
Annals of Operations Research 53(1994)357-389 357

A visual programming system for defining behavior in
simulation models of manufacturing systems

Timothy Thomasma, Youyi Mao and Onur M. 01gen

Industrial and Systems Engineering, University of Michigan- Dearborn,
4901 Evergreen Road, Dearborn, MI 48128, USA

A visual programming system is described that allows the modeler full flexibility
in defining the behavior of a manufacturing system simulation model. Decision-making
behavior of objects in the simulation can be viewed by watching an animation of the
system layout, viewing function block diagrams of rules that govern behavior, or noting
the progress of an object in carrying out sequences of activities that are pictured as
operation networks. Rules, elemental operations and operation networks are structured
and associated with particular objects, groups of objects, and locations on the manufacturing
system layout. The objective of this system is to reduce the time and expense required
to construct and modify models, given that manufacturing system data have been collected.

Keywords: Visual interactive simulation, object-oriented simulation, visual programming
language, elemental operation, control logic, rules.

I. Introduction

The use of simulation for manufacturing system analysis has drawn dramatic
interest during the past few years, due both to the improvements of simulation
software and to the benefits gained from the results of simulation. This increased
interest in manufacturing simulation has led to an explosion of simulation software.
Most of the existing commercial simulation software can be classified into two
categories [9]: General Purpose Simulation Languages and Manufacturing Simulators.

A General Purpose Simulation Language is a simulation package which is
general in nature. Some of them may have some special features for manufacturing.
There are several simulation languages commercial ly available. Among others,
GPss [23], SIMAN [8], SXMSCRIPT [21] and SLAM [17] are commonly used.

Simulation languages can model a lmost any kind of manufactur ing system
regardless of the complexi ty of its control logic. This is their main strength. They
sometimes provide structures specifically related to the elements of a manufactur ing
system; if so, they significantly reduce the time to model a manufactur ing system
and ease the use of simulation in manufacturing environments. However , the use
of simulation languages requires programming expertise and the possibly long model

© J.C. Baltzer AG, Science Publishers

358 7". Thomasma et aL, Visual programming for simulation

coding and debugging time associated with modeling complex manufacturing systems.
People usually take months in order to learn how to effectively use them and they
often encounter difficulties in transforming the real world's multi-dimensional,
visual and dynamic characteristics into the one-dimensional, textual and static
representation that the languages require. Therefore, for a long time, models of
manufacturing systems have been built by programmers or simulation specialists
rather than by the manufacturers or industrial engineers who design the systems.
Because of the lengthy programming time and extensive modeling expertise that are
required, simulation is not as widely used as it could be.

On the other hand, a manufacturing simulator is a package that allows one to
simulate a system contained in a specific set of manufacturing systems with little or
no programming. Examples are: AIM [18], ProModelPC [19], SIMFACTORY [I, 20], and
WITNESS [4]. They represent a trend toward moving simulation analysis capability
from the purview of specialized experts and putting it in the hands of managers,
engineers, supervisors and technicians.

The manufacturing simulators have limitations as well. If the simulator does
not provide for an object that must be modeled, then the simulator cannot be used.
A programmer has to be involved to add the object to the simulator, which is
expensive and time consuming. The same is also true if a new behavior is to be
modeled for a currently available object. Also, the behaviors that are built into the
simulators may not be visible to the engineer who uses these systems.

This paper describes an icon-based intelligent simulation environment called
SmarterSim that has been developed in Smalltalk-80 based on its predecessor SmartSim
[26, 27, 29]. Like its predecessor, the overall objective of SmarterSim is to provide
manufacturing engineers a simulation environment with the capability to build
useful discrete-event simulation models of manufacturing systems without requiring
extensive training or modeling expertise. The motivation behind this effort is to put
simulation analysis capability where it is needed m o s t - at the working manufacturing
level.

SmarterSim provides an environment for visualizing objects and defining
new behaviors without any programming. A fundamental feature of SmarterSim is
the capability for the user to review and modify the material-handling control logic.
In an earlier study, Thomasma and Hilbrecht [25] surveyed eight control logic
specification methods: ladder diagram, function block diagram, operation network,
t ime-posit ion diagram, position diagram with rule sets, activity cycle diagram,
Petri net, and state transition diagram. They found that control software can be
completely specified if all possible states of the system are identified and the logic
for deciding which states to enter next is specified. The function block diagram is
a very good method for specifying complex decision logic. In a function block
diagram, the user is presented with a library of functions that the control system
can perform. The functions are represented graphically by symbols that are chosen
from the library and connected together by directed arcs that represent the flow of

T. Thomasma et al., Visual programming for simulation 359

control signals. This diagramming technique is familiar to engineers. Another familiar
diagram is the flow chart or process chart, which shows sequences of tasks.

SmarterSim uses function block diagrams, combined with states of objects,
elemental operation tables and elemental operation networks (a variant of the flow
chart) to specify the behavior of objects. Sections 2 through 5 of this paper define
these concepts and explain how they apply in modeling manufacturing systems.

SmarterSim, like its predecessor SmartSim, is based on Smalltalk-80, an
object-oriented programming language [3,6, 7, 10, 12, 22, 30]. Object-oriented
programming has been found useful for developing simulations for applications
from ecological systems to battlefield scenarios, using process orientation, event
orientation, and other conceptual frameworks [28]. Object-oriented programming
languages usually have three fundamental elemrnts, namely, information hiding,
data abstraction, and inheritance.

Information hiding refers to the breaking up of programs into modules that
can be modified independently. In an object-oriented system, every module is an
object. An object is a data structure that contains the procedures that operate on it.
In designing an object-oriented program, objects are identified which model a
useful portion of the problem at hand. The objects contain their own data, and hide
that data from other objects.

Data abstraction is the process of hiding data structures within objects. This
practice avoids the strong type-checking requirements of many programming languages.
Data structures may be dynamically modified without requiring changes to the underlying
computer code. Methods within the object act on the data independent of type.

A third important feature of object-oriented programming is inheritance. A
new class of objects may be created as a variation of an existing class of objects.
The new class is called a subclass of the old class. Objects in the subclass inherit
all the properties of the superclass, including the implementation of methods. The
subclass can define additional methods and redefine old methods.

Thomasma et al. [28] surveyed efforts to use Smalltalk or other object-oriented
programming languages in manufacturing simulation. More recent accounts of some
of these efforts have appeared [5, 11]. These use the same kind of object-oriented
software architecture as SmartSim, but have much richer sets of built-in manufacturing
objects. As with SmartSim, programming is required in these systems to create new
objects and behaviors, although the programming effort is greatly reduced because
of inclusion of support for hierarchical modeling and because of the use of object-
oriented programming languages [29]. The SmartSim project is aimed at removing
the need for programming in object-oriented sir~ulation environments like SmartSim.

Researchers who constructed twelve object-oriented simulation systems,
including several manufacturing simulations written in Smalltalk, reported the following
benefits of object-oriented simulation [28]: the direct correspondence possible between
objects and messages and real-world concepts and entities, the support for code
reuse, and the extensibility of the system. Abstraction and encapsulation are major

360 T. Thomasma et al., Visual programming for simulation

contributors to the support of an object-oriented world view. Inheritance, along with
encapsulation, contributes to code reusability. Inheritance, plus the software engineering
tools provided in an object-oriented simulation language such as Smaiitalk, are the
basis for the system extensibility.

Like SmartSim, SmarterSim has an icon-based graphic user interface. To
build a simulation model, the engineer first abstracts the important elements of the
manufacturing system by constructing a diagram of the manufacturing system, then
converts this view of the system into the input form for the simulation package, runs
the package, and then relates the output of the package back to the real system,
often converting it to graphics for easier interpretation. Then he might modify the
system model and compare its resulting performance measures. He cycles through
this experimental procedure until satisfied with the results. It is therefore important
to provide the engineer with a graphical environment such as an icon-based graphic
user interface that supports the iterative and visual nature of modeling and evaluation.
The graphical environment allows the technical people closest to the process and
with the best technical understanding of the problems to be the ones that construct
and analyze the models without being forced to translate their view of the system
into the syntax of a programming language.

In an icon-based, object-oriented simulation package, simulations are constructed
by instantiating and interconnecting primitive elements such as workstations, robots,
AGVs, buffers, and receiving stations. Each of these primitive element types is
represented by an icon and corresponds directly to a class of familiar objects in real
manufacturing systems. AGV path definition, placement of robots, definition of
work envelopes, all can be accomplished at this point using the graphical interface.
Icon-based simulation systems can be used by engineers who have no special expertise
in simulation programming. Interactive computer graphics is used to shorten the
time required to develop a model and to aid in understanding the results of the
simulation, using animation. SmarterSim supports interactive animation to make it
easier to debug, verify and validate simulation models.

Sections 2 through 5 introduce the concepts supported by SmarterSim. Each
section defines and illustrates the application of the concept, and describes its
implementation both in SmarterSim's user interface and in its object-oriented software
architecture. Section 6 presents a simple example that is meant only to illustrate how
the concepts described in sections 2 through 5 are combined in SmarterSim to provide
an interactive environment for visualizing objects and defining new object behaviors.

2. Elemental operations

2.1. GENERAL DEFINITIONS

An elemental operation is an indivisible activity that generally requires some
amount of time to accomplish. Each elemental operation corresponds to a state

T. Thomasma et al., Visual programming for simulation 361

which is the state of undergoing that elemental operation. The name of the state
usually is the name of the elemental operation. When an operation is completed, a
new operation or state may be started, based on the rules associated with the completion
of the elemental operation or the satisfaction of the condition in a rule. The definitions
of elemental operations are totally general and vary from a concrete action such as
"machine picks up a part" to an abstract command such as "reserve a buffer".

Nine elemental operations are identified as the fundamental operations, and
all other elemental operations are derived from those nine. An elemental operation
really refers to a specific processing step and requires at least one resource (or
modeling element) to carry out that step. So an elemental operation must have a
host. A host is the station which will perform the elemental operation. In our
definition, a host could be as simple as a machine or as complex as an AGV in a
fleet selected by predefined rules at simulation run times. A host can be a station,
an ObjectContainer, a Generic, or an ObjectContainer-Generic pair. ObjectContainers,
Generics and Objec tConta iner -Gener ic pairs are described in section 5.

In SmarterSim, each elemental operation is defined by instantiating and
specializing one of the nine fundamental operations. Figure 1 shows the icons for
the nine fundamental operations and a submenu for operation Use. Conceptually,
a fundamental operation is a type or class of elemental operation.

J
DONE

a AGV}

Assign

COPY
m m m m m ~ w m m m l ,

UNLOCK

PUT 1~

USE LOCK

MOVE JOIN

TAKE

DIS-
ASSENBLE BROKEN

\
Main Menu

Sub Menu

Figure 1. Fundamental operations and their specification.

362 T. Thomasma et al., Visual programming for simulation

The development of the nine different fundamental operations for manufacturing
systems has been driven by need. As we attempted to express manufacturing problems
using our conceptual constructs, we added fundamental operations as we needed
them. In early stages of our work, we had only Use, Move and Broken. The nine
that we present here were chosen so that each wbuld be clearly distinct from the
others, both conceptually and in terms of modeling requirements. As our set of
fundamental operations expanded from three to nine, we found less need to create
new ones as we reviewed new manufacturing problems. Other fundamental operations
would be needed for other applications. For example, in order to model information
systems, a Broadcast fundamental operation would be required.

The elemental operations derived from these nine fundamental operations
should be sufficient to adequately describe most material handling and processing
applications. However, since the capability of SmarterSim continues to evolve,
some new fundamental operations may be continually added to the system.

2.2. SPECIFIC DEFINITIONS OF FUNDAMENTAL OPERATIONS

(1) Lock and Unlock: Lock reserves an object for a particular use and Unlock
frees an object for general use. For example, an operator may take care of several
machines but can only operate one machine at one time; Lock and Unlock can then
be used to reserve the operator for the machine and then to free him when the
operation is finished. When lock is executed, the current action of the locked object
will be marked "locked", which will last until an unlock action is fired. An unlock
action will clear the "locked" mark of the current action of the machine if the mark
exists. When an object is locked, no object other than the one that initiated the lock
action (the "locker") can process operations, and it must unlock the object prior to
other processing. The "locked" mark can only be cleared by the object which
executed the locked operation with an "unlock" operation, An example of the use
of this kind of elemental operation is for a vehicle to reserve an unloading place
before the vehicle goes there. Table 1 shows the parameters of this and the other
fundamental operations.

(2) Use: This represents processing which needs some time to complete.
During this type of elemental operation, a part will be processed for a certain
amount of time and the location of the part will not change. If defined, an appropriate
icon will be shown on the screen to indicate the process of this kind of elemental
operation. By clicking a location button, an object rather than a part might be
"processed". This will give the user an opportunity to hold a resource for a certain
amount of time. Table 1 shows the parameters of this fundamental operation.

EXAMPLE

A welding operation takes 3 minutes.

T. Thomasma et al., Visual programming for simulation 363

Table 1

The parameters of the fundamental operations.

Parameter Description

Common to all:

Name
Time
Icon
host (Assign button)

Lock and Unlock:

location (an object)

Use:

location (an object)

Take:

station (an object)

Put:

station (an object)

Move:

Speed

Destination

Join:
Input
Output

Disassembly:

Output

The name of the elemental operation.
The time needed to finish the elemental operation.
The icon which represents this elemental operation.
The object which will perform the elemental operation.

The object which will be locked or unlocked.

The object which will be processed.

The object from which parts will be taken.

The object into which parts will be put.

The speed of the host (optional). If the Speed is defined, time will
be calculated as Time = Distance/Speed.

Click two locations to specify "from" position to "to" position. Distance
is calculated as the distance between "from" and "to" positions. If
"from" position is not specified, current position is default.

The collection of parts which need to be put together.
The result of this elemental operation. Could be a new part.

The result of this elemental operation. Could be several new parts.

(3) Take: This is the action of taking some parts from a modeling object.
During this type of elemental operation, a part will be taken from the location. If
there is no part available in that location, an error will occur. The part will be put
into the host of this elemental operation. One of the consequences of this kind of
elemental operation is the part movement which always corresponds with part icon
movement. The hosts of these elemental operations are not necessarily material-
handling devices such as robots or AGVs. Objects such as workstations can get a
part from a location directly without a robot or an AVG. Table 1 shows the parameters
for this fundamental operation.

364 T. Thomasma et aL, Visual programming for simulation

EXAMPLE

A StorageFacility stores some parts and, periodically, the workstation takes
some parts from the StorageFacility (figure 2).

Figure 2. Example illustrating the Take operation.

(4) Put: This is the action of putting a part into a buffer, an AVG, etc. This
is the reverse action of Take. During this type of elemental operation, a part will be
taken from the host of the elemental operation and put into the location. If there is
no part available in the host, an error will occur. One of the consequences of this
elemental operation is the part movement which always corresponds with part icon
movement. The hosts of these elemental operations are not necessarily material-
handling devices such as robots or AGVs. Objects such as workstations can put a
part in a location without a robot or an AGV. Table 1 shows the parameters for this
fundamental operation.

(5) Move: This action represents the motions of robots and AGVs. This
fundamental operation is characteristic of material-handling equipment. The process
of an AGV moving from machine A to machine B is a typical example for this kind
of elemental operation. An AGV always moves along the shortest path which is
calculated by the system. Animations of robots or AGVs will be displayed on screen
when these elemental operations are being executed. Figure 3 shows the definition
menu for the Move operation and table 1 shows its parameters.

EXAMPLE

An AGV moves from station A to station B.

T. Thomasma et al., Visual programming for simulation 365

dmetaken

" i " 'ill llllil!l;di"

. II spe.ed I1 pelt, I

I'"!
Speed (only applied to AGV)

Figure 3. The icon menu for the specification
of the Move fundamental operation.

(6) Join: This action describes an assembly process in which two or more
parts may be joined together to become one entity. Examples are palletization and
assembly. Table 1 shows the parameters for this fundamental operation.

EXAMPLE

The lids of washing machines wait at an input queue until they are attached
to the washers at a station.

(7) Disassembly: This action is the reverse action of Join. This fundamental
operation describes a disassembly process in which one entity becomes two or more
parts. Table 1 shows the parameters of this fundamental operation.

EXAMPLE

When a pallet arrives at a machine, parts may be taken from the pallet.

(8) Broken: This represents the broken machines. It is the result of interruption.
During this kind of elemental operation, the station will show its state icon, any in-
process elemental operation network will be forced to terminate, and no other
elemental operation can be performed. This has only the parameters that are common
to all elemental operations.

2,3, IMPLEMENTATION

In SmarterSim, class Action is used to describe elemental operations. Action
is derived from class RulePiece. In SmarterSim, rules have three groups of pieces:

366 T. Thomasma et al., Visual programming for simulation

conditions, Boolean operations and elemental operations. One of the goals in developing
SmarterSim is to provide a direct manipulation graphic user interface [24], which
means that there should be a one-to-one relation between those groups of rule
components and groups of icons on the screen. RulePiece is an abstract class that
provides a set of methods to support those relations. Those methods include dragging
the icons and putting them on the screen. RulePiece is a subclass of Object.

Action is the superclass of all the nine fundamental operations. It has the
methods for displaying, copying and definition. Also, an elemental operation has
to be assigned to a host: a modeling element, a generic, or an object container. The
methods to do these assignments are defined in class Action. Furthermore, Action
provides a basic icon menu to visually define the elemental operation. This basic
menu includes "Done", "Assign", "Copy", "Name" and "Icon".

An elemental operation is defined by clicking the icon buttons that represent
the fundamental operations. After clicking "elemental operation specification" on
the main menu, an icon menu will pop up showing all the nine possible fundamental
operations. Clicking one of them will give the user a submenu for the selected
fundamental operation. The definition is finished after the user specifies the parameters
and assigns the elemental operation to a modeling object.

The function of a modeling object is defined when a group of elemental
operations are assigned to it. That group of elemental operations specifies what kind
of work the modeling element can do. However, the behavior of the modeling element
is determined by the rules and the structures of elemental operation networks. A
machine might have the functions of grinding and inspection. But when the machine
should grind or inspect is decided by the rules and the structures of elemental
operations associated with the machine. When a rule or elemental operation network
determines that an elemental operation is to be executed, the following will happen:

(1) The state of the host of the elemental operation will be changed to the name
of the elemental operation (except the lock and unlock operations, in which
a mark will be attached or be deleted from the host).

(2) An icon corresponding to the changed state will replace the current icon that
is displayed on the screen.

(3) A message will be sent to the statistics collector classes to document what
happens.

(4) An event will be scheduled on the event chain to indicate when the elemental
operation will be finished.

Upon completion of an elemental operation, the following actions will take place:

(1) The state of the host will be changed and the corresponding icon will be
displayed. Each of the object's states corresponds to a predefined icon. The
animation is done by displaying that icon. The same thing happens if the
elemental operation is in an elemental operation network.

T. Thomasma et al., Visual programming for simulation 367

(2) If there are any rules associated with this elemental operation, the rules will
be fired to test the satisfaction of the conditions. If any of the conditions are
satisfied, the elemental operation in the rule will be executed or be scheduled
to execute.

3. Rules

3.1. CONCEPTS AND DEFINITIONS

As discussed earlier, the control logic which indicates how decisions are to
be made during a simulation run is quite complicated. Decisions can be made by
people or by control computers. These decisions can yield a set of rules, no matter
who/what made them.

In SmarterSim, rules defining behavior are similar to rules in an expert system.
The left side contains a logical condition in which predicates are descriptions of
states of objects. The right side consists of an elemental operation and a delay time
indicator. Conditions in rules consist of object conditions (tally conditions and elemental
operation conditions) and Boolean operations (and, or, not). Each rule can have a
name shown at the bottom of the rule-definition window. Like elemental operations,
rules are also attached to modeling objects (hosts). Table 2 shows the parameters of

a rule.
Table 2

The parameters of a rule.

Parameter Description

Name

Conditions

Action

Host

The name of the rule

The left part of the rule. Consists of Boolean opera-
tions and conditions about specific modeling objects

The right part of the rule. Consists of an elemental
operation and elapsed time indicating when the elemental
operation will be executed

The object the rule belongs to

The condition of a rule consists of a set of condition elements. The condition
elements are linked together, forming a condition. A condition element could be one

of the following:

(1) Boolean operation: A Boolean operation can be "And", "Not" or "Or".

(2) Tally status of a modeling object: As shown in figures 4 and 5, the tally status
for a modeling object is a visual representation of a statement like:

"The tally of a given object = (or <, >) a Number (or Full, or Empty, or

compare with the tally of a given station)".

368 T. Thomasma et al., Visual programming for simulation

Tally as a condition

/

Figure 4, Condition definition.

Operators

Comparisons

1

Tally of another
station

Figure 5. The definition of tally status in a condition.

(3) States of modeling objects associated with elemental operations: When a host
executes an elemental operation, the state of the host will be the type of the
elemental operation (except for the "Lock" operation, which merely puts a
mark on the object rather than changing the state). The state can be accessed

T. Thomasma et al., Visual programming for simulation 369

. vr.choi;m n Lq
. operation /

~ I ~ ~11C

~/~T is full ' tit

Boolean operation

Figure 6. An example of a rule.

as a condition by clicking on the "elemental operation" button (figure 4).
States of modeling objects other than the rule's host can be used in conditions.

The action part of a rule is an elemental operation plus an icon indicating that
the elemental operation will be executed either immediately or after a certain amount
of time.

3.2. PORTRAYAL OF RULES TO USERS

Rules are portrayed graphically using function block diagrams. The definition
of a rule includes four steps:

(1) Click on the object icon for which a rule will be defined. Click "Define
Rules" on the menu (figure 7).

(2) Select a condition element. Click "And", "Or" or "Not" on the definition
menu to select a Boolean operation. When an object icon is clicked, the menu
shown in figure 4 will pop up and conditions about that object can be specified.
An object condition can be either tally status or the state associated with an
elemental operation.

(3) Select an elemental operation and specify the time delay for the action part
of the rule.

(4) Connect the conditions in a tree-like structure (figure 6).

370 T. Thomasma et al., Visual programming for simulation

,el-i nl'~ 1o I1 M e I'11,

Not

D ~ And

Or

~ Conditions about station

Condition about object container

IDefine Rules I
Ioefine Interrupt I

Figure 7. A menu for the definition of a rule.

3.3. SOFTWARE ARCHITECTURE

Class Rule is a subclass of Objec t . There are three pointers in this class,
indicating instances of Condition, Host , and Action, respectively. These three classes
are subclasses of RulePiece.

The condition elements of a rule are arranged in the form of a tree structure
(figure 8). The algorithm for determining whether a rule condition is satisfied therefore
becomes a simple test o f the condition elements beginning from the root.

Figure 8. Data structure for condition elements of a rule.

T. Thomasma et al., Visual programming for simulation 371

3.4. LIMITATIONS AND RELATIONSHIPS TO OTHER WORK

Our use of rules in defining object behavior is similar to recent work by Norrie
et al. [14,15]. They have extended the Smalltalk language so that rule sets as well
as procedural methods together constitute class definitions. Doing this provides great
flexibility in combining artificial intelligence with traditional programming. Our
work complements theirs by providing a familiar visual language for defining and
reviewing rules.

With rules and elemental operations, we can define the functions of modeling
objects and when those functions should be used. However, in a manufacturing
system, the workpieces which move through the system typically have unique
process plans. This means that each entity in the model has its own routing sequence
through the workcenters as well as its own setup, pro~essing time, and tool requirements
within the workcenter. With rules, elemental operations, and indications of which
rules should be fired at the completions of the elemental operations, we can model
process plans. However, it is indirect and time consuming to do it this way. The
concept of elemental operation networks provides a more natural way to portray
cycles of operations such as those in process plans.

4. Elemental operation network

4.1. CONCEPTS AND DEFINITIONS

The elemental operation network is a directed graph which.starts with the
name of the network. The nodes of the network can either be elemental operations
or Boolean operators. An elemental operation network in SmarterSim can be used
as a process plan which determines the activities of a part in the system. Elemental
operation networks can also describe the activities of simulation objects such as
robots, machines and AGVs. Figure 16 shows an elemental operation network.
Table 3 shows the parameters of elemental operation networks.

Table 3

The parameters of an elemental operation network.

Parameter Description

Name

Collection of elemental operations

Collection of Boolean operations

Branches

Host

The name of the elemental operation network

The elemental operations in the network

"Or" (next availabl~ and "And" (both in parallel) opera-
tions can be included in a network

Indicate the precedence relationships among the elemental
operations and Boolean operations in the network

The object the elemental operation network belongs to.
This parameter is optional. An elemental operation network
does not necessarily need a host

372 T. Thomasma et al., Visual programming for simulation

With the elemental operation network, the modeling system can be represented
in terms of entities which flow through a network of nodes. The elemental operation
network provides a way to match real-world operations and their precendence
relationships. The most challenging step in developing an elemental operation network
is the synthesis of a network of nodes which represents the sequence of operations
through which the part flows.

In SmartSim, the layout of the modeling objects on the screen was used to
determine a single process plan for all parts flowing through the system. In that
regard, it was suitable for transfer line types of systems. Object-oriented simulation
environments for job shops [11] have the capability to represent multiple-process
plants. The elemental operation network generalizes that capability.

4.2. USER INTERACTION

The diagram for an elemental operation network is the process diagram.
Alternatively, Petri nets [2, 13, 16] could be used. We chose process diagrams for
their simplicity and familiarity to manufacturing engineers.

The definition of an elemental operation network is carried out by simply
clicking the icons on the screen in the appropriate sequence. The process could be
divided into two steps:

(1) Select a title, proper elemental operations and Boolean operations.

Each definition process starts by choosing the title of the elemental operation
network. After the user gives a name to the elemental operation network and places
the title box in the definition window, the user can select Boolean operations and
elemental operations needed to form an elemental operation network. To pick an
elemental operation, the user first clicks the host of the elemental operation and
then clicks a fundamental operation in a pop-up menu. Upon the user selection and
specification of an elemental operation, the icon of the elemental operation will
attach to cursor and the user can drag it into position on the definition window.

(2) Connect them together by clicking proper icons.

After the needed elemental operations and Boolean operations for the network are
selected, the user has to decide the relationship among those elemental operations
and Boolean operations. The relationship is defined by a set of arrows which are
defined by clicking two icons in sequence, with precedence going from the first to
the second.

4.3. IMPLEMENTATION

SmarterSim uses the following token passing method to control the process
of executing an elemental operation network. Like tokens in a Petri net, we here

T. Thomasma et al., Visual programming for simulation 373

use tokens to describe the state of an elemental operation network. Tokens are
scattered in the nodes of an elemental operation network to correspond with the
current progress of the elemental operation network. Unlike a Petri net, in an
elemental operation network each node can have up to one token. A token has one
of four colors - green, red, blue and yellow. The meaning of the colors is as follows:

(1) When a node has a green token, it means this node is ready to be executed,
but whether it can be actually executed is determined by the rules associated
with its preceding elemental operation.

(2) When a node has a red token or has no token, this node is not ready to be
executed. When the elemental operation in a node is being executed, a red
token is assigned to that node.

(3) Yellow tokens are assigned to a group of nodes, only one of which will be
executed. When one node having a yellow token is successfully executed, the
yellow tokens for the other nodes are eliminated. Yellow tokens are used for
"Or" Boolean operations. Simple rules can be chosen to determine which
node is executed. One possibility is weighted random choice. Another is a
cyclic scheme, whereby no node executes twice until all others have executed
once. More complex choice rules require the use of object containers and
generics (section 5).

(4) Blue tokens are assigned to nodes which should all be executed. That is, all
of those nodes should be executable - the conditions for all those nodes are
satisfied. Blue tokens are used for "And" Boolean operations to represent
parallel activities.

Token Passing: After the node for an elemental operation has been executed,
the token will be passed to the next node according to the link states of the elemental
operation network as described below (figure 9):

(1) When the current node is an elemental operation, then the token for the
current node, just completed, will be destroyed and a new token with the color of
green will be put into the next node.

(2) When the current node is an "And", token passing depends on the number
of the parents of the "And" node and the number of the green tokens in this "And"
node. If the two numbers are equal, token passing will eliminate tokens for the
current node, and will put a blue token for every successor node. These blue tokens
will then become green tokens when all of them have been successfully executed.

(3) When the current node is an "Or", token passing depends on whether
there is a green token in this node. If there is at least one token in this node, token
passing will eliminate tokens for the current node, and will put a yellow token for
every successor node. Token passing will happen only if there is at least one parent
node with a green token.

374 T. Thomasma et al., Visual programming for simulation

Token passing for 'and' Token passing for 'or'

j 7

Token passing before 'and'

O Green

• Red

• Yellow

@ Blue

Figure 9. Token passing.

Token passing before 'or'

An elemental operation network begins execution under two conditions:

1. Upon the arrival of pairs.

2. Firing by rules.

The token behavior is described by class Token. There are two instance
variables in class Token: "color" and "assignment". Color is a string indicating the
color of the token, while assignment is a pointer to the node in which the token
resides.

Class EONet is used to describe the behavior of an elemental operation
network. Class EONet has "index", "inUse", and "token" as its instance variables.
The instance variable "index" points to an instance of class TreeSt ruc ture which

T. Thomasma et al., Visual programming for simulation 375

contains nodes and path flow information. The variable "inUse" indicates whether
the elemental operation network is in use or not, and "token" is an orderedCollection
that stores pointers to the tokens in the elemental operation network.

Class TreeSt ruc ture has a pointer to a node of the elemental operation or the
Boolean operation and a pointer to one or several instances of TreeSt ruc ture . A
set of methods is provided with this class to display node icons and their relations,

When an elemental operation network is activated, a green token is put at the
header node and efforts are made to try to pass this token to the successor nodes.

4.4. LIMITATIONS

With elemental operations, rules and elemerital operation networks, we can
define the behaviors of most manufacturing systems. But occasionally we have to
make a choice among groups of modeling objects, such as selecting an AGV from
a fleet. In the next section, we will describe a tool for this purpose.

5. Object containers and generics

5.1. CONCEPTS AND DEFINITIONS

In modeling a material-handling system, it is difficult to express decision
making involving selection in terms of rules, elemental operations ~ind elemental
operation networks. For example, an AGV could pick up a part at any of six
locations where parts are waiting. Dozens of rules may be needed just for a single
decision of where the AGV should go next. As far as AGVs and parts are concerned,
we have the following cases.

Selecting an AGV: When a job completes processing at a station or arrives
into the system, an AGV is assigned to pick up the part, if any vehicle is available.
If there are none, the part enters a queue, awaiting assignment when a vehicle is
freed. If only one vehicle is available, it is allocated to the job and assigned to pick
it up. However, if more than one AGV is available, which AGV should be chosen?

Dispatching a vehicle: After an AGV drops off a part, it is assigned the next
task to perform, or it waits until it is again required. If there is only one job waiting
for loading, then the vehicle is assigned to pick up the job and move it to its next
operation. However, if there are many jobs waiting,for transport, which jobs (or
stations) should the AGV take (or go to)?

Routing a part: When a part finishes an operation in one location, it has to
be sent to the next location according to the path logic. If there is only one location
waiting for this part, then the part is sent to this location for processing. But if there
are many locations waiting for that kind of part, to which location should it go?

376 T. Thomasma et al., Visual programming for simulation

The object container and generic provide a solution to this kind of problem.
The object container has other uses as well: rules can be put into the container to
define the common behavior of all the modeling objects in it. This can reduce the
duplication of some rules and may make behavior, definition a little easier. An
object container could be used in several places. When a place is needed to store
the results of choice from an object container, an associated object generic is used.

By definition, an object container is a place to hold several objects which
have some similar characteristics. An object container has an icon, a rule for selecting
suitable objects to be included in the container, and rules for defining the behaviors
of the objects in the container (figure 11).

Table 4

The parameters of an object container.

Parameter Description

Icon
Collection of modeling objects
Order rule

Constraint rules
Logic define

The icon represents the object container
The modeling objects in the object container
The rule that specifies the priority order of
the modeling elements in the object container
The rules used to select the "active" objects
The rules to define the behaviors of objects
in the object containter

Table 4 lists the parameters of an object container. Every object container has
an icon to represent itself and a collection of modeling objects selected by the user.
An object container has the ability to dynamically select an object from its object
collection according to constraint rules and order rules. The selection process is the
following (figure 10):

(1) Apply the contraint rule to each object in the object container. If an object
satisfies the condition of the rule, this object becomes "active". The result of
this process is a collection of "active" objects.

(2) Then the order rule is applied to each "active" object. An ordered list will
be created for all the "active" objects.

(3) Select the first object in the list to return.

Let us consider an example to see how this works. Suppose there is a fleet
of AGVs and we want to select the nearest AGV to load parts in station A. The
AGV has to be idle and empty. In this situation, we can construct an object container
whose objects are the AGVs in the fleet. The constraint rule for the object container

T. Thomasma et al., Visual programming for simulation 377

/ -
Objects in object
contaJrler

Order Rule

Constraint Rule

1,

"active" Objects

"" S
" i \ returned object

Select the first to return

Ordered "active" objects

Figure 10. The object selection process for an object container.

Rule deterr.~nes vh.k:h objects wil l be selected.

• : iI:l I I : i : I t , lIIII , |
aea.. I ,,I~ ~,.,,:J

I ,[~.llllIllIlllI.I

. l l~!b!~i iNNb!~! l

Order of selected object

Behavior definition for
the objects belo~glag
~o this ObjectCon~fl~er

Figure 11. The definition menu for Objee tConta iner .

378 T. Thomasma et al., Visual programming for simulation

is "AGV is empty and idle" and the order rule is "minimum distance to station A".
Then every time station A needs an AGV to load parts, we can try this object
container to get one.

The definition of an object container consists, of two steps:

(1) Select objects in the object container by clicking the icons representing the
modeling objects.

(2) Define order rule and constraint rule.

A generic is a place to hold an object. The object can come from an object
container. In a sense, a generic looks like a variable in conventional computer language.
Table 5 shows the parameters of a generic.

Table 5

The parameters of a generic.

Parameter Description

Name The name of the generic

Icon The icon of the generic

Pointer The pointer to the selected modeling object

The definition of an object generic consists of specifying a name and defining
an icon.

An object container and a generic can be used as an "object container and
generic pair". When the two are used together, the pointer in the generic will point
to the object returned by the object container.

Object containers and generics are used as hosts of elemental operations. In
defining an elemental operation, there are three choices in addition to a regular
modeling object when clicking the "assign" menu button:

(1)

(2)

(3)

When the object generic is chosen, the elemental operation will be assigned
to that generic. The object which is actually going to perform this elemental
operation is determined by the contents of the generic.

When the object container is chosen, the elemental operation will be assigned
to the object container and the returned object from the object container will
perform the elemental operation.

When the object container and generic pair is chosen, the elemental operation
will be assigned to the object container and the returned object from the
object container will be put into the object generic.

T. Thomasma et al., Visual programming for simulation 379

Let us consider an example. Suppose there is a group of AGVs that are going
to transfer material for a machine. At a given moment, we would like to select an
AGV which is idle, empty and nearest to the machine. The elemental operations for
this particular AGV may be (a) taking a part at machine A (Take), (b) moving to
machine B (Move), and (c) putting down the material at machine B (Put). We can
then select the desired AGV by assigning the Take operation to a container with
properly defined constraint and order rules. However, we also want the selected
AGV to perform the second and third elemental operations. In this case, an object
generic can be used to hold the result of the object container. This is done by
assigning the first elemental operation to an object container-object generic pair,
and assigning the second and the third elemental, operations to the object generic
in the pair.

The location or destination of an elemental operation can also be assigned to
an object container or a generic. The object container or generic can determine
where to perform an elemental operation or where to go.

5.2. IMPLEMENTATION

Classes ObjectContainer and Holder are used to implement the object container
and generic. Both classes are subclasses of Object. Class ObjectConta iner has
methods for object selection, rule definitions and return object determination. The
methods in class Holder are for definition and object retrieval.

The order rules are best programmed in the usual procedural programming
languages. Shortest path algorithms and simple sorts based on statistics of modeling
objects could be provided for the user to select from. Alternatively, statistical data
about the objects in the object container could be exported to mathematical programming
software in order to evaluate sophisticated algorithms in the context of simulation,
The mathematical programming software then plays the role of the order rule.

When an order rule is programmed and packaged as a subroutine, SmarterSim
will extract object IDs and relevant numeric data from the active objects in the
container. It will then pass this information in an array to the subroutine. The
subroutine returns the array in sorted order, with the best choice first, as determined
by the algorithm. The object IDs are used to reference the objects in the container.

6. Using SmarterSim

6.1. OVERVIEW

This section will give the reader a brief example as an overview of the
SmarterSim system. As shown in figure 12, using SmarterSim is a three-step process.
In the first step, which we called Model Building, the user first selects an icon from
the menu, and then defines the behavior for each icon using tools such as elemental

380 T. Thomasma et al., Visual programming for simulation

II II I I I I II I I I I

I. Model Building

~ Select icons from main menu
according to the system to be
modeled and put those icons ~ "
on the screen

r "
Define the behavior for each
icon using elemental operations,
rules, elemental operation
networks etc.

II. Simulation

Perform simulation and
animation

III. Analysis Gather output statistics.
Analyze the output.
Verify and validate the
system.

No]

Figure 12. Manufacturing system analysis with SmarterSim.

operations, rules, elemental operation networks, etc. Alternatively, the user could
retrieve behaviors stored in libraries produced in previous projects or provided by
consultants or equipment vendors. In this step, the user constructs the model in
SmarterSim by clicking icons and making choices among pop-up menus, using the
visual programming tools provided.

Once the model is built, the simulation can be run by clicking the "run"
button on the main menu. Animation will be done if the user turns the "animation"
flag on. Icons will change as the state of the icon changes. Parts, AGVs and robots
will move from one place to another as the simulation is proceeding. Like SmartSim,
SmarterSim is a visual interactive simulation environment. The modeler has complete
freedom to start a run, stop it, modify the model, and resume. This is a useful
capability in the early stages of constructing models. Although it is not currently
implemented in SmarterSim, the diagrams for rules and elemental operation networks
lend themselves very well to animation. Animation can be very helpful in verifying
the model logic and making behavior visible.

T. Thomasma et al., Visual programming for simulation 381

The final step is the analysis of the simulation results. Although the animation
provided by SmarterSim may give the user some ideas about what happened in the
system, SmarterSim does not provide tools for analysis, since this is not the focus
of our project. We offer nothing new in the very well developed field of output
analysis. We note that output analysis capabilities should be provided in the suite
of tools given to plant engineers who build their own models. This would not only
reduce the risk of drawing erroneous conclusions from the model, but would significantly
shorten the time and effort needed for an entire simulation study. SmarterSim does
gather statistics, which can be given to other packages for statistical analysis.

Based on the results of step three, the user may have to modify the model
and go through several loops in order to compare the output of different designs
and select the best system.

Station 1 Station2

I/
Inspection

Input Buffer
Output Buffer

AGV

B1 B6

I - "
Rework Station Control Point

Figure 13. A manufacturing system.

Figure 13 shows a simple AGV system, which is used here to demonstrate
how simulation models are built in SmarterSim. Since much of the time and effort
is spent defining the behaviors of the icons, a large portion of this section is devoted
to explaining the model building process.

382 T. Thomasma et al., Visual programming for simulation

a storageFacilityt =_ I a~C~eFacility ~

 IOUTI

do,itionl

Rework Station Control Point

Fig. 14. The icon layout of the system.

6.2. EXAMPLE: STATEMENT OF THE PROBLEM

In a manufacturing system (figure 13), parts from source labeled "IN" are
sent to either station 1 or station 2 to be processed, first by an AGV, then by a robot.
After the processing, parts are sent to an inspection station. The system has a yield
of a certain percentage of good parts which exit the system at the output point
labeled "OUT", while the rest are parts that are bad and require rework by a rework
station. These reworked bad parts will then be sent to either station 1 or station 2
to be processed again. For demonstration purposes, we use one AGV and one robot
to transfer parts between the source, sink and workstations. The AGV is used to
transfer parts between source, sink, storage facilities, inspection station and rework
station, while the robot serves the two process stations and the two storage facilities.

6.3. THE ICON LAYOUT OF THE MODEL

In this step, the user is required to select appropriate icons to match the actual
system. An icon layout of a model can be obtained by selecting appropriate icons

7". Thomasma et al., Visual programming for simulation 383

and putting them on the screen. In SmarterSim, the path of AGVs consists of one
or several path segments which are defined simply by clicking two separate icons
on the screen. If the speed of an AGV is defined, the travel time needed for the
AGV to pass a path segment is calculated by the length of the path segment divided
by the speed.

Figure 14 shows a possible solution to the system in figure 13.

6.4, THE BEHAVIOR OF THE MODEL

In SmarterSim, the behavior definition of a model is completed by defining
elemental operations, rules, rules associated with the ends of the elemental operations,
and elemental operation networks.

6.4.1. The definition o f elemental operations

Currently, there are nine fundamental operations available. To define an
elemental operation, the user has to first select one fundamental operation and assign
it to a host modeling object (a Source, a WST, an AGV, etc.), then specify the
parameters associated with it. For example, let us define a Move elemental operation:
the AGV is to move to the source to pick up a part that has entered there. The
definition process is the following:

(a) Click the "behavior definition" button from the main menu.

(b) Click the "MOVE" button on the icon pop-up menu.

(c) Assign the elemental operation to the host AGV by first clicking the ASSIGN
button on the MOVE definition menu and then clicking the host AGV to
which the move elemental operation should be assigned.

(d) Specify the destination of the AGV move by first clicking the destination
button on the definition menu, then clicking the Source icon.

(f) Every elemental operation needs some time to finish. In a Move elemental
operation, that time can be specified by one of the following ways: (1) specify
the speed of the moving object (the travel time is then calculated from the
distance and the speed), or (2) give a number for the time. The number can
be a random number. In SmarterSim, as in SmartSim, a random number can
be a Bernoulli, binomial, constant, exponential, gamma, geometric, normal,
Poisson or uniform random variable.

(g) Every elemental operation can have a unique icon. The user is allowed to edit
the default icon provided by the fundamental operation by clicking the icon
editor button.

In our example, the elemental operations needed are shown in table 6. The
generic nature of each elemental operation is identified by its icon. However, the
use can give a name to a particular elemental operation.

384 T. Thomasma et al., Visual programming for simulation

Table 6

The elemental operations.

Name Type Description

AGV Move I Move AGV
AGV Pick 1 Take AGV
AGV Move 2 Move AGV
AGV Put 1 Put AGV
AGV Pick 2 Take AGV
AGV Move 3 Move AGV
AGV Put 2 Put AGV
AGV Pick 3 Take AGV
AGV Move 4 Move AGV
AGV Put 3 Put AGV
AGV Move 5 Move AGV
AGV Put 4 Put AGV
AGV Pick 4 Take AGV
Robot Move 1 Move robot
Robot Move 2 Move robot

Robot Pick 1 Take robot
Robot Put 1 Put robot
Robot Pick 2 Take robot

Robot Put 2 Put

WST working Use
Inspection Use
Rework Use

moves to source to pick up a part
picks up a part at source
moves to the storage facility
puts a part at the storage facility
picks up a part at the storage facility
moves to the inspection station
puts a part at the inspection station
picks up a part at the inspection station
moves to sink
puts a part at sink
moves to the rework station
puts a part at the rework station
takes a part at the rework station
moves to the storage facility
moves to the workstation
picks a part at the storage facility
puts a part at the storage facility
picks a part at the workstation

robot puts a part at the workstation
workstation processes part
the inspection station processes part

the rework station processes part

6.4.2. The definition o f rules

In S m a r t e r S i m , the rule s t ruc ture is " I F < Cond i t i ons > T H E N < Ac ion >" .

Ru les are de f ined by s i m p l y c l i ck ing on app rop r i a t e icons ins tead o f wr i t ing n a m e s

o f cond i t ions and ac t ions us ing a text edi tor .

F o r e x a m p l e , b e f o r e an A G V is sent to m o v e to the inspec t ion s ta t ion to p ick

up an in spec ted part , we wou ld l ike to m a k e sure the inspec t ion s ta t ion is not e m p t y ,

and that the in spec t ion s ta t ion is idle (we a s s u m e the inspec t ion s ta t ion can on ly

i n spec t one par t each t ime and that it has no bu f f e r s to rage) so tha t the A G V is

g u a r a n t e e d to have a par t to p ick up when it gets there. T o def ine this rule, the user

f irst c l icks on the A G V icon, then c l icks the " ru le de f in i t ion" but ton on the o b j e c t ' s

p o p - u p menu . N o w the s y s t e m will show two w indows . One is a B e h a v i o r Def in i t i on

w i n d o w (f igure 15), the o ther is a Def in i t ion m e n u (f igure 7). T o get a cond i t i on

abou t the in spec t ion stat ion, the user has to c l ick the " s t a t i on" but ton in the w i n d o w

and then c l i ck the inspec t ion stat ion.

T. Thomasma et al., Visual programming for simulation 385

Robot
is Empty

ii iiiiiiiiiiiiiiiii

12P.I | I';+'IL',I Is] i l i l '~l l l i l l l t t [~I | l ' . ' t l i I ~ [t l + l

The Storage Facility is not Empty

IT

II [] ILtl empt~l
lla Sl:oraoeFacilil~V l

~, " ~ [1 Rule I for robot I
\ The Storage Facility is available

Figure I5. Rule definition.

Table 7

Some rules.

Name Conditions Action

Robot 1

Robot 2

AGV 1

AGV 2

AGV 3

If the storage facility is available and the robot
is not full and the storage facility is not locked

If the workstation is idle and the robot has already
picked up a part

If the AGV is idle and source has part available

If the AGV is idle and the storage facility is not
locked and the storage facility is not full and the
AGV has already picked up a part

If the AGV is idle and the storage facility is not
locked and the storage facility is not empty and
the AGV is empty

Then the robot moves to the
storage facility (robot Move 1)

Then the robot moves to the
workstation (robot Move 2)

Then the AGV moves to the
source (AGV Move 1)

Then the AGV moves to storage
facility to unload part (AGV
Move 2)

Then the AGV moves to storage
facility to pick up a part (AGV
Move 2)

S imi la r ly , the user can def ine the o the r rules. T a b l e 7 lists s o m e o f the rules

used in this e x a m p l e . As far as the A G V is conce rned , s imi la r ru les abou t the

in spec t ion s ta t ion, the p roces s s ta t ion and the ou tpu t po in t are n e e d e d to c o m p l e t e

the con t ro l logic . In S m a r t e r S i m , an e l e m e n t a l ope ra t ion c a n n o t be e x e c u t e d unt i l

all the rules r e g a r d i n g this e l e m e n t a l ope ra t ion are sat isf ied.

~
1~

i il
l'-

li
ll

~-
I I

!1
 f

il
l i

~
il

l I
|l

 |I
.I

 I~
 l;

il
t~

l|
l d

 ~
11

 Il
r,

 l i
li

l~
 I

|l
i|

~

~

t~

r~

Fi
gu

re
 1

6.
 A

n
el

em
en

ta
l

op
er

at
io

n
ne

tw
or

k.

T. Thomasma et el., Visual programming for simulation 387

6.4.3. The definition of elemental operation networks

The definition of an elemental operation network is fairly straightforward.
The user selects elemental operations and Boolean operations, puts them in the
window and then connects them together. Figure 16 is an elemental operation network
defining the robot. It says that the robot first moves to the input buffer, picks up
a part, then moves to either station 1 or station 2 and puts down a part. After the
station finishes the process, the robot will pick up the part, move to the output
buffer and put the part down.

6.4. RUN THE SIMULATION AND OBSERVE THE ANIMATION

Now we are able to run the model by clicking the "run" button on the menu.
An animation can be observed and the statistics data are shown in the menu of each
object (figure 17).

 lP,ramet0r,:l
[define interrupt I
I ta , y c paclty:tl
1 define the WSTt
] specify Elemental 0perati0nl \ [Anlmati0n:]

screen coordinates"0f icon: 419~4771 \
Edit icons, I
Get the default Icons. I

St.atlstic.s:]
Trace is now: ON t
Time workinq: 1 4~'. I
Time broken: 0. 0"~,]
Time idle: 8G~. 1
Number lost due t~ machine failure: 0 average: o per time untt I
Number receiued: 20 average: 0,12 per time unit I
Time blocked: 0. 0"/. I

Statistics Data Shows on the Menu

Figure 17. Statistics menu.

7. Conclus ions

SmarterSim represents a first attempt to develop,, a f ramework to specify
control logic in simulation models. Through a set of tools, SmarterSim provides an
environment which makes it easier for the user to capture the real world 's visual

388 T. Thomasma et al., Visual programming for simulation

and dynamic behavior. With the concepts such as elemental operation, rules, elemental
operation network, object container and generic, the new behaviors of objects can
be defined without programming. Familiar kinds of diagrams are provided to aid
the user in giving behavior specifications and reviewing the behavior that is already
specified in existing modeling objects.

Most classes, and many of the methods in SmarterSim, correspond very directly
with real-world manufacturing concepts and entities. The correspondence is further
emphasized by the visual, icon-based user interface. The user can therefore deal
directly with familiar objects in real manufacturing systems represented by icons.
This approach, which is very effective in reducing the gap between the model and
the real-world system, reduces the need for extensive training and modeling expertise.

The goals of the SmarterSim project were to provide visual representation
and modifiability of object behavior in a familiar way, without the need of traditional
text-based programming. We succeeded in building a prototype software system
that has these characteristics. We have yet to prove that the constructs in the system
are rich enough for all types of manufacturing simulation. There may be additional
fundamental operations that are important to include. Although the user interface
is constructed according to sound principles, it needs to be refined and tested by
users.

So far, we have used SmarterSim on several small problems. With our limited
experience, we believe that it provides a framework and a set of constructs that are
potentially useful for many plant engineers. Although the initial results are encouraging,
much more remains to be done. One feature that we feel could potentially enhance
the capacity of SmarterSim is the "subsystem" feature implemented in SmartSim,
which is based on Zeigler's [31,32] work on hierarchical modeling. As Olgen and
Thomasma noted [29], subsystems promote reuse of portions of models that have
been constructed by interconnecting many icons. Applying the subsystem concepts
further in the behavior definition tools, we believe, could minimize the sometimes
repetitive behavior definition required for large sized simulation models.

Acknowledgements

Support of the State of Michigan's Research Excellence and Economic
Development Fund and an equipment grant from the Hewlett Packard Corporation
are gratefully acknowledged. We also thank the referees for their very thorough
review of this paper and for their helpful comments.

References

[1] CACI, SIMFACTORY 115 User's Manual, (CACI Products Company, La Jolla, CA, I990).
[2] C.K. Chang, Y.F. Chang and C.C. Song, Petri-net approach to distributed software development, Inf.

Software Technol. 31(1989)535-545.

T. Thomasma et al., Visual programming for simulation 389

[3] B.J. Cox, Object-Oriented Programming: An Evolutionary Approach (Addison-Wesley, Reading,
MA, 1986).

[4] A.R. Gilman and C. Billingham, A tutorial on SEE WHY and WITNESS, Proc. 1989 Winter
Simulation Conf. (1989) pp. 192-200.

[5] C.R. Glassey and S. Adiga, Berkeley Library of objects for control and simulation of manufacturing
systems (BLOCS/M), in: Applications of Object-Oriented Programming, ed. L.J. Pinson and R.S.
Wiener (Addison-Wesley, Reading, MA, 1990).

[6] A. Goldberg and D. Robson, Smalltalk-80: The Language (Addison-Wesley, Reading, MA, 1989).
[7] P.D. Gray, Smalltalk-80: A Practical Introduction (Pitman, London, 1990).
[8] C.J, Kasales and D.T. Sturrock, Introduction to SIMAN IV, Proc. 1991 Winter Simulation Conf.

(1991) pp. 106-111.
[9] A,M. Law and W.S. Haider, Selecting simulation software for manufacturing applications, Proc.

1989 Winter Simulation Conf. (1989). °
[t0] B. Meyer, Object-Oriented Software Construction (Prentice-Hall, New York, 1988).
[11] J.H. Mize, H.C. Bhuskute, D.B. Pratt and M. Kamath, Modeling of integrated manufacturing systems

using an object oriented approach, IIE Trans. 24(1991)14-26.
[12] M. Mullin, Object Oriented Program Design with Examples in C++ (Addison-Wesley, Reading,

MA, 1989).
[13] T. Murata, Petri nets: Properties, analysis and applications, Proc. IEEE 77(1989)541-580.
[14] D.H. Norrie, O.R. Fuavel, B.R. Gaines and M. Mowchenko, A knowledge-based decision support

system for flexible manufacturing, Proc. 2nd Int. Conf. on Industrial Engineering Applications of
Artificial Intelligence and Expert Systems, IEA/AIE 89 (1989) pp. 393-400.

[15] D.H. Norrie and A.D. Kwok, Object-oriented distributed artificial intelligence, Int. Syrup. on New
Results and New Trends in Computer Science (1991) pp. 225-242.

[16] J.L. Peterson, Petri Net Theory and the Modeling of Systems (Prentice-Hall, New York, 1981).
[17] A.A.B. Pritsker, Introduction to Simulation and SLAM II (Halstead Press, New York, 1986).
[18] Pritsker Corporation, AIM User's Manual (Pritsker Corp., Indianapolis, IN, 1992).
[19] ProModel Corporation, ProModeIPC User's Manual (ProModel Corp., Orem, UT, 1992).
[20] M. Rohrbough, Introduction to SIMFACTORY II.5, Proc. 1989 Winter Simulation Conf. (1989) pp.

201-204.
[21] E.C. Russell, Introduction to SIMSCRIPT II.5, Proc. 1991 Winter Simulation Conf. (1991) pp.

62-66.
[22] D. Savic, Object Oriented Programming with Smalltalk/V (Ellis Horwood, New York, 1990).
[23] T.J. Schriber, An Introduction to Simulation Using GPSS/H (Wiley, New York, 1990).
[24] B. Shneidermann, Designing the User Interface: Strategies for Effective Human- Computer Interaction

(Addison-Wesley, Reading, MA, 1987).
[25] T. Thomasma and K. Hilbrecht, Specification methods for material-handling control algorithms in

flexible manufacturing systems, Int. J. Flexible Manufac. Syst. 3(1991)231-250.
[26] T. Thomasma and O.M. Ulgen, Modeling of a manufacturing cell using a graphical simulation

system based on Smalltalk-80, Proc. 1987 Winter Simulation Conf (1987) pp. 683-691.
[27] T. Thomasma and O.M. 01gen, Hierarchical, modular simulation modeling in icon-based simulation

program generators for manufacturing, Proc. 1988 Winter Simulation Conf (t988) pp. 254-262.
[28] T. Thomasma, O.M. Olgen and Y. Mao, Manufacturing simulation in Smalltalk, Proc. 1990 Western

Simulation Multiconf (1990) pp. 93-96.
[29] O.M. 01gen and T. Thomasma, SmartSim: An object-oriented simulation program generator for

manufacturing systems, Int. J. Prod. Res. 28(1990)1713-1730.
[30] A.L. Winblad, Object-Oriented Software (Addison-Wesley, Reading, MA, 1990).
[31] B.P. Zeigler, Multifaceted Modelling and Discrete Event Simulation (Academic Press, Boston, 1984).
[32] B.P. Zeigler, Object-Oriented Simulation with Hierarchical, Modudar Models: Intelligent Agents

And Endomorphic Systems (Academic Press, Boston, 1990).

