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Abstract 

We survey several computational procedures for the partially observed Markov 
decision process (POMDP) that have been developed since the Monahan survey was 
published in 1982. The POMDP generalizes the standard, completely observed Markov 
decision process by permitting the possibility that state observations may be noise- 
corrupted and/or costly. Several computational procedures presented are convergence 
accelerating variants of, or approximations to, the Smallwood-Sondik algorithm. Finite- 
memory suboptimal design results are reported, and new research directions involving 
heuristic search are discussed. 

1. In t roduct ion  

This paper presents a survey of computational algorithms for the partially 
observed Markov decision process (POMDP) having finite state, action, and observation 
sets. Emphasis is placed on algorithmic developments that have occurred since the 
publication of Monahan's survey of the POMDP [11 ]. 

The (completely observed) Markov decision process (MDP) is a well-studied 
model of sequential decision making under uncertainty that has been applied in a 
variety of significant real-world settings; see [27] for a recent survey of the MDP, 
and [28,29] for surveys of  its application. By completely observed, we mean that 
the decision maker has access to the exact value of the current state of the system 
without charge. Many situations exist, however, where such an assumption is invalid. 
For example, portions of  the state value may be inaccessible (e.g. the state of a 
machine might be comprised of the state of various internal and unobservable 
components of the machine), sensors used to measure the state may give noise- 
corrupted readings, and/or exact state observations may be costly. The POMDP 
generalizes the MDP to include such situations, making the POMDP a particularly 
robust modeling tool for the control of a variety of discrete event dynamic systems. 

The applicability of the POMDP is limited in two ways. First, the POMDP 
is very data intensive. White and White [27] survey adaptive control techniques for 
the MDP and techniques for dealing with MDPs having parameter values described 
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by set inclusion. Such techniques, extended to the POMDP, are likely to mollify 
this limitation (see also [6]). 

The second limitation is that the solution of the POMDP model of most 
realistic problems can require substantial computational effort. This limitation, and 
the potential modeling applicability of  the POMDP model, serve as the motivation 
for the study of numerical solution techniques for the POMDP and hence for this 
survey. 

This survey is organized as follows. Section 2 presents the formulation of the 
POMDP that will be of  interest throughout the paper. Sections 3 and 4 present 
optimality equations for two different sufficient statistics for the POMDP. Properties 
of  an important operator associated with the second sufficient statistic are listed in 
section 5. The Smal lwood-Sondik  (SS) algorithm is described in section 6. We 
present a computationally attractive variant of  the SS algorithm and a procedure 
to accelerate the Monahan variant of  the SS algorithm. In section 7, we present 
three variants of  the SS algorithm that have been shown to significantly accelerate 
its convergence. These variants are based on convergence-enhancing techniques 
that have proven useful for the MDP. Approximation schemes are discussed in 
section 8, primarily a recently developed approximation procedure due to Lovejoy. 
Section 9 considers a finite-memory suboptimal design technique, the development 
of  which was inspired by results due to Platzman. The use of  artificial intelligence 
concepts found in the heuristic search literature provides directions for research 
discussed in section 10. We present conclusions in section 11. 

2. P rob lem formula t ion  

We now present a formulation of the POMDP. Let {s(t), t = 0, 1 . . . .  }, 
{z(t), t = 1, 2 . . . .  }, and {a(t), t = 0, 1 . . . .  } be the state, observat ion ,  and act ion 
processes, respectively. The state space S, the observation space Z, and the action 
space A are each assumed to be finite. These three processes are assumed to be 
related by the given, stage independent conditional probabilities 

p q ( z ,  a)  = P[z ( t  + 1) = z ,  s(t  + 1) = j [ s(t)  = i, a( t )  = a], 

where P(z ,  a) = {Pii(z, a)}. Note that 

P [ s ( t +  1) = j l s ( t )  = i, a(t) = a] = ~ p i j ( z ,  a), 
2 

P[z ( t  + 1) = z ls(t  + 1) = j ,  s(t)  = i, ~ t )  = a] = Ply (z, a ) / ~ f  ~ Pij (z, a), 
z 

which are often referred to as the transition and observation probabilities, respectively. 
Thus, the above notation, identical to that used in [12,15], represents a slight 
generalization of  the usual notation associated with the POMDP. 
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Let  T < ~ represent the number  of  stages, or decision epochs, in the planning 
horizon. Let d(t)  = {z(t) . . . . .  z(1), a ( t -  1) . . . . .  a(0)} for t >  1, d(0) = •,  the null 
set, and x(0) = {xi(0), i ~ S}, where xi(O) = P[s(0) = i]. Thus, d(t)  is the collection 
of all past and present observat ions and all past actions at stage t, and x(0) is the a 
priori probabil i ty mass  vector. We call {d(t), t = 0, 1 . . . .  } the data process, where 
d(t) = {d(t) ,x(O)};  d(t) represents the data available to the decision maker  on 
which to base action selection at stage t. A policy at stage t is therefore a 
function 8(0:  {d(t)} ---)A. A strategy ~ is an ordered sequence of  policies, i.e. 
zr = { 6(0), 6(1) . . . . .  6 ( T -  1)} for the finite horizon problem and ~ = { 6(0), 6(1) . . . .  } 
for the infinite horizon problem. 

We let r(i, a) be the reward received at stage t < T, given s(t) = i and 
a(t) = a. If  the problem horizon is finite, then we assume a terminal  reward F(i)  
is accrued at the end of  the planning horizon, given s(T)  = i. Both r ( - , . )  and 7 ( . )  
are real-valued functions. 

The  criteria that we will consider  are 

f 
T - I  

Ex(o) ~ /3 tr[s( t ) ,a( t ) l+ /3TF[s(T)] 
t = 0  

for the finite horizon case and 

,,} Ex(o) /3 'r[s( t) ,a( t  
t = 0  

for the infinite horizon case, where E~ is the expectat ion operator,  condit ioned on 
probabil i ty  mass  vector  x, and /3 > 0 is the discount factor. We will a s sume/3  < 1 
for the infinite horizon case in order  to ensure that the latter criterion is well 

�9 defined. The  problem object ive is to determine a strategy that maximizes  the 
criterion of  interest, with respect  to the set o f  all strategies. Pr imary interest will 
be in determining opt imal  strategies dependent  on x(0) for all values of  x(0) 
in X = {x > 0 : x l  = 1}, where y l  = ~ Y i ,  rather than those dependent  on a given 
specific value of x(0). 

3. An o p t i m a l i t y  equa t ion  d e p e n d e n t  on d(t)  

We now present  a recursive procedure and related results based on dynamic  
p rog ramming  for solving the finite ho r i zon  POMDP.  Justif ication of  these results 
can be found in [3]. Let  vt[d(t)] be the opt imal  expected total discounted reward to 
be accrued from stage t until the end of  the problem horizon, given data d(t). The 
function v~ can be described in terms of  v, + ~ by the fol lowing recursive equation: 
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Vt [d(t)] = max t y~ r(i, a)P[s(t) = ild(t)] 
a~A ~ i ~ S  

+ [3 zEz ~" P[z( t+ 1)=  z Id(t), a(t) = a]vt+ 1 [d(t+ 1)1}, (1) 

where d(t  + 1) = {d(t), z, a} and where the boundary condition is 

vT-[d(T)] = ~ F( i )P[s(T)  = i ld(T)].  
i~S 

A policy S(t) is optimal if and only if it achieves the maximum in eq. (1), for all 
values of d(t). A strategy is optimal if and only if it is composed of optimal policies. 

Note that d(t) ~ Z t • A t • X, the cardinality of which grows geometrically in 
t. Hence, if T is large, determining {v 0 . . . . .  v r -  x }, given v r, can be very computation- 
ally demanding. We therefore seek a more computationally attractive representation 
of d(t), which in part has motivated the results to be presented next. 

4. An optimality equation dependent on x(t) 

Let x(t) = {xi(t ), i E S}, wherexi( t)  = P[s(t) = i l d(t)], and call {x(t), t = 0, 1 . . . .  } 
the information process. We note that for all t, x( t )  ~ X, and hence the state space 
of the information process is stage invariant. The information process is a controlled 
Markov process in that there exists a function A. such that x(t  + 1) = A[z(t + 1), x(t), a(t)], 
where 

2(z,  x, a) = x e ( z ,  a)/cr(z, x, a), 

and 
(~(z, x, a) = xP(z ,  a ) l ,  

IxP i = Z x,pq 
i 

for P = {pq }. Note that X is simply a representation of Bayes' rule and that (~[z, x(t),  a] 
--- P[z( t  + 1) = z ] d(t), a(t) = a]. 

We observe that vT[d(T)] depends on d(T) only through x(T); i.e. 

VT [d(T)] = VT [x(T)] = x(T)?  = ~ x i (T)F (i). 
i 

Assume v t + ~ depends on d(t  + 1) only through x( t  + 1). It is then easily shown that 
vt = Hv~ + 1, where 

[ H v ] ( x ) = m a x { x r ( a ) + [ 3 ~ ? ( ~ ( z , x , a ) v [ ~ ( z , x , a ) ] ' a E A ) . z  
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Thus, v~ depends on d(t) only through x(t). Note also that the maximum in Hv~ + 1 
is attained as a function of d(t)  only through x(t).  A simple induction argument 
verifies that these results hold for all t. 

5. Properties of H 

The operator H has several interesting and useful properties. Let V x be 
the set of  all bounded, real-valued functions on X having supremum norm 
II v II = sup { I v(x)  I " x ~ x } .  We remark that (V x, I1" II ) is a Banach space. Let A be 
the set of all functions 6: X ---) A. Define the operator H a V x ---) V x as 

for S 
in [3] 

(1) 

(2) 

(3) 

[H6v](x)  = xr[6(x )]  + fl ~_, ~ [ z , x ,  S(x)]v[~.[z ,x ,  6(x)]], 
z 

A, and note that H V  x ~  V x i s  such t h a t H v = s u p a H  av. It is shown 
and elsewhere that for the infinite horizon (T = ,,,, and fl < 1) case: 

The operators H a and H are contraction mappings having modulus r ,  guarantee- 
ing the existence of unique fixed points v a and v ,  respectively. 

The real number v6(x) represents the expected total discounted reward to be 
accrued over the infinite horizon by the stationary strategy zc = {~5, S . . . .  }, 
given a priori probability mass vector x. Similarly, v*(x) represents the optimal 
expected total discounted reward to be accrued over the infinite horizon, 
given a priori probability mass vector x. 

Let the sequences {van} and {vn} be defined as van+l=H~van and v,,+l 
= H v  n. Then, 

lim l i v e -  v6nll = 0, lim I Iv*-vn l l  = 0, 
n .---) ~ n ---.-) ~ 

(4) 

(5) 

given that Vao E V x and v o E V x. 

There exists a stationary optimal strategy for the infinite horizon problem, 
and the stationary strategy { 6, S , . . .  } is optimal if and only if H a v* = Hv ' .  

Assume v ~ V x is piecewise-linear and convex (pwl&c), or equivalently, 
assume there exists a finite set F such that v(x)  = max{x ' f :  7 ~  F} for all 
x ~ X. Then H v  is also pwl&c. 

6. S m a l l w o o d - S o n d l k  a lgor i thm 

The Smal lwood-Sondik  (SS) algorithm [18] is a successive approximations 
approach for solving the POMDP and as such is based on determining H v  from v. 
See [19] for a related policy iteration algorithm for the infinite horizon case. The 
SS algorithm makes extensive use of  the fact that H preserves pwl&c. Let F,, be such 
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that vn(x) = max {x)': ) ' ~  F,,}, and note that F 0 = {7}. The SS algorithm determines 
F, + 1 from F,. It is therefore appropriate to consider the process of  determining F ' ,  
given F, where v(x)  = max{x) ' :  ) '~  F} and [Hv](x) = max{x)"  �9 )" ~ F '} .  Note that 

[Hv ](x) = max{xr (a )  + fl 
z 

= max{xr (a )  + fl 
2 

= max{xr (a )  + fl ~., 
z 

= max{xr (a )  + fl ~ .  
z 

where g " Z x X x A  --~ F is any function such that 

xP( z ,  a)[g(z, x ,  a) - )'] >_ 0 

c r ( z , x , a ) v [ ~ . ( z , x , a ) ]  : a e A }  

c r ( z , x , a ) m a x { ~ . ( z , x , a ) ~ :  y e  F} : a e  A} 

{ x P ( z , a ) ) ' :  ) ' � 9  F} : a e  A} 

x P ( z , a ) g ( z , x , a )  : a �9 A }, 

for all ) ' ~  F. We remark that in this setting 

r ' =  u a { r ( a ) +  fl y . P ( z , a ) g ( z , x , a )  " x �9 X }. 
7. 

The fact that the function g is a function of x 6 X can significantly complicate the 
determination of F' .  

An approach to determining F '  from F (which has been attributed to Monahan) 
that avoids dealing directly with the issue of determining the function g is as follows. 
First, determine the set 

G = u a { r ( a ) + f l  ~ P ( z , a ) y  ~ �9 )'z �9 F}. 
z 

Note that [Hv](x) = max{x) ' :  ) '~  G}. However, G is a large set compared to F 
(#G = #A(#F ** #Z), where #G is the cardinality of the set G and A ** B = A B) and 
may contain many unnecessary elements. Second, eliminate as many elements in G 
as possible to obtain F' .  

A direct linear programming approach (see [18] for further discussion) can 
be used to reduce the number of  elements in G. Consider the following sufficient 
condition for constructing F '  from G" Choose ~ ~ G. If  u* = 0, then add ~ '  to F ' ,  
where 

u = maximum u 

subject to: u < x ( ~ ' -  ~) V ~ G ,  

x E X .  
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We note that this linear program has US + 1 variables and #A(#F ** #Z) constraints 
and that #A(UF ** #Z) linear programs must be run in order to determine F '  in this 
m a n n e  r.  

Lark [8] has determined another procedure for determining F '  from elements 
in G. Let e, �9 X have 1 as its sth entry. 

Step 0. Initialization. 

(i) Set F '  = O. 

(ii) For each s = 1 . . . . .  #S, find 7 * � 9  such that 

e,(7~ - 7') >- 0 V 7' �9 G. 

Remove 7,* from G and place in F ' .  

Step 1. If  G = 0 ,  then stop; F '  has been determined. If G r 0 ,  then go to step 2. 

Step 2. Select T* �9 G. Determine u*, where 

u* = maximum u 

subject to: u < x(7* - T')  V 7 '  �9 F ' ,  

x � 9  

Let x* �9 X be a vector that causes the above maximum to be attained. I f  
u* < 0, then remove 7" from G and discard. If u" > 0, then search G for 
the element 7"  such that 

x * ( 7 " - 7 " ) > 0  V 7' � 9  

Remove T" from G and place in F ' .  Go to step 1. 

With respect to the above two linear programs, we note that iterations 
in each can be halted if the criterion value goes negative. Importantly, we also 
note that the latter linear program has US + 1 variables and #F' constraints, generally 
#F' << #A(HF ** #Z), and hence we conjecture that the second procedure for determining 
F '  from G will be significantly less computationally intensive than the first procedure. 
A preliminary computational analysis supports this conjecture. 

We now present a procedure that deals directly with the issue of  determining 
the function g, thereby possibly avoiding having to construct the entire set G. This 
procedure is a minor variant of  the SS algorithm presented in [18]. Other such 
variants of  the SS algorithm can be found in [4]. 

We say that a subset X'  ~ X having a nonempty interior is g-invariant if g(z, x, a) 
= g(z, x ' ,  a) for all x, x '  e X'  and for all (z, a) �9 Z x A. Note that the set of all g- 
invariant subsets in X is a partition of X (on all but a set of Lebesgue measure zero). 
Let X'  be g-invariant. Then, for all x �9 X',  
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[Hv](x) = max {xa(a)  : a ~ A}, 

where a(a)  = r(a) + fl Y~z P(z, a)g(z,  x, a) and where g(z, x, a) is constant for all 
x E X'. We now present a two-level approach for determining F' .  

Level 1. Perform a sweep of the g-invariant subsets in X. 

Level 2. Within each g-invariant subset X '  c X, if a '  ~ A is such that there is an 
x '  ~ X'  such that 

x ' [ a ( a ' )  - a(a)] > 0 'g a ~ A, 

then add a (a ' )  to F' .  

We remark that if u* > 0, then the above condition holds, where 

u* = maximum u 

subject to: u <- x [a (a ' )  - a(a)] V a ~ A, 

x E X ' .  

This linear program has aS + 1 variables and #A(#Z#F + 1) constraints, where #Z#A HF 
is the number of constraints describing X'. Within each g-invariant subset, this linear 
program must be run #A times. 

Level 1 proceeds as follows. Arbitrarily select x '  E X and determine g( . ,  x ' ,  .). 
Use the level 2 linear programs to identify the hard constraints on the g-invariant 
subset described by g( . ,  x ' ,  �9 ). Each hard constraint corresponds to another g-invariant 
subset. For example, assume that xP(z ' ,  a ' )[g(z ' ,  x ' ,  a ' )  - ~/] is a hard constraint 
on the g-invariant subset X' .  Then there is a g-invariant subset in X which contains 
a point x" such that g(z, x' ,  a) = g(z, x",  a) for all (z, a) E Z • A except that g(z',  x",  a ' )  
= ~'. (We remark that it is not necessary to know the point x" in order to describe 
this new g-invariant subset.) Proceed to consider all g-invariant subsets in X (which 
is similar to the one-pass procedure described in [18]). 

7. Accelerating the SS algorithm, T = oo case 

As has been stated earlier, vn converges to v*, given Vo ~ V x, indicating that 
the SS algorithm can be used to solve, at least approximately, the infinite horizon 
case. However, this convergence can be slow and often can be accelerated significantly. 
White and Scherer [24] present three approaches that have been shown to reduce 
CPU time until convergence, relative to the procedure of determining {vn}. We now 
outline these three approaches. 

Approach 1. Approach 1 is based on reward revision [26]. The intent of this 
approach is to find an operator G K that has the same fixed point as H and that requires 
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fewer operations to achieve convergence of the sequence {wn}, where w,, + 1 = GXwn, 
than is required by the sequence {v,,}. The integer K is a design parameter, the 
selection of which is discussed in [24] for the POMDP. The guiding motivation in 
the construction of the operator G K, which is given below, is that the solution of 
a completely observed MDP is almost invariably easier to determine than the solution 
of its partially observed counterpart. Let G~ = u, Gku = H(u, G k- lu), 

hr(u, v) = sup H,~ (u, v), 
6 

Yt~ (u, v)(x) = ? [x, 6(x), u] + f ix  P[6(x)]~, 

? (x, a, u) = xr(a) + `8 ~ ,  ~(z,  x, a)u [;t(z, x, a)] - ,8 x P (a) g, 
2 

and where ~ = {u(e,), s e S}. We think of the nonnegative scalar ~ and the 
stochastic matrix P ( . )  as design parameters. 

Let u k = G~u, k = 1 . . . . .  K. We observe that G l = H. Thus, the initial step 
in determining GKu, given u, is identical to determining Hu. Note that determination 
of u K only requires knowledge of ~,v- 1. Therefore, determining GKu, given u, requires 
the following steps: 

1. Determine 7 ( . , . ,  u), which requires determination of Hu. 

2. Determine fi~ + i, given t7 k, for k = 1 . . . . .  K - 1. 

3. Determine u K, given ff'~. 

Details of these three steps and conditions on ~ and f i ( . )  that guarantee that the 
sequence {wn} converges to v* are given in [24]. 

We observe that step 2 represents K -  1 successive approximation iterations 
associated with a completely observed MDP. The resulting ~x is then used in 
step 3 to "adjust" the vectors in F ' ,  where F '  is such that [Hu](x) = max{xT: y e  F '} .  
This vector adjustment represents the key to accelerating the convergence of {wn}. 

Approach 2. Approach 2 is a variation of approach 1. The essential difference 
is that instead of performing K - 1 successive approximation iterations on ~1 using 
the operator 

max{?(ei ,a,u)+ ~ ~,Dij (a)v(ej )  : a e  A }, 
J 

we use the operator 

?(ei ,a ' ,u)+-~ ~ f ) i ) (a ' )v (e ) ) ,  
) 

where a '  = 6(u)(ei) and where 6(u) ~ A is such that H~(~)u = Hu. Observe that the 
first operator requires HA times as many operations per iteration as does the second 
operator. Thus, approach 2, which combines reward revision and a modified policy 
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iteration [16, 17] appears to be more numerically attractive per iteration than does 
approach 1. This conjecture has been supported by numerical testing. Theoretical 
results associated with approach 2 are not nearly as well developed as those for 
approach 1; see [24] for details. 

Approach 3. Approach 3 is a generalization of the Bertsekas extrapolation [3] 
to the POMDP. Let H k+ Iv = H(Hkv),  where H 1 = H. Then, by proposition 3 [24], 

(Hkv) (x )  + ck < (H k + I v)(x) + ck + 1 

<- U* (X) <- (Hk+lv)(X)+Ck+I <-- (Hkv)(X)+-Ck, 

where for all k = 0, 1 . . . . .  

ck = fl i n f { (Hkv ) ( x )  - ( H k - l v ) ( x )  : x ~ X }/(1 - fl), 

ck = fl sup{ (Hkv ) ( x )  - ( H k - l v ) ( x )  : x ~ X } / ( 1 -  fl). 

A numerically simple procedure for approximating c k and ?k is given in [24]. 
An in-depth discussion of a numerical evaluation of the above three approaches 

and the approach involving the determination of {vn}, which we will call successive 
approximations (SA), is presented in [24]. This evaluation indicates that all three 
of the approaches presented above are superior (in terms of CPU time and iterations 
to convergence) to SA. Also, approach 2 tends to be superior to approach I, which 
tends to be superior to approach 3. On average, approaches 1 and 2 required roughly 
15% the CPU time and 20% the number of iterations as SA, while approach 3 
required roughly 22% the CPU time and 30% the number of iterations as SA. 

8. Approximating H v  

We have noted earlier that a real-valued function v, having the uncountably 
infinite space X as its domain, has a finite representation if v is pwl&c; i.e. there 
exists a finite set of vectors G such that v(x) = max {x~,: ~,~ F}. This fact was a 
key element in the development of the SS algorithm and its variants. The impressive 
numerical results reported in the previous section enhance the usefulness of  the 
SS algorithm. However, two facts constrain the ultimate usefulness of any SS-type 
algorithm. First, the finite representation of the optimal value function requires 
computationally expensive reconstruction at each iteration. (We note that this 
representation is equivalent to a finite partition of X.) Second, the cardinality of the 
finite representation can grow geometrically as a function of stage; recall that 
#G = #A(#F ** #Z). 

Consider the following alternative approach, which we will call the f i xed  grid 
approach. Assume that X'  is a finite subset of X, that an expected value function 
is determined for all x" ~ X ' ,  and that these values are used to determine the value 
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of this expected value function for all x ~ X. The expected value function is invariably 
an approximation of the optimal value function. However, both of the aforementioned 
constraints of the SS algorithm are avoided. 

Kakalik [7] and Eckles [5] both used a linear interpolation method between 
fixed points in X in order to determine an approximation of the optimal value 
function. Bounds on the quality of the Eckles' approximation are presented in 
Sondik [20]. Sondik and Mendelssohn [21] used a grid of points that represents only 
those points in X that can be visited by a specified policy. Lovejoy [10] presented 
a procedure for approximating X by a finite grid of  points. He used this grid to 
construct upper and lower bounds, generate suboptimal nonstationary and stationary 
policies, and determine a bound on the value loss, relative to optimal, for using 
these policies. We now briefly discuss Lovejoy's approach for determining the 
bounds and the suboptimal design. 

Lovejoy constructed the lower bound functions {v~} as follows. Let ~ be 
such that vZ,(x) = max {x)': ~ F,Z}. Analogous to our discussion of the SS algorithm, 
define gn : Z x X x A ---) F. as 

xP(z, a)[gn(z, x, a) - ~] > 0 k~ "yE F n. 

Let a '  ~ A be such that x'[t~n(a') - an(a)] > 0 for all a ~ A, where 

an (a) = r(a) + [3 Y .  P(z, a)gn (z, x', a) 
Z 

for x '  ~ X'. Then an(a') becomes the member of F.Z+ 1 associated with action a '  
and state x' .  This process is repeated for all x '  ~ X'. Importantly, observe that #Fn z 
< #X' for all n. It is straightforward to show that v. z < vn for all n. Lovejoy also 
showed that the obvious strategy resulting from this lower bound generates expected 
value functions bounded below by {v.Z}. 

With respect to an operations count analysis for determining F.Z+ ~ given F. z, 
we note that: 

(1) #X'#Z #A#F~ US operations (multiplications and additions) are required to deter- 
mine x'P(z,  a ) y f o r  all "y~ F~, z ~ Z, x" ~ X', and a ~ A, where we assume 
that for all z, x', and a, flx'P(z, a) is constructed a priori (requiring #X'#Z #A(#S) 2 
operations). 

(2) #X'#Z #A(#F~ - 1) comparisons are required to determine gn(Z, x', a) for all 
z, x ' ,  and a. 

(3) #X'#A(#S + #Z) operations are required to determine x 'a(a)  for all x '  and a. 

(4) #X" (HA - 1) comparisons are required to determine a(a'),  and hence F~+ 1 for 
all x'. 
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Thus, determination of F~+ 1 given F~ requires #X'#A(#Z #F~#S + #Z) operations and 
#X'[#Z #A(#F~ - 1) + (#A - 1)] comparisons. Since surely #S < "F~_< #X', the number 
of  operations is bounded below by #A#Z(#S)3. 

With respect to the upper bound, Lovejoy considered the grid X'  = {(1/M)m : rn ~ I #s, 
Y~,- m i = M}, where I #s is the #S-dimensional vectors having nonnegative integer com- 
ponents and M is a design parameter. It appears that HX' = (M + " S -  1)!/(M! (#S-  1)!); 
thus, the grid becomes finer as M becomes larger. Lovejoy presented a procedure, 
in part due to Freudenthal, for describing any point in X in terms of points in X '  
and some easily determined barycentric coordinates. The upper bound is based on 
the evaluation of Hv on X '  and on a piecewise linear approximation of H v  for other 
values in X. 

Once upper and lower bounds are known, then action elimination can be used 
to identify an optimal action at as many points in X as possible. Impressive numerical 
results are presented in [10]. 

The following completely observed MDP appears to capture much of the 
process presented by Lovejoy for constructing an upper bound on v*. For each x '  ~ X',  
z ~ Z, and a ~ A, let {/zi(z,x', a) i = 1 . . . . .  #S + 1} ___ X'  be the set of elements 
and {wi(z, x ' ,  a), i = 1 . . . . .  #S + 1 } be the set of barycentric coordinates such that 
$(z, x ' ,  a) = ]~i wi(z, x ' ,  a)l.ti(z, x ' ,  a). Lovejoy presents techniques for constructing 
{/.ti} and {wi}. Then there exists a unique, real-valued function on X', v ' ,  that serves 
as the fixed point of  the operator H ' ,  where 

[H 'v] (x ' )  = max{x ' r (a)  + [3 ~_, cr (z ,x ' ,a )  ~ w i ( z , x ' , a ) v [ l z i ( z , x ' , a ) ]  : a ~ A }. 
z i 

For general x ~ X, let {xi} c X '  and {~i} be such that x = ~i ~i xi. Then let v ' (x )  
= El ~i v ' (x i ) .  It is easily shown that v* < v ' .  

It is easy to show that determining H ' v  for a given real-valued function on 
X',  v, requires 

#X'#A#Z(#S + 1) =#A#Z(#S + I)(M + #S - I ) ! / (M!(#S  - 1)!) 

operations. We observe that this number has #A#Z(#S ** (M + 1))/M! as a lower 
bound. 

9. F in i t e -memory  subopt imal  design 

Assume that there is a process {OI, t = 0, 1 . . . .  } such that an optimal strategy 
can be obtained which is dependent on the data process only through {0 l, t = 0, 1 . . . .  }. 
That is, assume it is sufficient for optimality for a(t) to depend only on 0lid(t)].  
Then, 19 I sufficiently summarizes the information useful for action selection that is 
contained in d(t). We refer to such a process { 19 I, t = 0, 1 . . . .  } as a sufficient statistic 
(a more formal treatment of  which can be found in [3]). We seek sufficient statistics 
for two reasons. First, a sufficient statistic can accommodate optimality. Second, 
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the suff ic ient  s tat is t ic  may represent  the informat ion contained in the data process  
that is useful for act ion select ion in a computa t iona l ly  desi rable  manner.  W e  remark  
that the data process is t r ivial ly a sufficient statistic, and we recall  that the information 
process  is a suff ic ient  s tat is t ic  possess ing  some numer ica l ly  appeal ing  features (e.g. 
the state space o f  the informat ion  process  is s tage invariant ,  whereas  the state space 
of  the data  process  grows geomet r i ca l ly  in stage). 

Pla tzman [14, 15] and White  and Scherer  [25] have considered a third sufficient 
s tat is t ic  in the deve lopmen t  of  bounds  and a subopt imal  des ign  for the POMDP.  
This  third suff ic ient  stat ist ic { y(t),  t = 0, 1 . . . .  } combines  the data  and informat ion  
processes  in the fo l lowing manner:  

y(t)  = { x ( t -  m),z'~,atm_l }, 

where 

z~ = {z(t) . . . . .  z ( t - m +  1)}, 

a~-i = { a ( t -  1) . . . . .  a ( t - m ) } ,  

and where  m = t if  t < M and m -- M otherwise  for des ign pa ramete r  M. In the 
deve lopmen t  of  the results  to fol low, M will  des ignate  the m a x i m u m  number  o f  the 
most  recent  observa t ions  and act ions  on which dec is ions  will  be based.  Note that 
x(t)  = s x( t  - m), a~_ 1)], where 

and 

m o l  ,~ (z, , x ,a '~- l )  m m m a~"-l) l  = xP(z t  , a t_ l ) /XP(z ,  , 

P ( z t ,  a~_ 1 ) = P [ z ( t -  m + 1), a ( t -  m)] x .. .  x P [z(t), a ( t -  1 )]. 

Thus,  s ince {x(t), t = 0, 1 . . . .  } can be const ructed from {y(t) ,  t = 0, 1 . . . .  }, 
{y(t) ,  t = 0, 1 . . . .  } is a suff ic ient  statist ic.  

We now present the development  found in [25]. Let V m be the set of  all bounded,  
real-valued functions on Z m x A m, in  = {z(m) . . . . .  z(1)}, and a ~ = {a(m - 1) . . . . .  a(0)}. 

Def ine  a po l i cy  as a mapp ing  8 : Z m x A"  ~ A. Let  l[ �9 IIm represent  the supremum 
norm on V m, and note that (V m, I1" 11 m) is a Banach space.  For  m < M, let  
~'~ = {z, z (m)  . . . . .  z(1)} and a m = {a, a (m - 1) . . . . .  a ( 0 ) } ,  and l e t  ~M 
= {z, z(M) . . . . .  z(l)}  and a M = {a, a ( M -  1) . . . . .  a(1)}.  White  and Scherer  assumed 
that for all (z, a) ~ Z x A and all i ~ S, ~,jPij(z, a) .r 0, which  ensures that  the vec tor  
Pi(z m, a m) is well  def ined for all i, where  the j t h  e lement  of  Pi(z m, a m) is pij(z m, am)/ 
Y.kpik(z m, a m) and where pij(z m, a m) is the i j th e lement  o f  the matr ix  P(z m, am). 

We can now define opera tors  useful  for genera t ing  upper  and lower  
bounds  on v* and subop t imal  designs.  Let  U~' and U m be such that for  m < M, 
U~' "V m + 1 - o  V m and U m" V m §  V m. Let  U ~  �9 V M ~ V M and U M ' V  M ~ V M. Let  

be such that a = S(z m, am). Then,  
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[ U ~ v ] ( z  m, a m) = m a x  {fii (z m, am)[r(a)  + fl ~_, [P(z ,  a) 1 ]v(~ ~, a'~)] }, 
i~S z 

U ' v  = sup U ~ v .  

Define L~' and L" identically, except replace "max" with "min" in the definition of 
L~'. It is easily shown that U'~, U m, L"d, and L" are contraction operators on V m with 
modulus /3. Motivation for the definitions of these operators is given in [25]. Let 
u M and l M be the fixed points of U t't and L t't, and for rn < M, let {u m} satisfy u m 

= Umum+ 1 and I m = Lml "+ I. Results presented in [25] include: 

(1) Upper and lower bounds on v'. For all m < M and (z m, a m) E Z m x A m, 

lm(zm, a m) < V*[Xm(zm,x ,am)]  < Um(zrn,am), 

for all x ~ X. 

(2) A sufficient condition for these bounds to bc tight. If P (z 'n, a m) has rank 1 
for all (z 'n, a m) ~ Z"  x A m for some m < M, then for all n, rn < n < M, 
and (z n, a n) ~ Z n x A n, ln(z n, a n) = un(z n, an). 

(3) A priori bounds on II u M - l M II/II l M II. 

(4) A Bertsekas-type extrapolation for accelerating the determination of 1M and 
U M" 

(5) A lower bound on the suboptimal strategy Jr induced by the determination of 
[X"(z m, x, am)I, for {l,n}. For all (z m, a m) E Z m • A '~, m <_ M,  lm(z m, a 'n) <- v m 

all x E X .  

(6) A guarantee that larger M produces tighter bounds. 

An operations count analysis shows that determination o f  LMv, given v, requires 
#S((#A #Z) ** ( M  + 1)) operations. Therefore, on the basis of operations per iteration, 
we conclude that for small action and observation spaces and large state spaces, use 
of the L M operator for suboptimal design determination is preferred to the use of 
the Lovejoy lower bound procedure, and that for large action and observation 
spaces and small state spaces, we should prefer use of the Lovejoy lower bound 
procedure to use of the L M operator. 

10. Heurist ic  s e a r c h -  A direction for fu ture  research 

Dynamic programming has thus far served as the basis for determining the 
solution of the POMDP. Another related basis for solution is heuristic search, a sub- 
area of  artificial intelligence [13]. 

There are two intriguing aspects of heuristic search. First, heuristic search 
procedures generally assume the existence of a heuristic function, which (if admissible) 
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represents an optimistic estimate (e.g. an upper bound) of the optimal value function 
and is used to guide the search. Results due to Astrom [1,2] (see also White and 
Harrington [23]) guarantee that a simple extension of the solution of the completely 
observed MDP represents an easily generated upper bound on the optimal value 
function of the POMDP. Second, heuristic search procedures guided by simply 
generated heuristic functions can significantly out-perform dynamic programming; 
e.g. note the discussion found in [13] concerned with the application of the heuristic 
search procedure A* applied to the 8-puzzle. 

Lark and White [9] have presented a heuristic search based procedure for 
solving the finite horizon, completely unobserved MDP (CUMDP). The CUMDP 
is a POMDP that assumes the P(z, a) are independent of z, for all a. Interest in the 
CUMDP is due to the fact that a finite horizon version of the CUMDP can be cast 
as a locally finite, finite depth OR-graph. The specific heuristic search procedure 
applied is a multiobjective generalization of A* called MPA* [22]. (A" is an informed, 
best-first search procedure for finding an optimal path through an OR-graph from 
a given start node to a given set of terminal nodes based on a scalar criterion.) 
Preliminary numerical results show that this heuristic search algorithm can compare 
quite favorably to the SS algorithm. Extending this line of research to the more 
general POMDP, which requires the use of an AND/OR-graph, appears to be a 
promising topic for future research. 

11. Conclusions 

We have examined several recently developed procedures for improving the 
tractability of the POMDP. Several of these have been convergence accelerating 
variants of, and approximations to, the SS algorithm, attesting to the seminal importance 
of results found in [18-20].  Finite grid approximations of X have been reviewed. 
The finite-memory suboptimal design results reported in section 9 attempt to look 
at the POMDP from a different perspective than that found in [18], and the directions 

�9 for future research presented in section 10 diverge from dynamic programming as 
the basis for solution determination. Attempts have been made to indicate which 
algorithms may be the most useful for various types of POMDPs. We hope that this 
survey will further stimulate research to improve the tractability, and hence the 
usefulness, of the POMDP. 
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