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Abstract. A method for calculating the probability of customer demand satisfaction in production–
inventory–customer systems with Markovian machines, finite finished goods buffers, and random demand
is developed. Using this method, the degradation of this probability as a function of demand variability
is quantified. In addition, it is shown by examples that the probability of customer demand satisfaction
depends primarily on the coefficient of variation, rather than on the complete distribution, of the demand.

Keywords: due-time performance, finished goods buffer, random demand, Markovian reliability

1. Introduction

Reliable satisfaction of customer demand is an important issue of manufacturing systems
performance. Although a number of measures for customer demand satisfaction may be
considered, in the automotive industry it is often quantified by the probability to ship to
the customer a required number of parts during a fixed period of time. We refer to this
performance measure as the Due-Time Performance (DTP). For the case of unreliable
production and reliable (constant) customer demand, a method for calculating DTP was
developed by Jacobs and Meerkov (1995), Tan (1998, 1999), Li and Meerkov (2000a,
2000b, 2001, 2002). In reality, however, the demand is almost always variable (even if
purchasing agreements state, otherwise). Therefore, analysis of systems with variable
demand is of importance. The current paper is devoted to this topic.

Specifically, we consider a production–inventory–customer (PIC) system, which
consists of a Production Subsystem (PS), Inventory Subsystem (IS), and Customer Sub-
system (CS) (see figure 1; the parameters of the subsystems, indicated in this figure, are
defined in section 2). It is assumed that the PS has its up- and downtimes distributed
exponentially, the IS has a finite capacity, and the CS generates the demand modeled as
a sequence of independent, identically distributed random variables with fixed expected
values but otherwise distributed arbitrarily. Under these conditions, we provide an ana-
lytical method for DTP calculation. Using this method, we quantify DTP degradation as
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Figure 1. Production–inventory–customer system.

a function of demand variability. In addition, we show by examples that DTP depends,
in fact, only on the coefficient of variation rather than on the complete distribution of the
demand. This leads to a hypothesis that DTP for all demand distributions with identical
coefficients of variation is practically the same.

Production/inventory systems have been considered in numerous publications for
over two decades (see monographs by Buzacott and Shanthikumar (1993), Hopp and
Spearman (1996), Altiok (1997) and Zipkin (2001), and articles by Gavish and Graves
(1981), Federgruen and Zipkin (1986), Altiok (1989), Srinivasan and Lee (1991),
Ciarallo, Akella, and Morton (1994), Zijm and Vanhoutum (1994), Glasserman and
Tayur (1996), Rubio and Wein (1996), Wang and Gerchak (1996), Moinzadeh and Ag-
garwal (1997), Gullu, Onol, and Erkip (1997, 1999), Gullu (1998), Liberopoulos and
Dallery (2002)). The demand is almost always assumed to be random. The produc-
tion is either deterministic or random and, in many models, instantaneous. The finished
goods buffer is always assumed (perhaps, tacitly) to be infinite. The problems consid-
ered typically center on optimal replenishment policies and often use queueing theory
methods. Although this literature offers many important results and insights, the issue
of Due-Time Performance for random demand has not been addressed.

The main contribution of this paper is in providing a method for calculating DTP
in the framework of a PIC model, which captures realistic features of automotive man-
ufacturing systems, i.e., random production, random demand, and finite finished goods
buffers (FGB).

The outline of the paper is as follows. In section 2, the model of the production–
inventory–customer system at hand is introduced. Section 3 provides a method for DTP
calculation. Effects of the demand randomness are investigated in sections 4 and 5. Fi-
nally, in section 6, the conclusions are formulated. The proofs are given in the appendix.

2. Model and problem formulation

The PIC system considered in this work is defined by the following assumptions.

Production subsystem

(i) The production subsystem has two states: up and down. When up, it is capable
of producing one part per unit of time; when the PS is down, no production takes
place.
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(ii) The uptime and the downtime of PS are random variables distributed exponentially
with parameters p and r, respectively. Thus, PS is characterized by the pair (p, r).

Inventory subsystem

(iii) The inventory subsystem is characterized by its capacity, 0 � N < ∞.

Interaction of PS and IS

(iv) PS is blocked at time t if FGB is full at time t . PS is never starved.

Customer subsystem

(v) From the point of view of the customer, the time axis is divided into “epochs”, each
consisting of T units of time. At the end of epoch, unfinished part is scrapped.

(vi) At the end of each epoch i, i = 1, 2, . . ., the customer requires D(i) parts to be
available for shipment. D(i) is assumed to be a random variable taking values D1,
. . ., DJ with probabilities P1, . . . , PJ , respectively. Thus, the customer is charac-
terized by the triplet (D, P, T ) where D = [D1, . . . ,DJ ], P = [P1, . . . , PJ ] and
T is the shipping period.

(vii) The expected value of D(i) is D for all i. To avoid triviality, it is assumed that

D � T
r

p + r
, (1)

i.e., that the average demand is not larger than the average production capacity
during the shipping period T .

(viii) D(1), D(2), . . . , is a sequence of independent identically distributed (IID) random
variables.

Interaction of IS and CS

(ix) At the beginning of epoch i, parts are removed from the FGB in the amount of
min(H(i −1),D(i)), where H(i −1) is the number of parts in the FGB at the end
of (i − 1)th epoch. If H(i − 1) � D(i), the shipment is complete; if H(i − 1) <

D(i), the balance of the shipment, i.e., D(i) − H(i − 1) parts, is to be produced
by the PS during the shipping period T . Parts produced are immediately removed
from the FGB and prepared for shipment, until the shipment is complete, i.e.,
D(i) parts are available. If the shipment is complete before the end of the epoch,
the system continues operating, but with the parts being accumulated in the FGB,
either until the end of the epoch or until the PS is blocked, whichever occurs first.
If the shipment is not complete by the end of the epoch, an incomplete shipment
is sent to the customer. No backlog is allowed.

Remark 1. The assumptions on exponential up- and downtime (see (ii)), scrapping
(see (v)), IID sequencing (see (viii)), and no backloging (see (ix)) are introduced to
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simplify calculations. In future work, we plan to remove some of them. In particu-
lar, production systems with non-exponential distributions will be considered as well as
non-IID demand.

Assumptions (i)–(ix) define the production–inventory–customer system under con-
sideration. In the time scale of the epoch and in an appropriately defined state space,
it represents an irreducible Markov chain with a finite number of states. Therefore,
it has a unique stationary probability distribution (Hoel, Port, and Stone, 1972), i.e.,
steady state. We refer to this steady state as the “normal system operation”.

Let t̂ (i) be the number of parts produced by the PS in epoch i during the normal
system operation. Then DTP can by expressed as

DTP = Pr
(
H(i − 1) + t̂ (i) � D(i)

)
. (2)

The problem addressed in this paper is: Given production–inventory–customer system
(i)–(ix), develop a method for calculating DTP and quantify effects of the demand vari-
ability on customer demand satisfaction.

3. DTP calculation

Let t (i) denote the number of parts produced during epoch i if no blockage occurs.
Introduce the following quantities:

P(x) = Pr
(
t (i) � x

)
, x ∈ {0, 1, . . . , T },

rk,l,j = Pr
(
t (i) = D(i) + k − l

)
, k = 1, . . . , N − 1, l = 0, 1, . . . , N,

D(i) = Dj, j = 1, . . . , J,

r̂N,l,j = Pr
(
t (i) � D(i) + N − l

)
, l = 0, 1, . . . , N, D(i) = Dj, j = 1, . . . , J.

These quantities can be calculated as follows. As it has been shown by Jacobs and
Meerkov (1995),

P(x) = re−px

p + r

[
1 +

∞∑
j=2

(px)j−1

(j − 1)!

(
1 − e−r(T −x)

j−2∑
k=0

[r(T − x)]k
k!

)]

+ pe−px

p + r

∞∑
j=1

(px)j−1

(j − 1)!

[
1 − e−r(T −x)

j−1∑
k=0

[r(T − x)]k
k!

]
. (3)

To calculate rk,l,j , the following expression can be used:

rk,l,j = P(Dj + k − l) − P(Dj + k − l + 1). (4)

The r̂N,l,j can be calculated as

r̂N,l,j = P(Dj + N − l). (5)
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Introduce matrix R and vector Z0 defined by

R=




J∑
j=1

(r1,1,j− r1,0,j )Pj− 1
J∑

j=1

(r1,2,j− r1,0,j )Pj . . .

J∑
j=1

(r1,N,j− r1,0,j )Pj

J∑
j=1

(r2,1,j− r2,0,j )Pj

J∑
j=1

(r2,2,j− r2,0,j )Pj− 1 . . .

J∑
j=1

(r2,N,j− r2,0,j )Pj

...
...

. . .
...

J∑
j=1

( r̂N,1,j− r̂N,0,j )Pj

J∑
j=1

( r̂N,2,j− r̂N,0,j )Pj . . .

J∑
j=1

( r̂N,N,j − r̂N,0,j )Pj− 1




,

(6)

Z0 =




J∑
j=1

r1,0,jPj

J∑
j=1

r2,0,jPj

...
J∑

j=1

r̂N,0,j Pj




. (7)

Matrix R is nonsingular due to the uniqueness of the stationary probability distribution
defined by system (i)–(ix).

Theorem 1. Under assumptions (i)–(ix),

DTP =
N∑

k=0

J∑
j=1

P(Dj − k)Pjzk, (8)

where zk = Pr(H(i − 1) = k), k = 0, 1, . . . , N , and vector Z = [z1, z2, . . . , zN ]T
is calculated according to

Z = −R−1Z0. (9)

Proof. See appendix. �

Remark 2. When the demand is deterministic, i.e., D(i) = D, ∀i, expression (8) sim-
plifies to

DTP =
N∑

k=0

P(D − k)zk, (10)
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where R and Z0 are given by

R=




r1,1 − r1,0 − 1 r1,2 − r1,0 . . . r1,N − r1,0

r2,1 − r2,0 r2,2 − r2,0 − 1 . . . r2,N − r2,0

...
...

. . .
...

r̂N,1 − r̂N,0 r̂N,2 − r̂N,0 . . . r̂N,N − r̂N,0 − 1


 , (11)

Z0 =




r1,0

r2,0

...

r̂N,0


 . (12)

Here the third subscript j in rk,l,j and r̂N,l,j becomes superfluous and, therefore, omitted.
These expressions coincide with those derived by Li and Meerkov (2000a, 2002).

Remark 3. Theorem 1 can be useful for DTP evaluation in production–inventory–
customer systems with more than one exponential machine. Specifically, similar to Li
and Meerkov (2000a), it is possible to show that the following numerical fact holds:

DTPM � DTP1. (13)

Here DTPM is the due-time performance of M-machine PIC system (with in-process
buffering) and DTP1 is the due-time performance in one-machine case (i)–(ix), where the
machine is the aggregation of the machines of the M-machine system with the aggrega-
tion carried out using the method of Chiang, Kuo, and Meerkov (2000). Thus, the results
obtained in this paper are applicable to M-machine PIC systems as well (in the sense of
the lower bound (13)).

Remark 4. As it follows from theorem 1, the calculation of DTP involves evaluations
of infinite sums in (3) and matrix inversion in (9). In our calculations, the infinite sums
have been evaluated by truncating higher order terms so that the first neglected term
is less than 10−10. (The terms are decreasing due to the factorials in the denomina-
tors of (3).) The inversion of matrix R turned out to be not time-consuming since the
total time of DTP calculation was within a few seconds for all systems analyzed (see
remark 5 below).

Remark 5. Although the DTP of system (i)–(ix) can be estimated using simulations, it
would require, however, much more time than the analytical calculations. For instance,
for systems analyzed in this paper, simulations would require on the average from 40
minutes (N = 45) to two hours (N = 200) using a 600 MHz PC whereas analytical
calculations are carried out within 2 and 6 seconds, respectively.
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Table 1
Uniform PMFs considered.

CV Di Pj

0.1 12, 13, . . . , 17, 18 1/7
0.25 9, 10, . . . , 20, 21 1/13
0.4 5, 6, . . . , 24, 25 1/21
0.6 4, 15, 26 1/3
0.8 3, 27 1/2

4. DTP degradation as a function of demand variability

It is well known that the demand variability leads to a decrease in customer demand sat-
isfaction (Buzacott and Shanthikumar, 1993; Hopp and Spearman, 1996; Altiok, 1997;
Zipkin, 2001). It is obvious, that DTP, being a measure of customer demand satisfaction,
also suffers from uncertainties in the demand. However, the level of DTP degradation
for various values of FGB has not been quantified. Using the method developed above,
we provide such a quantification below.

To analyze the behavior of DTP as a function of the demand variability, we consider
five uniform demand distributions shown in table 1. All of them have D = 15 and the
coefficients of variation (CV) ranging from 0.1 to 0.8.

To analyze DTP degradation for various FGB capacities, we consider IS with N

taking values 1, 5, 15, and 45.
To investigate the properties of DTP for various levels of customer demand, we

use the notion of the load factor (LF). This notion has been introduced by Jacobs and
Meerkov (1995) as the ratio of the average demand to the average production volume
during the shipping period, i.e.,

L = D

T e
, (14)

where e is the PS efficiency, i.e., e = r/(p + r). Below, we consider three levels of LF:
low (L = 0.9159), medium (L = 0.9511), and high (L = 0.9892).

The parameters of the three production subsystems and the shipping periods that
result in the above mentioned load factors are shown in table 2. To ensure fairness in the
comparison, the efficiencies of each PS are chosen to be the same, e = 0.6066, as are
the relative shipping periods defined by

τ = T

1/r + 1/p
(15)

and chosen to be τ = 1.0918.



166 LI, ENGINARLAR AND MEERKOV

Table 2
Systems analyzed.

Load factor p r T

System 1 Low
L = 0.9159 0.0667 0.1028 27

System 2 Medium
L = 0.9511 0.0692 0.1067 26

System 3 High
L = 0.9892 0.0720 0.1110 25

Figure 2. DTP degradation as a function of demand randomness: system 1, low LF case.

The behavior of DTP as a function of CV of the demand is shown in figures 2–4.
These figures include also the case of deterministic demand (CV = 0). Examining these
data, we conclude the following.

1. As expected, for all values of LF and N , larger CVs lead to smaller DTPs. Similarly,
larger LFs lead to smaller DTPs. Finally, for any CV and LF, larger N results in
larger DTP.

2. Unexpectedly, the curves representing DTP as function of CV for all LF with iden-
tical N are practically collinear. This implies that the percent of DTP degradation
as a function of CV is almost independent of LF, as long as N remains the same.
This conclusion is quantified in table 3 using the ratio of DTPs for CV = 0.8 and
CV = 0.
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Figure 3. DTP degradation as a function of demand randomness: system 2, medium LF case.

Figure 4. DTP degradation as a function of demand randomness: system 3, high LF case.
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Table 3
Effect of demand randomness on DTP degradation

(DTP(CV = 0.8)/DTP(CV = 0)).

High LF Medium LF Low LF

N = 1 0.8379 0.8415 0.8678
N = 5 0.8270 0.8131 0.8368
N = 15 0.8284 0.8130 0.8241
N = 45 0.9214 0.9035 0.9071

Figure 5. Probability mass functions considered.

5. DTP as a function of demand CV

The method of section 3 implies that DTP is a functional of the probability mass function
(PMF) of the demand. Below, using examples, we show that DTP for various types of
PMFs remains the same as long as their CVs are identical. This implies that DTP can be
viewed as a function of CV, no matter what the shape of PMF may be.
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Figure 6. DTP as function of demand CV: system 1, low LF case.

The PMFs that we consider in this work are uniform, triangular, and “ramp” (see
figure 5). We consider three groups of these distributions, with CVs equal to 0.1, 0.25,
0.4, and 0.8. The expected values of all distributions are 15.

Using these PMFs and theorem 1, we calculate DTP as a function of N for the
three systems defined in table 2. The results are shown in figures 6–8. From these data
we conclude:

1. For every value of N , DTP for all PMFs considered are almost the same, as long as
CVs are identical.

2. The largest differences occur for the smallest N and the largest CV. Table 4 quan-
tifies these differences, which take place due to the effects of higher moments of
corresponding distribution.

3. Based on these results, the following hypothesis can be formulated. In the
production–inventory–customer system defined by assumptions (i)–(ix), DTP for all
demand distributions with identical coefficients of variation remains practically the
same.
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Figure 7. DTP as function of demand CV: system 2, medium LF case.

Figure 8. DTP as function of demand CV: system 3, high LF case.



RANDOM DEMAND SATISFACTION 171

Table 4
DTP for different distributions of the demand (CV = 0.8, N = 1).

Uniform Triangular “Ramp”

High LF 0.4709 0.4782 0.4708
Medium LF 0.4949 0.4992 0.4948
Low LF 0.5308 0.5256 0.5307

6. Conclusions

This paper provides an analytical method for evaluating due-time performance (DTP) in
production–inventory–customer systems with Markovian machines, finite inventory, and
random demand. Using this method, the degradation of DTP as a function of demand
variability is quantified and it is shown, by examples, that DTP is practically independent
of a particular type of the demand distribution, as long as its coefficient of variation (CV)
remains fixed. This property is important in applications since CVs of the demand can
be relatively easily evaluated in practice, whereas determining the complete probability
mass function is a formidable task.
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Appendix. Proof of theorem 1

The logic of the proof is as follows:

Step 1. Derive the characterization of the probability mass function, Pr(H(i) = k), for
k = 0, 1, . . . , N , where H(i) is the number of parts in FGB at the end of the
ith epoch.

Step 2. Combine the results of step 1 into matrix–vector form and solve for the proba-
bility mass function.

Step 3. From the above calculation, express the DTP in terms of Pr(H(i) = k) and
obtain the claim of the theorem.

Below these three steps are carried out.

Step 1. For k = 1, 2, . . . , N − 1,

zk � Pr
(
H(i) = k

)
= Pr

(
k � t̂ (i) + H(i − 1) − D(i) < k + 1

)
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=
N∑

l=0

Pr
(
k � t̂ (i) + H(i − 1) − D(i) < k + 1

∣∣H(i − 1) = l
)
Pr
(
H(i − 1) = l

)

=
N∑

l=0

Pr
(
D(i) + k − l � t̂ (i) < D(i) + k + 1 − l

)
Pr
(
H(i − 1) = l

)

=
N∑

l=0

[
Pr
(
t̂ (i) � D(i) + k − l

)− Pr
(
t̂ (i) � D(i) + k − l + 1

)]
Pr
(
H(i − 1) = l

)

=
N∑

l=0

[
Pr
(
t (i) � D(i) + k − l

)− Pr
(
t (i) � D(i) + k − l + 1

)]
Pr
(
H(i − 1) = l

)
.

Due to stationary, we obtain

zk =
N∑

l=0

[
Pr
(
t (i) � D(i) + k − l

)− Pr
(
t (i) � D(i) + k − l + 1

)]
Pr
(
H(i) = l

)
,

=
N∑

l=0

[
J∑

j=1

Pr
(
t (i) � D(i) + k − l

∣∣D(i) = Dj

)
Pr
(
D(i) = Dj

)

−
J∑

j=1

Pr
(
t (i) � D(i) + k − l + 1

∣∣D(i) = Dj

)
Pr
(
D(i) = Dj

)]
Pr
(
H(i) = l

)

=
N∑

l=0

J∑
j=1

[
Pr
(
t (i) � Dj + k − l

)− Pr
(
t (i) � Dj + k − l + 1

)]
Pjzl

=
N∑

l=0

J∑
j=1

[
P(Dj + k − l) − P(Dj + k − l + 1)

]
Pjzl

=
N∑

l=0

J∑
j=1

rk,l,jPj zl, (A.1)

where P(Dj + k − l) and P(Dj + k − l + 1) are calculated according to Jacobs and
Meerkov (1995):

P(x) = re−px

p + r

[
1 +

∞∑
j=2

(px)j−1

(j − 1)!

(
1 − e−r(T −x)

j−2∑
k=0

[r(T − x)]k
k!

)]

+ pe−px

p + r

∞∑
j=1

(px)j−1

(j − 1)!

[
1 − e−r(T −x)

j−1∑
k=0

[r(T − x)]k
k!

]
. (A.2)
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For k = N ,

zN = Pr
(
t̂ (i) + H(i − 1) − D(i) = N

)
= Pr

(
t (i) + H(i − 1) − D(i) � N

)
=

N∑
l=0

Pr
(
t (i) + H(i − 1) − D(i) � N

∣∣H(i − 1) = l
)
Pr
(
H(i − 1) = l

)

=
N∑

l=0

Pr
(
t (i) � D(i) + N − l

)
Pr
(
H(i) = l

)

=
N∑

l=0

J∑
j=1

Pr
(
t (i) � D(i) + N − l

∣∣D(i) = Dj

)
Pr
(
D(i) = Dj

)
Pr
(
H(i) = l

)

=
N∑

l=0

J∑
j=1

Pr
(
t (i) � Dj + N − l

)
Pjzl

=
N∑

l=0

J∑
j=1

P(Dj + N − l)Pjzl

=
N∑

l=0

J∑
j=1

r̂N,l,j zl. (A.3)

For k = 0, we write:

Pr
(
H(i) = 0

) = 1 −
N∑

k=1

Pr
(
H(i) = k

)
, (A.4)

i.e.,

z0 = 1 −
N∑

k=1

zk. (A.5)

Step 2. Substituting z0 from (A.5) into (A.1) and (A.3), we obtain:[
J∑

j=1

(r1,1,j − r1,0,j )Pj − 1

]
z1 +

J∑
j=1

(r1,2,j − r1,0,j )Pjz2 + · · ·

+
J∑

j=1

(r1,N,j − r1,0,j )PjzN = −
J∑

j=1

r1,0,jPj ,

J∑
j=1

(r2,1,j − r2,0,j )Pj z1 +
[

J∑
j=1

(r2,2,j − r2,0,j )Pj − 1

]
z2 + · · ·

+
J∑

j=1

(r2,N,j − r2,0,j )PjzN = −
J∑

j=1

r2,0,jPj ,
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...
J∑

j=1

(
r̂N,1,j − r̂N,0,j

)
Pjz1 +

J∑
j=1

(
r̂N,2,j − r̂N,0,j

)
Pjz2 + · · ·

+
[

J∑
j=1

(
r̂N,N,j − r̂N,0,j

)
Pj − 1

]
zN = −

J∑
j=1

r̂N,0,jPj ,

or, in matrix–vector form,

RZ = −Z0, (A.6)

where R, and Z0 are defined in (6) and (7), respectively, and R is nonsingular. Thus,

Z = −R−1Z0. (A.7)

Step 3. From the definition of DTP, using the total probability formula, we have:

DTP = Pr
(
t̂ (i) + H(i − 1) � D(i)

)
=

N∑
k=0

Pr
(
t̂ (i) + H(i − 1) � D(i)

∣∣H(i − 1) = k
)
Pr
(
H(i − 1) = k

)

=
N∑

k=0

Pr
(
t̂ (i) � D(i) − k

)
Pr
(
H(i − 1) = k

)

=
N∑

k=0

Pr
(
t (i) � D(i) − k

)
Pr
(
H(i − 1) = k

)

=
N∑

k=0

Pr
(
t (i) � D(i) − k

)
Pr
(
H(i) = k

)

=
N∑

k=0

J∑
j=1

Pr
(
t (i) � D(i) − k

)
Pr
(
D(i) = Dj

)
Pr
(
H(i) = k

)

=
N∑

k=0

J∑
j=1

P(Dj − k)Pjzk. (A.8)

Theorem 1 is proved. �
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