) 6(1+7) 3 2
2,
o P [ (pa)e-1lap
+\/_—; f N4(an2+3)  pB(1H3) | p2(2n2+1) -ng 1/2
© 6(1+0%) % 3 2
or
O [ (N2+l)p+l]dp
x - 2 f N2
V2 5 N*(on%+3) | p3(1+03) _ p3(ans+1) p 1/ 2
- I l6(12)2 3 2
N=+1
i N25 (afi)/2 - [apadyia®s Y3 (ush)
]_\]'2
0<p< .
== 14N%

The elliptic integrals in Equations (3.53) and (3.54) were evaluated

by numerical integration to complete the solution.

D. NUMERICAL RESULTS

To illustrate the differences in the load carrying capacity of the
shell when the loading is either negative or positive, Equations (5.&2)
and (3.50) are plotted in Fig. 3-9. The limit load is a function of

2
the material property N as well as the type of loading. If the shell
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is loaded by an internal pressure, the limit load is given by Equa-
tion (5.&2) and as is seen in Fig. 3-9 the limit load increases with
the increasing values of N®. When the load is an external pressure,
the limit load also increases with increasing NZ as given by Equation
(3.50) in Fig. 3-9. However, the most important result shown in Fig.
3-9 is that the limit load associated with an external pressure is
larger than that associated with an internal pressure for all values
of N2 > 1 (for N® = 1 the Coulomb yield criterion coincides with the
Tresca yield criterion and no dependence on the type of loading should
be expected). The dependence of the limit load on the type of loading
can best be understood by noting that an external ring of pressure
cauges the circumferential normal stress resultant to be negative and
for a material which obeys the Coulomb yield criterion the compressive
yield stress is greater than the tensile yield stress.

When the numerical integration in Equations (3.45) and (3.46) are
carried out, p is known as a function of x for the case of an internal
ring of pressure. With these results the moment m, and the normal
stress resultant ng are known as functions of x from Equations (5.25)
and (3.2L), the shear stress resultant s is known from Equations (3.43)
and (3.4l), and the radial velocity w is known from Equation (3.39).
For the case of internal loading m, has been plotted in Fig. 3-10, - nQ
plotted in Fig. 3-11, and - sy; - W plotted in Fig. 5-12. When the

numerical integrations in Equations (3.53) and (3.54) are carried out,

p is known as a function of x for the case of external loading. From



-2

49

Fig. 3-10.
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Fig. 3-11. Circumferential normal stress resultant as a function

of distance.
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Fig. 3-12. Iongitudinal shear stress resultant or radial velocity
as a function of distance.
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these results it is possible to find m, and ny from Equations (3.47)
and (3.48), sy from Equations (3.51) and (3.52); and w from Equation
(5.59). These results are plotted in Figs. 3-10, 3-11, and 3-12 for
easy comparison with the results for the internal loading. To make
it more convenient to compare the results -m, is plotted in Fig. 3-10
for the case of external loading. In Figs. 3-10, 3-11, and 3-12 the

results would be the same for both internal and external loading for

For the numerical cases considered above, it is interesting to

compare the relative sizes of the plastic region given by xi; shown in

Fig. 3-8:
x1 = 2.38 for N2 = 1 internal or external loading
2
X1 = 2.63 for N = L internal loading
x1 = 1.79 for N° = k4 external loading.

As seen in Fig. 3-9, the limit load for the external loading is higher
than that for the internal load and is an increasing function of N=.
The size of the plastic region given by 2xi is a decreasing function
of N2 for external loading and is smaller than that of the plastic re=-
gion for internal loading. Therefore, the increased value of the limit
load comes only from the higher compressive yleld stress and not be-
cause more material is being plastically deformed.

To complete the solution, a stress field must be foqnd in the rigid

region which is at or below yield everywhere and which satisfies equi-
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librium. Such a stress field has been illustrated by G. Eason.. and
R.T. Shield [18] for a material which obeys the Tresca yield cfiterion.
The same type of stress field can be found for the problem considered
here. A typical stress field is illustrated in Fig. 3-13 for the case
of internal loading. The equations for this type of stress field for

2
all values of N are as follows

for X]_<XSX2 = X1+2,
Nz
s, = ———— (x1-%),
2
o(1+%)
2 L
m, = iy =(x-x1)3+2], (3.55)
a2 b
2
n = M,
2(1+%)
and
for x3t2 = xsx <x3 = X1+,
2,
sy = ——— (x1-xa),
o( 1+N%)
2 1 2
my = X (3 (x-x2) «(x-x2)+1],
L= (3.56)
-NZ
ng = ————
2(1+N2)
and
for x > x3 = x1th,
my = Sy = Ny = 0. (3.57)

Similar equations can be found for the case of external loading.
The entire analysis is now complete because the deforming region

has been identified, stress resultants have been found which satisfy
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equilibrium and the stress boundary conditions, and velocities

have been found in the deforming region which are related to the stresses

by the flow rule.



CHAPTER TV

PIASTIC ANALYSIS OF AN ANNUIAR PLATE

The finite expansion of a hole in a thin infinite plate in a state
of plane stress has been investigated for various materials and condi-
tions of loading [28-35]. One solution for a rigid/perfectly plastic
plate was obtained‘by G.I. Taylor [28] and R. Hill [29] using the Tresca
yield criterion and the flow rule associated with the Mises yield cri-
terion. W. Prager [30] used the Tresca yield criterion and its asso-
ciated flow rule to obtain solutions for a rigid/perfectly plastic
plate* and for a rigid/plastic plate with isotropic hardening. A limita-
tion on the amouﬁt of expansion in Prager's solution for hardening was
removed by P.G. Hodge and R. Sankaranarayanan [31]. The expansion prob-
lem also has been solved by Sokolovsky [32] for a rigid/perfectly plas-
tic plate using the Mises yield criterion and its associated flow rule.
This problem has been combined with the twisting of a plate by R.P.
Nordgren and P.M. Naghdi [33]. The finite twisting and expansion of
an annular rigid/plastic plate is considered for both the Mises yield
criterion and its associated flow rule and for the Tresca yield cri-
terion and its associated flow rule. Numerical results are given which
illustrate the influence of twisting on the expansion of a hole in an

infinite plate. Also, the expansion problem has been handled by J.M.

*This stress solution was obtained previously by H.A. Bethe without the
use of a flow rule. See Taylor [1] and Prager (3],

56
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Alexander and H. Ford [34] for an elastic/plastic plate with isotropic
hardening using the Mises yield criterion and its associated flow rule.
Another elastic/plastic solution is presented by R.P. Nordgren and

P.M. Naghdi [35], in which an annular plate is considered loaded in
the plane of the plate with both a pressure and a couple. Using the
Tresca yield criterion and its associated flow rule, results are ob-
tained for the elastic/perfectly plastic solutions during both load-
ing and unloading, and work hardening solutions for loading with both
isotropic and kinematic hardening. Results are presented for the in-
finite plate with infinitesimal displacements.

The solution presented here will differ from those mentioned above
in that it will be assumed that the plate obeys the Coulomb yield cri-
terion and the flow rule associated with it by the theory of perfectly
plastic solids. The plane stress section of the Coulomb yield criterion

is shown in Fig. 4-1.

A. BASIC EQUATIONS

This problem will be treated as a problem of plane stress in cylin-
drical coordinates, i.e. 0,,Tgy> and Ty, Are taken to be zero and the
other stresses are averaged through the thickness. During plastic
flow, the thickness in the z direction may not remain uniform but the
state of stress may still be approximated as plane 1f the change in
thickness is not too severe. A sketch of the problem is seen in

Fig. L-2a,
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Fig. 4-1. Plane stress section of Coulomb yleld criterion.
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Fig. L4-2. Annular plate. a) Undeformed plate, b) Type I
deformation of the plate, c) Type II deformation of the plate.
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Because the problem is axially symmetric, T1,.g = O and the one

equation of equilibrium for a plate of variable thickness is

g; (hoyp) + % (op=0g) = © (L.1)

where h is a function of r.

The velocity-strain rate equations are

eo= B
= T
T dr A

, and éz = == (h.2)

2l E

where u is the radial velocity; éz is the strain rate in the z direc-
. . D
tion averaged through the thickness; and 5; denotes the rate of change

following an element, i.e. the material derivative given by

d
= Ftuss - (L.3)

The two regimes of Fig. L-1 that will be needed for this problem
are AF and F and the equations associated with these are:

For regime AF

2
o, = Oand ool -, = XN (L.k)

where C is the cohensive strenth, é is the angle of friction, and NZ

Ir .

L

that é = O implies that N2 = 1 and the yield criterion coincides with

is related to ¢ by the equation N = tan(T + é). It should be noted
2

the Tresca yield criterion. The strain rates satisfy the equations

o " 2
€, = 0 and <, +ENT = 0. (4.5)
For regime F

o, = 0,09 = 0, 0p = -2N, and (4.6)
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o tE + N%, = 0. (4.7)
Equation (4.5) is due to R.T. Shield [26]. R.M. Haythornthwaite [27]
has shown that the second form, Equation (4.7), is necessary at cer=-
tain corners.

With the aid of Equations (4.2) and (4.3), Equations (4.4) and (4.5)

can be put in terms of the displacement: and the thickness. For regime

AF, Equations (4.5) become

Dh ' y
— = o,N2-a-‘i+E= 0, (4.8)
Dt or r
and for regime F Equation (4.7) becomes
Nza_u+2§£+l‘..a_l}.+2 = 0, (4.9)
or hor hot r

The above equations together with the appropriate boundary condi-
tions will allow one to determine the stresses, strain rates, velocities,

changes in thickness, and displacements in the proposed problem.

B. SOLUTIONS

The solution of this problem will depend on the size of the plate,
i.e. the magnitude of bo/ao. If the plate 1s large (bo/ao large),
then the entire plate will not deform plastically, and there will be
a region near the outer radius of the plate which will remain rigid.
If the plate is small enough, the entire plate will deform plastically.
These two solutions will be identified as type 1 for the plate with

both a deforming and a rigid region, and type 2 for the fully plastic
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region. The critical value of bo/aO which separates the type 1 solu-
tion from the type 2 will be found and it will be shown to depend only

upon the material property NZ.

1. Type 1 Solution

For the type 1 solution there is some radial distance, say ro in
Fig. 4-2b, at which the plastic region of the plate ends and the rigid
region begins. At this interface, the stresses must satisfy the yield
criterion and equilibrium but for ro < r < bo stresses must be found
that are everywhere at or below yield and satisfy equilibrium. Such
stresses may be found ffom the elastic solution (eag., See I.5.
Sokolnikoff [36]).

(4.10)

B
g, = 0, 0, = A - ;E’ and oy = A+

Fsmlbd

where A and B are constants for any given state of stress but vary as
the straining proceeds.

At the radius r = rp, the stresses given by Equations (L4.10) reach
the yield surface at side AF, Fig. L-1, and at r = by, o, = 0. These

conditions together with Equations (4.10) give

2 2
2 2CNrsb 1 1
°or T 32 giNrgbog > [EE-EEJ and Og = "2 35 = Z = [EE *‘;5
ro(N°-1)+bg(N7+1) DPo T3 ro(N -1)+b (N +1) ( 0 ) 2
b, 11
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For r < rp, one seeks a solution such that the stress point remains
on regime AF. On this regime the second of Equations (4.8) together

with the boundary condition that U=0at r=rs leads to w = 0. This

can be used together with éz = 0 to give

a—h+ﬁ-a-h- = 0. (h.12)

ot or

Thus h does not change with time and therefore there is no thickening
of the plate as long as the stress point remains on regime AF.

Because u = 0 and h = ho for r < rp, there is no motion in this re-
gion even though the stresses are on regime AF. Therefore, to complete
the solution, it is necessary to find another region on the range
r < rp for which motion can take place. Before this can be done the
extent of the non-deforming plastic region must be found and for this
the stresses are needed.

To find the stresses for a stress point on regime AF, Equations

(4.1) and (4.4) with h = constant give

Bcr 5
_fio (Nl . XN b1
or r ( N2 ) rN2 (k.15)

The boundary condition associated with Equation (4.13) is found from

Equation (4,11) to be

2CN ( : b2)
T om
0. = Zo at r = To. (Lho1k)

r
NZ(rZ#0Z)+(o2-r5)

Combining Equations (4.13) and (4.1L4) gives
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N1

: 2 2 . >

vt (r32N2+(02-r8) \

(4.15)

Now from Equations (4.15) and (h.h).cg is found to be
NZ-1

C (£a> N2 | (00)
-1 (rE3N=(05-r5) \*

oCN - 2b5

99

It should be noted that by taking N =1 +e¢in Equations (4.15)
and (L4.16) the solution for the Tresca yield criterion can be approxi-
mated to any desired degree of accuracy by taking € to be sufficiently
small. However, because of the obvious singularity in these equations,
the solution for the Tresca yield criterion, which is expressed in
terms of ln(r/rgb, cannot be obtained by replacing N2 by 1. This same
situation recurs throughout the entire analysis.

The above solutions apply only when the stress point 1s on regime
AF. By taking oy = O in Equation (4.16) and solving for r, the value
of r, say ry of Fig. 4-2b, at which the stress point reaches regime

F of Fig. L4-1, is found to be

= I'o
ry = —2— 2, 2 (4.17)
[N2+1} . /(N 1)

5 :

' On regime F, o, = 0 and op = -2CN, and Equation (L.1) reduces to

o h
r

T C 0. (4.18)

Thus

h = (4.19)
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after integration and use of the boundary condition h = hpyat r = ry.
Equation (4.9) can be used to find the velocity u. There is a

differentiation with respect to time in Equation (h.9) but since

there is no viscosity, all of the rates can be taken with respect to

any variable which increases monotonically as the applied load in-

creagses. It is convenient to use r; as the measure of time. Then, in

view of Equation (4.18), Equation (4.9) becomes

2; (ﬁN2) + %I = 0 (4.20)
and so
s 1 oy (4
u o= = .21)
N2 I‘lN2 7

after use of the %oundary condition U = O at r = r1. The final radius
(a of Fig. 4-2b) of the hole can be found from Equation (4.7). This
can be rewritteh as
e, +e, = (1-N%)E.. (L.22)
The right side of Equation (4.22) is known because ér is known. The
left side of Equation (L.22) is the time rate of change of the change
of the volume per unit volume. Thus

AV

G0+ &y +&p = (LN, = = (4.23)

where V is the current volume of the deformed material, i.e., all of
the material inside the radius ri; and A% is the time rate of change
of the volume inside this radius.

Now if &, is the initial radius of the hole and a its present

radius, then the change in volume is given by
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ry.
S 5
AV = fe&;;jrdr‘- xho[rl-acf]. (k.2k)

a
The rate of volume change per'uhit~VOlume is then
ra

AV = Eg—" U/\erchrdr - nho[rlz-ag . (h.25)
Irq .

An alternative expression for Aﬁ-can be found by substituting the values

of the strain rates found from Equation (L4.21) into Equation (L.23):

r
. No-1
W= = f oxthrdr. (k.26)
N ry a
Hence
ry ) 2 ri
2 2 -

4 u/\2hrdr - hylry -ap ) = N2 L L/12hrdr. (k.27)
dra o N ry a

The thickness h is given by Equation (4.19), and the radius a is a
function of ry which is to be determined. Equation (L4.27) is equivalent

to

da _ L 28 (L.28)

dri N2 r

and with the boundary condition a = a, when r; = ao, the solution is

0
N2+1
2 .
a = -—1;—— 1+N° 39) NT o, (4.29)
NT+1 ry

The radial displacement u can be found from the definition of the

velocity
Du du - ou

W o= — o= by — . (4.30)
Dt dr 1 or

Eliminating u between Equations (4.21) and (4.30) gives
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2 du ‘
N—-+(1-?—§E=1-r_. (4.31)
ory i Jdr ry
Assuming a solution of the form u = rlF(v), where v = r/rl leads to
. _ 2
u 2 2, \I_ | NZ+1
o= (1407) 4 - =+ {:liﬁﬂ_illz:} (k.32)

where use has been made of the boundary condition u = O at r = r;.

The type 1 solution is now complete and it is possible to find the
range of the ratio bo/ao for which the solution is valid. Whenever
s z.bo the solution will not be valid because there will be no rigid
region. Setting rp = by in Equation (4.17) gives

N2
Ne-1

ry = bO (N2)
(4.33)

To relate rj to a, Equation (h.29) is used. Recalling that ri = ag

when a = a, (the boundary conditions associated with Equation (L4.28)),

one obtains 2
b 2
2= (@) ¥l (1.34)
ao
2
N
Thus when (bp/ag)> (V%) N2-1 , the type 1 solution is valid, the

N2
limit load being P = 2CN., When (bo/ao)f»(Nz)NE-l the entire plate will

be plastic and will be associated with regime AF of Fig. L-1.

It should be noted that the type 1 solution is an exact solution
of the plane stress problem. However, it cannot be an exact solution
to the three-dimensional problem, for finite displacements, because ﬁhe
fhickness of the plate changes. This change of thickness has been

accounted for in the equation of radial equilibrium but, at finite dis-
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placements, the stress boundary conditions have not been satisfied.

2. Type 2 Solution

For the type 2 solution, the entire plate is on regime AF and the
stresses can be found from Equations (L4.1) and (L4.4) when h is known.
It is possible to find h from the first of Equations (4.8) by first
finding the velocity u from the second of Eguations (4.8). As in the
type 1 solution, the time derivatives can be taken with respect to
any variable which is monotonically increasing with the load and in

this case the radius a is used. The second of Equations (4.8) gives

u = Ce(?)i?- (4.35)

-

where the constant Cp is non-zero because the entire plate is plastic
and therefore ﬁ cannot be identically zero. Also, C cannot be deter-
mined without arbitrarily specifying the velocity of one point. There-
fore, by taking u=1atr=a the velocity for any radius is given in
terms of the velocity of the inside radius. For this choice, Cs is
unity. Combining Equation (4.35) with the first of Equations (L4.8),
with v = a/r and assuming h = h(v), leads to

1+N2

dh | 1-(v) N2
dv

l
(@]

(4.36)

r
14°

N2

Since 1 - (v) cannot be identically zero, dh/dv must vanish, and
one concludes that

h = hge (b.37)

Now combining Equations (4.1) and (4.4) with h = hy and using the
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O at r = b one obtains
2

boundary condition Op

B N™-1
op = T 1.} e (1.38)
N -1 i
and 2
R
0p = —a— |n-® | (1.39)

3, 2 .
N(w-1) r
Equation (4.38) is used to determined the limit load by taking o, = =P

at r = ag, b = bpy, the result being

2
N°-1
N2
L. - ; 1+ (o) . (Lk.Lo)
2CN N=-1 &8s e
o N2-1
Equation (4.40) gives the limit load for 1 < (bp/ag) < [N'] and
- - .2

N

%] w1 Therefore,

from the type 1 solution P/2CN = 1 for (bo/ag) > [N
the limit load is known for any size of plate and the results are shown
. . . 2 2 2
graphically in Fig. 4-3 for N =2, N” =3, and N = L,
To complete the type 2 solution the displacement u must be found.

This displacement can be found from Equation (4.35) which can be

written as 1
. N2
e T (hh1)

=

and | (h.kho)

The initial coordinate of a point is given by ry and its final coor-

dinate by r. The initial coordinate of a point can be related to its
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final coordinate through the displacement, expressed in terms of the
final coordinate, by

rg = r - u(r,a). (4.43)
By separating Equation (hohl) and using the boundary conditions in

Equation (L4.42), one obtains

r a1

1
L/‘I'NEdr = \/haNZEa. (b.hb)

r-u ao

From Equation (4.44), u is found to be

. N2 N2 N2 1=N2
u = r-|r -a +ao

1-N%  1.N2 1-N3, N°
> . (4.45)

The type 2 sblution is not only an exact solution for the plane
stress problem, but also for the three-dimensional problem because

there is no thickening of the plate.



CHAPTER V

CONCLUSIONS

The techniques used in this work were essentially the same as
those used for an incompressable material in which the yield is un-
affected by mean stress. However, the details of obtaining solutions
were more complicated because the Coulomb yield criterion and its
associated flow rule were used. In the cylindrical shell problem the
procedure for determining the yield surface in terms of the stress
resultants was the same as that which has been used for the Tresca cri-
terian, but the types of deformation which were possible were more
complicated becauée of the dilatation. Also, the procedure for deter-
mining the extent of the deformable region in the annular plate prob-
lem wag thé same as for the Tresca and Mises criteria, but the details
were again more complicated because of the dilatation.

The determination of the shapevand extent of the deformable re-
gion in the shell and the annular plate was made easier because the

shape of therdeformable region in both casges was known a priori. In

each case, the extent of the deformable region was a function of only

one variable. Thus it is far from clear that situations possessing

less natural symmetry can be solved completely by a‘parallel technique.
In the problems considered here, the exact yield surface could

be used because it proved possible to single out appropriate facets

of this surface by a systematic procedure. In the beam and shell

71
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problems, the correct regimes of the yield surface were determined by
first considering the possible modes of deformation, whereas in the
annular plate problem, the correct regimes of the yield surface were
found by first considering the stresses.

The specific results concerning the problems solved here can be

summarized as follows:

A, LIMIT ANALYSIS OF BEAMS AND PIATES IN CYLINDRICAL BENDING

The yield surface for a beam of rectangular cross-section has
been found in terms of the moment and the axial force. This yield
surface was used to determine the limit load for two beams with dif-
ferent end conditions. The first beam considered is loaded by a con-
centrated force at the center and is restrained from rotation, but
not extension, at both ends. Secondly, a beam is considered in which
the ends are restrained from both rotation and extensional motion.
The limit load has been obtained for both cases and the limit load
for the beam which is allowed no extensional motion is higher. Also

in this case there is gn axial force in the beam at the limit load.

B. LIMIT ANALYSIS OF A CYLINDRICAL SHELL

The yield surface for a cylindrical shell has been found in
terms of the longitudinal and circumferential normal stress resultants
and the longitudinal moment. This yield surface shows the effect of

the gensitivity of the yield criterion to mean stress.
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This yield surface was used to obtain the limit load for a cylin-
drical shell loaded by a ring of pressure. Two different cases were
considered. One in which the ring of pressure is applied from the in-
side and the other with a ring of pressure applied from the outside.
The limit loads for both types of loading werefound to be an increasing
function of NZ. However, the limit load for the externally applied
load is greater than that for the internally applied load for all
values of N2 > 1. This difference is a result of the dependence of

the Coulomb yield criterion on mean stress.

C. PLASTIC ANALYSIS OF AN ANNULAR PIATE

The limit igad for all ratios bO/aO of the outside radius to the
inside radius has been found. The limit load is a function of the
material property N2 which is related to the angle of friction of the
material. A critical ratio has been found which separates two different
modes of failure. For bo/ao lesg than the critical value, the entire
plate deforms by expansion with no thickening and the limit load is a
function of bo/ao, However, for bo/ao greater than the critical value,
only a portion of the plate near the inside radius deforms and the
remainder of the plate ig rigid at the limit load. For the second
cage, the plate does thicken as the load increases above the limit
load. However, for this case, the limit load is independent of bo/ao,

i.e., the plate is effectively infinite.
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In addition to the limit load the stress distribution, velocities,
displacements, thickening, and the extent of the deforming region has
been found for finite displacements, being limited only by the assump-

tion of plane stress.



lo o

12,

15.

1k,

REFERENCES

Hill, R. 1950. The Mathematical Theory of Plasticity, Oxford
University Press, New York. :

Kirkpatrick, W.M. 1957. The condition of failure for sands, Proc.
kth Intern. Conf. Soil Mech. and Found. Eng., 1: 172-181.

Haythornthwaite, R.M. 1960. Mechanics of the triaxial test for
soils, Proc. ASCE, 8M5, 86: 35-62.

Wu, T.H., A.K. Ioh, and L.E.Malvern. 1963. Study of failure
envelope of soils, Proc. ASCE, SM1, 89: 145-181.

Murphy, G. 1957. Properties of Engineering Materials, Inter-
national Textbook Co., Scranton, Pa.

Akroyd, T.N.W. 1962. Concrete Properties and Manufacture, Per-
gamon Press Inc., New York, pp. 6-20.

Technical Data on Plastics, 1952. Manufacturing Chemists' Assoc.
Inc., Washington.

Butkovich, T.R. Dec. 195L. Ultimate strength of ice, Snow, Ice
and Permafrost Research Establishment, Corps of Engineers, U.S.
Army, Research Paper 11: 1-11. :

Butkovich, T.R. Oct. 1956. Strength studies of sea ice, ibid.,
20: 1-15.

Butkovich, T.R. Oct. 1956. Strength studies of high-density
snow, ibid., 18: 1-19.

Prager, W, 195L. An Introduction to Plasticity, Addison-Wesley,
Reading, Mass.

Onat, E.T. and W. Prager. 1953. The influence of axial forces on
the collapse loads of frames, Proc. lst Midw. Conf. Solid Mech:
Lo-L2.

Haythornthwaite, R.M. 1957. Beams with full end fixity, Engineer-
ing, 183: 110-112.

Haythornthwaite, R.M. 1961. Mode change during the plastic col-
lapse of beams and plates, Develop. in Mech. 1: 203-205.

(P



15.

16.

17.

18.

19.

20.

2l. .

22. .

25 .

ok,

5.

26.

76
REFERENCES (Continued)

Onat, E.T. and R.M. Haythornthwaite. 1956. The load-carrying
capacity of circular plates at large deflection, J. Appl. Mech.
2%5: L4955,

Onat, E.T. and W. Prager. 1953. Limit analysis of arches, J.
Mech. Phys. Solids, 1: T77-89.

Drucker, D.C. 1953. Limit analysis of cylindrical shells under
axially-symmetric loading, Proc. lst Midw. Conf. Solid Mech:

158-163.

Fason, G. and R.T. Shield. 1955. The influence of free ends on
the load carrying capacities of cylindrical shells, J. Mech. Phys.
Solids, 4: 17-27.

Sawczuk, A, and P.G. Hodge, Jr. 1960. Comparison of yield condi-
tions for circular cylindrical shells, J. Franklin Inst., gég:

362-37k.

Hodge, P.G., Jr. 1954. Rigid plastic analysis of symmetrically
loaded cylindrical shells, J. Appl. Mech., 2L: 336-3k42.

Onat, E.T. 1955. Plastic collapse of cylindrical shells under
axially symmetrical loading, Q. Appl. Math. 13: 63-72.

Onat, E.T. and W. Prager. 1%L. Limit analysis of shells of
revolution, Proc. Roy. Netherland Acad. Sci. B 57: 534548,

Hodge, P.G., Jr. 1960. Yield conditions for rotationally symmetric
shells under axisymmetric loading. J. Appl. Mech., 27: 323-331.

Hodge, P.G., Jr. 1961. The Mises condition for rotationally
symmetric shells, Q. Appl. Math., 18: 305-311.

Drucker, D.C. and R.Ts Shield, 1959. Limit analysis of a symmetri-
cally loaded thin shell of revolution, J. Appl. Mech., 26: 61-68.

Shield, R.T. 1955. On Coulomb's law of failure in soils, J.
Mech. Phys. Solids, L: 10-16.

Haythornthwaite, R.M. 1960. Mechanics of the triaxial test for
soils, Proc. ASCE, SM5, 86: 35-62.



28.

29.

30,

31.

32.

33.

3k,

35

36.

7
REFERENCES (Concluded)

Taylor, G.I. 1948. The formation and enlargement of a circular
hole in a thin plastic sheet, = Q.. J. Mech. & Appl. Math., IL:
103-12k,

Hill, R. 1949. Plastic distortion of non-uniform sheets, Phil.,
Mag., 40: 971-983.

Prager, W. 1953. On the use of singular yield conditions and
assoclated flow rules, J. Appl. Mech., 29: 317-320.

Hodge, P.G., Jr. and R. Sankaranarayanan. 1958. On finite ex-
pansion of a hole in a thin infinite plate, Q. Appl. Math., lé:
73-80.

Sokolovsky, V.V. 1961. Expansion of a circular hole in a rigid/
plastic plate, Appl. Math. and Mech. [Transl. of PMM] 25: 809-815.
Nordgren, R.P. and P.M. Naghdi. 1963. Finite twisting and expan-
sion of a hole in a rigid/plastic plate, ASME Trans. Series E 30:
605-612. .

Alexander, J.M. and H. Ford. 1954. On the expanding a hole from
zero radius in a thin infinite plate, Proc. Roy. Soc. A, ggé:

543-561.

Nordgren, R.P. and P.M. Naghdi. 1963. ILoading and unloading
solutions for an elastic/plastic annular plate in the state of
plane stress under confined pressure and couple, Intern. J.
Engin. Sci., 1: 33-70, )

Sokolinkoff, I.S. 1956. Mathematical Theory of Elasticity, 2nd
ed., McGraw-Hill, New York, p. 300,




UNIVERSITY OF MICHIGAN

LAY

3 9015 02841 2321



