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One of the main methods for solving stochastic programs is approximation by dis- 
cretizing the probability distribution. However, discretization may lose differentiability 
of expectational functionals. The complexity of discrete approximation schemes also 
increases exponentially as the dimension of the random vector increases. On the 
other hand, stochastic methods can solve stochastic programs with larger dimensions 
but their convergence is in the sense of probability one. In this paper, we study the 
differentiability property of stochastic two-stage programs and discuss continuous 
approximation methods for stochastic programs. We present several ways to calculate 
and estimate this derivative. We then design several continuous approximation schemes 
and study their convergence behavior and implementation. The methods include 
several types of truncation approximation, lower dimensional approximation and 
limited basis approximation. 

Keywords: Approximation, derivative, continuous distribution, stochastic 
programming. 

1. Introduction 

C o n s i d e r  the  fo l lowing  stochastic program with recourse: 

minimize  z = cTx + kV (x) 

subject  to  Ax = b, (1.1) 

x >  0, 
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where ~(x) = E(~b(Tx - 4)) and ~b is the recourse function, defined by 

~b(w) = inf{qTy : IVy = - w ,  y >_ 0}. (1.2) 

Then 

V~(x) = I ~b( Tx - ~)P(d(). (1.3) 

The dimensions in (1.1), (1.2) and (1.3) are: x, c E N n, b E I[~ m, y, q E R k, ~ E 11~ t. The 
random/-vector ( is defined on a probability space (E, ~¢, P). To ensure that g' is 
convex, real-valued and defined on ll~ n, we assume throughout that (i) for each 
t E Nk, there exists y > 0, y E N k such that Wy = t, (ii) there exists 7r E R t such 
that 7rTW < qT, and (iii) f z  ll~lle(d~) < 

A popular approach to solve (1.1) is to discretize P to get a large-scale linear 
program approximation to (1.1) [2, 6, 7, 13, 15, 21, 24, 30]. The approximation func- 
tion to ~ in this case in general is nondifferentiable. However, if P is a continuous 
distribution, i.e., 

P(d()  = p(()dG (1.4) 

where p is a Lebesgue integrable function, then • is differentiable [20, 28]. In fact, by 
(1.2), ~p is a piecewise linear function. Hence, ~p is piecewise constant except in a 
Lebesgue zero measure set. If P is discrete, then this Lebesgue zero measure set 
may have positive measure in P. Thus, ffa may be nondifferentiable. If P is con- 
tinuous, then we may omit this set and have 

= J V ¢ ( T x  - (1.5) 

This observation leads to continuous distribution approximations to solve 
(1.1). Convergence properties and uses in algorithms are discussed in [4]. To 
make this approach feasible, one needs to approximate (1.4) efficiently. This 
paper considers such schemes. Section 2 presents approaches to estimate Vtg(x) 
based on direct probability approximations. Section 3 discusses truncation approx- 
imations and gives convergence rates. Section 4 presents convergence results and 
approaches for lower dimensional approximations. Section 5 gives results on 
using combinations of the previous approaches and section 6 provides some exam- 
ples and illustrative results. 

2. Calculation and estimation of the derivative 

Suppose that P is a continuous distribution defined by (1.4). The following pro- 
position gives a formula for V~(x)  based upon basic optimal dual solutions of (1.2). 
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PROPOSITION 2.1 

Let the basic dual optimal solutions of (1.2) be {Trj : j  = 1 , . . . ,  N}. Let the 
basic matrix of (1.2), associated with 7rj, be Bj. Then 

VqT(x)= y~ aTjT, (2.1) 
I<j<N 

where 

aj - P(~ [ lrj optimal) 

= e(~ I ~) -~(rx-  ¢) _>0) 

= P( ( IB) - ITx  > Byl¢). (2.2) 

Proof 

By (1.4) and (1.5), 

VO(x)= ~ {~rjTP(~lTrjoptimal)} 
I<_j<_N 

= ~ ajTrjT. (2.3) 
I<j<N 

This formula holds for continuous distribution since the set of ~ in which the 
dual problem of (1.2) has no unique solution has zero measure in P in this case. 

By the optimality condition of (1.2), 

c~j ~ e(S l ~rj optimal) 

= P ( ~ I s ? ~ ( T x - ¢ )  >_ O) 

= e(s lnT~Zx ~ B71~). 

This proves (2.2). [] 

We now discuss some practical ways to calculate V'~(x). The first approach 
is based on approximating probabilities as in the Boole-Bonferroni approach of 
Pr6kopa [23]. 
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THEOREM 2.2 

In (2.1), we have 

aj = P(~ l Trj optimal) 

2by "X t [(cj_--_ 1)aj 
= l- (aJ---i-)+J L cy+ l 

where 

2(l + cj(cj + 1))bj ] 

G(-~74 iSY J' 

bj 

l < i < t  

Z e(~ji > sji(x),~ji' :> sji'(x)), 
l <_i<i' <_l 

I ±1, 
Laj j 

O<_tj_< 1, 

'Tji = ( s71) d, 

@(x) = (STl)iTx, 

(B)-l)i is the ith row o fBf  I. 

Proof 

Let Aji = Aji(x) = {rlj~l@(x) > r/j~}. Then 

e(¢ I ~F~ rx >_ 8F~)= e(a :  . . . & ) =  1 - e(~: + . . . +  &). 

By the inequality of Dawson and Sankoff ((7) of [23]), 

p(&+...+&)> 2 2 bj, 
- cy +-'----~ aj cy(cj + l ) 

(2.4) 

(2.5) 

(2.6) 
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where 

aj = ~ P(Jj,)= ~ e(~j, > ,,j,(x)), 
1 < i < 1  1 < i < l  

l<_i<i'<_l 

= ~_, P(oj, > sj~(x),oj~ > sji,(x)), 
l < i < i ~ < l  

c;_,_- I:b;I 
Laj J 

Similarly, by the inequality of Sathe et al. ((8) of [23]), 

2 
e(~., + . . . +  ~j,) < a : - 7 b  j. (2.7) 

Combining (2.5)-(2.7), we get the conclusions of this theorem. [] 

We may use (2.4) to approximate V~(x) by assigning tj a value in [0, 1], 
e.g., 0.5. We may also use higher orders of the inclusion-exclusion formula for ay 
(see section 6 for further discussion of this approach). The random variable rlji is 
one-dimensional. If we know the marginal distribution of rlji and the joint distri- 
bution of  71ji and rlji,, where 1 < i < i' < l, then we may calculate aj and bj. In 
general, r/j i and r/ji, are linear combinations of {~h, h = 1 , . . . ,  l}. Suppose that 
~=~-~l<_h<_tflh~h and r l '=~l<_h<_t~h ,  where ~h, h = l , . . . , l ,  are one- 
dimensional random variables, /3h and ~ ,  h = 1 , . . . ,  l, are real numbers. By 
probability theory, 

e(,7) = ~ /~hE(¢h), (2.8) 
l < h < l  

Var(r/) = ~ /~2Var(~,) + 2 ~ /~h/~h'Cov(~h,~/¢), (2.9) 
! < h < l  1 <h<h'<_l  

Coy(n,0')= ~ /3h:hVar(eh)+ ~ /~h~hCOV(eh, e~:). (2.10) 
1 < h < l  1 <h ,h '< l  

h#t¢ 

Therefore, we may calculate the expectations, variances and covariances of rlyi and 
77ji, by the expectations, variances and covariances of {~h, h = 1 , . . . ,  l}. 



20 J.R. Birge, L. Qi/Continuous approximation schemes 

If ~h, h = 1, . . .  ,1, are normally distributed, then rlji and (rlji, rlj¢) in (2.8)- 
(2.10) are also normally distributed and bivariately normally distributed respec- 
tively. Thus, we may calculate aj and bj in theorem 2.2 by some single and double 
integrals. Otherwise, we may use (2.8)-(2.10) to calculate expectations, variances 
and covariances of those random variables rlji and rlji,, and then use the method 
in [7] to approximate the relevant probabilities. 

In fact, with gaussian variables, we may also take advantage of techniques 
designed specifically for these distributions as in Gassmann [17] and Defik [10]. 
Through the transformation, r/j = Bfl~, we obtain: 

a j =  J . . .  Jp(~Tjt, . . . ,~ljt)dBjl. . .d~Tjl,  
'Tst <- ssI(x) '7s/-< ssl(x) 

where the variables have the same definitions as in theorem 2.2. Notice that p(wj) is a 
normal density so that the calculation o fa j  reduces to evaluating the probabilities of 
the sj(x) translation of the lower orthant for the normally distributed vector, ~/j. 

We may also approximate other distributions using Gaussian random 
variables. By fixing the means, variances and covariances of the relevant random 
variables, we can use a gaussian random vector with the same characteristics. 
Any lack of precision may then come from higher order moments. Since it is 
often difficult to determine exact multivariate distributions, the use of normal 
distributions seems especially relevant even if they are not completely justified by 
the practical situation. 

3. Truncation approximations 

By truncation approximations, we mean any approximation of the form: 

(3.1) 

for some E ~ C E for all A C ~1 and where P (E \E  ~) = 6 ". In other words, P~ is the 
restriction of P to E ~ or it results from truncating E\E".  These types of approxima- 
tions have an advantage in that they only depend on that set E ~ which can be found 
in many ways. In each case, however, we not only have the convergence cited above 
but we can also describe the rate of that convergence. We need only suppose the 
following condition on ~b. 

(i) The set D and Vx~b(Tx-  ~) are bounded so that, wherever it is defined, 
[[(o~(Tx - ~))/Oxi[[ <_ A for all i, ~ C E and x E D. 

The result is that the convergence of any subgradient in 0tY ~ to an element of 
0k9 can be bounded. 
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THEOREM 3.1 
Suppose (i) and that pv is generated as in (3.1), then for any 77 ~ ~ 09~(x), 

there exists r/E ag (x )  such that, 

IIr/~- r/ll < 2x/~A6~'. (3.2) 

Proof 

First note that Ilr/~ - 7711 can be written as 

(~/(Jl I ) }2)1/2 
r/i(~)PV(d~) - r/i(~)e(d~ 

where we choose the same r/(~) from Ox~(Tx - ~) for each ~. For this, we observe 
that 

I r / , ( ( )P~(d~)- I r / , (~)P(d~)  = J r / , ( ~ ) ( 1 6 v - ~ ) P ( d ~ ) +  I r/i(~)P(d~) 

< 2A6 ~'. (3.3) 

From (3.3) and the definition, we have JJr/V - r/ll ~ 2x/~A6~- [] 

Theorem 3.1 gives conditions under which distributions of the form in (3.1) 
may converge at a given rate. Other rates may be obtained using results about 
the difference between function values for different distributions as for example in 
Rfmisch and Schultz [26]. The rate can then depend on the some metric between 
the approximating and true measures. In the lower dimensional approximations, 
we again use this to obtain Ib  v - 7711 -< ~v, where cr ~ --o 0. 

The choice of E ~ is the crucial step in these types of approximations. In 
general, we would like fast convergence by having 6 v converging to zero quickly 
but we would also like to have relatively easy computations. The following alterna- 
tives are considered for the truncation method: 

(1) Ball truncation: Let E ~ = (~ J I1~ - (tl -< "I ~) where 7 ~ --o ~ .  This method is 
easy to describe but integrals over the ball may be difficult to evaluate. 

(2) Box truncation: Let E ~ = {~ll~(i) - ((i)1 < -~ ( i )  where 7~(i) ~ oo for all i}. 
The only difference from the ball approximation is that we use boxes of 
possibly varying shapes. Depending on the distribution, these integrals may 
be easier than those in ball truncation. 
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(3) Scaling truncation: Suppose E is bounded. Let E v -  ( =  a ~ ( E -  () where 
o?' ~ 1. In this case, we use the shape of E to determine the form of E ~'. 
This may present an advantage over the previous approaches in that each 
component of ~ is treated similarly relative to E. 

(4) Leve l se t  truncation: We assume that, similar to the scaling truncation, ( i s  dis- 
tributed so that for some E °, P (a (E  ° - ~) + ~) = 1 - 6(a) ,  where 6 ~ 0 as 
a ~ c~. We then let E ~' = a(u)(E ° - ~) + ~for  some sequence of a(u) ~ cxz 
as u ~ oo. These values may for example correspond to choices of u such 
that 6(a(u))  = 1/u. For unimodal continuous distributions with mode (, 
the E ~ correspond to level sets of the density function. This approach may 
be especially useful for gaussian distributions with ellipsoidal level regions. 

(5) Limi ted  basis truncation: In this approach, we suppose that I I ~ =  
{Tri: i = 1 , . . . ,  u} where each 7r i is optimal in the dual of (1.2) for some 
w = Tx  - ~. We then let E~(x) = {~[~b(Tx - ~) = maxi=l,...,vTri(Tx - ~)}, 
i.e., such that the dual of (1.2) is optimized by some 7r E I I  v. Note that this 
approximation also depends on x but that it is finitely convergent in u for 
any fixed x. Many strategies may be used to determine the II v set. By choos- 
ing only 7r with high probability of optimality in (1.2) we may be able to limit 
the u and still produce accurate results. To alleviate the difficulty, we may 
combine this procedure with the integration approximation mentioned in 
section 2 or with the lower dimensional approximations in section 4 below. 
The combined approximations will still converge as given in section 5. 

Each of these procedures has the convergence rate in theorem 3.1. They also 
are continuous and retain the differentiability properties mentioned above. The 
form of the gradient also allows the use of an algorithm that only evaluates the 
probability of individual bases or dual vectors 7ri being optimal in (1.2) and its 
dual. Since probabilities of these convex polyhedral regions may be relatively 
easier to evaluate than the conditional expectations required for function evalua- 
tions, these procedures are especially attractive. 

4. Lower dimensional approximation 

In addition to the methods considered above that use full dimensional but 
hopefully simpler integration, we may also approximate the distributions using 
lower dimensional distributions that still retain differentiability properties and 
avoid higher dimensional integrals. These procedures are generalizations of dis- 
crete point approximations and, as we show below, obtain improved convergence 
rates over discrete approximations. 

We may begin by replacing ~ by H~'r/~, where H ~ E R N× u,, or, in other 
words, we may let P" be: 

P~'(A) = Q~'{rl~'lH"rl ~" E A ) ,  (4.1) 
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where Q" is a probability measure on r/v. In some examples, H v might be a single 
vector ~ so that r/~ approximates ~ using a distribution on the ray through ~ or an 
identity on certain critical components of ~ with other components of ~ expressed 
as linear transformations of the critical components. The choice of H ~' would 
depend on specific problem structure, however. General rules would probably not 
prove too effective. 

Building on this approximation, we can construct generalizations of discrete 
approximations. We may in fact create several lower dimensional H" with different 
probabilities and some translation, i.e.,/-ffrff +/3i would be used in (4.1) and given a 
probability Pi so that (4.1) becomes: 

K(v) 

P~'(A) = ~ p,Q~{rl}'lHyrl~ + ~, • A}, (4.2 / 
i=1  

where Q~ is the probability measure on rff. In this way, we obtain direct generaliza- 
tions from the discrete distributions. 

We obtain convergence of these distributions by allowing the number of lower 
dimensional approximations K(v) or the dimension Nv to increase sutticiently. We 
concentrate on increasing the number of the approximations since increases in the 
dimension N~ lead eventually to integrations as difficult as the original. We establish 
weak convergence of the measure P" to P and, moreover, convergence of moments, 
using Wasserstein metrics. These results build on Rrmisch and Schultz's work in 
[27]. 

In our context, we let ~ t  be the class of Borel probability measures on •t. 
This is further restricted to: 

We then let 

N(Q1, Q2) = {Q • ~2tlQ o Hi -1 = Q1, Q o II~ -1 = Q2}, 

where IIt (~) is projection on the first l coordinates of~ and II2(~) is projection on the 
second l coordinates. For p _> 1 the Lp-Wasserstein metric is defined as: 

L I,~' × W 

I1 1 -~211PQ(d~I, d(E)lQ • N(Q1, Q2)}]  

1/p 

In the following, we will use several results given previously. We use --->w to 
denote weak convergence. 
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THEOREM 4.1 

For ¢gp defined above, (,At'p, Wp) is a metric space. 

Proof 

See Givens and Shortt [18]. [] 

THEOREM 4.2 

If O E ~t'p and a ,  E ~gp (n = 1,. . .) ,  then Wp(a~, Q) ~ 0 as n ~ c~ if and 
only if O, ---r w a and lim~__.oo J'R' II IIPQ.(dz) = fw I[zlfa(d~). 

Proof 

See Rachev [25]. [] 

THEOREM 4.3 

If h : R  t---, R is Lipschitzian on bounded subsets of  R t, then, for all 
P,Q ~ ~p, [~h(x)P(dx)-  ~h(x)O(dx)[ <_ {Mq(e) + Mq(a)}Wp(P,O), where 
(1 /p )+(1 /q)= 1, p > 1, and Mq(P)-~ {fth([[x[l)qe(dx)} l/q, where L h ( r ) =  
SUpx#x',lxll<r,tlx'll<,.{ ( Ih(x) -  h(x ) l ) / l lx -  x II}- 

Proof 

See R6misch and Schultz [27]. [] 

We now construct the lower dimensional approximations to employ the 
results above and obtain convergence results. We make the following assumptions 
relating the distributions of  P and the Q~'. Let II~ = (HVTH~')-lH ~'r be projection 
into the affine space spanned by H ~ and let I I 7  = {~]II~'(~ - ~ i )  = ~ } .  

(i) The distribution P is continuous, P E ./t'p for some p > 1, and P(A) = 
.~ ~.4 p( ~ )d~. 

(ii) The distribution P~ is constructed as in (4.2) such that 

(a) there exists a partition of•  1 into A l tA A 2 U-- .  tA AK(~,), where Ai fq Aj = 0 
for i ¢ j ;  

(b) each Ai is partitioned into disjoint subsets A~ and A/2 such that 
sup~,~,~AlnnTv(~)[[(~- ~'[f  _< e(v) for all i and r/, and J'A~ [[~[fP(d~) _< 
6(v) with e(v) ~ 0 and 6(v) ~ 0 as v ~ o¢; 
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(c) the weights p i=P(Ai )  and Q'[(B)=J'Bq~(r/)dr/ where q~(r/)dr/= 
(1/pi) I~eAlnnr(,)p(~)d~. 

The conditions in (i) and (ii) may appear difficult to satisfy in general. We, 
however, wish to consider distributions that can be constructed as linear transfor- 
mations of independent random variables. 

This is always possible, for example, with multivariate normal distributions. 
Other multivariate distributions may be explicitly constructed this way. 

In this case, if ~ = H%l + H~"( where 77 and ( are independently distributed 
and H ~' spans the null space of H", then 

f 
q~(rl)dr 1 = (1/Pi) [ Pl (rl)PE(f)drld(, 

Ht'~7 + HV'( + fli E Ai 

which is Pl 07)dr/multiplied by the relative probability that H%l + H"'(  + fli E A i 

given 7?. By choosing the Ai= { ~ l ( = H % l + H " ' f + f l i  for some 77 and 
IIH"'( - fill <- 7i}, the relative probability can be calculated easily. In fact, we can 
also just let the fli result from the product of H ~'' and some random ( as a general- 
ization of the empirical measure. 

The next theorem shows that this distribution satisfies the conditions for 
weak convergence and convergence of the p moments. 

T H E O R E M  4.4 

If P and P" satisfy (i) and (ii), then Wp(P, P") <_ e(u) + 6(u). 

Proof 

We will construct a distribution Q E ~ ( P , P " )  that leads to the con- 
clusion. For ~EIR 2t, let ~ l = I I l ( ~ )  and let ~2=IIz(~).  We let A~'= 
{4 E Ait~ - H~IY[(~ - fli) = 0} and Ai(rl) = {~[~ - fli = H~r/}. We then define 

K(,,) 

Q ( ~ I ~ E A ) = Z  I J P(~2)d~2 • 
i=1 

First, we wish to show that Q E ~(P ,  P~). For this, we write p(~)d~ as p'(rl, ~)drld( 
(where p'(r/, () = I[HH'][p(Hrl + H'~)), then 

K(.) 

QoII'(I(A) = Z J 
i=1 

Ai(~) E A 

b,  q,(rl)dO= (4.3) 
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and 

KO') 
Q o II~I(A) = Z J J p(~)d~ = P(A). (4.4) 

i=1  

We next use the assumptions to obtain bounds on the Wasserstein metric. 
We have 

I I1~1 - ~ 2 1 l P a ( d ~ l ,  d~2) 
R2~ 

K0,) 

i=1  
A~(~) =~, ;~ e A 

J 
(2 E Ai f'l II~-"(r/) 

II~: - HynY(~2 - ~ e ) l l P P ( ~ 2 ) d ~ :  

K(~,) 

i = l  &(~) = ~, ;~ ~ A ~2 eA~ nnu(n) 

~ ( ~ ) +  I 116 - Z~i)llP 1 P(~2)d~2 

< 
K(u) 

Z I [e,(pi) + 6(u)(pi)lq~.(fl)dr 1 
i = 1  

= e(u) + 6(u). (4.5) 

This completes the proof. [] 

Using theorems 4.4 and 4.3 plus the Lipschitz continuity of the stochastic 
programming recourse function (see Wang [29]), we obtain convergence of 
values. With theorems 4.4 and 4.2, we also see that weak convergence is established 
and hence convergence of subdifferentials as in [3, theorem 3.1]. Moreover, depend- 
ing on the properties of the distributions, we also obtain Lipschitz continuity of 
directional derivatives and hence convergence rates for gradient convergence as in 
theorem 3.1 for truncation approximations. As mentioned above, the advantage 
of this approximation concerns the maintenance of differentiability and improved 
convergence over discrete approximations. If we, for example, suppose the strong 
convexity conditions used in R6misch and Schultz [27], then we can use the 
random generation of/3/in the null space of some matrix H such that r/is indepen- 
dent of ff as above to obtain an expected Hausdorff distance between minimizers 
with P and P~' that is O(n -1/(2x)) where K = Nullity(H) instead of / as with the 
discrete empirical measure. 
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To realize the differentiability result, we suppose the simplest case of a single 
H ~' and generation of 3i in the null space of H ~. In this case, we have the following 
result. 

THEOREM 4.5 

If P" is generated as in (4.2) and satisfies (i) and (ii) where H ~' = H for all u, 
H E ]~t × r, rank H = r, H3i  = 0 for all i, and no row o f  B f l H  is a zero vector for any 
optimal basis in (1.2), Bj, j = 1 , . . .  ,N ,  then ~"(x) is differentiable for all u and 
x E int(dom ~). 

?roof 

Suppose that kW'(x) is not differentiable for some x E int(dom ~). Then, there 
exists some i , j ,  k such that QT(rllr/~ C) > 0 where C = {rllB-~l(Tx - Hrl - 3i) > O, 
B f l ( T x  - Hrl - 3i) >- 0 for optimal bases Bk and Bj with k ¢ j } .  Since Q7 is a 
continuous distribution, this is only possible if the dimension of this set is r. For 
Bk and B: both to be optimal, for all 77 E C, there must exist some row t such that 
(Bkl) t .  (Tx  - Hrl - 3i) = 0. Since the dimension of C is r, 

dim(r/[(B~-l)t. (Hr/) = ( B ; l  )t. ( Tx  - 3i)) = r. (4.6) 

It follows from (4.6) that (B~-l)t. H = 0, completing the proof. [] 

The result in theorem 4.5 gives a simple way to check whether differentiability 
is maintained. A limited basis approximation can also be applied in conjunction 
with this approach to guarantee differentiability for that approximation without 
requiring that all optimal bases be available. 

We can see further advantages of differentiability by examining the structure 
of the approximate objective function gradient, V ~  ~'. We can write this as: 

V~'(x)= Z ~ piaj(3,)~rlT , (4.7) 
l<_i<_K(v) i<_j<_N 

where aj(3i) = Q~/(rllTrj is optimal in the dual of (1.2) for w = T x -  H~/rl-  3i). 
We write the gradient in this manner to show that it is an expectation of a: 
values taken at different observations, 3i. The true value is the expectation over 
all possible 3i- This observation can allow the use of numerical integration ideas 
in the choice of the 3i. With differentiability established, we may also ask for 
higher order derivatives based now on the properties of the q~' density functions. 
With appropriate distributions, we may then use the Pefino kernel to bound our 
approximation and, in the event of a polynomial density, to guide the choice of 
3i to establish rapid convergence. 
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The lower dimensional approximations can also be combined with the separ- 
able function approaches as in Birge and Wets [6] and Birge and Wallace [5]. These 
approaches create an upper bounding function on ~b that is separable in its compo- 
nents. For example, suppose that ~ can be decomposed into ~/'1 (r/) and ~b2((). The 
separable function approach is to create an upper bounding function q~ such that 
~b(r/) is for example ~--~'~i q~(r/i). Computing gradients of q~ then involves only finding 
the relative probabilities of different intervals of r/i individually. In this way, we 
can quickly calculate c~j(j3i) in (4.7). 

The goal in lower dimensional approximations may then be to find trans- 
formations of independent random variables r /and ( that yield ~ and to choose 77 
so that the recourse function is most nearly separable in its components. This 
ability requires some knowledge about the specific problem but may be possible 
in certain instances. Note that if the recourse function ~b is also separable in 
then we should observe that only a single aj(/3i) needs to be calculated and then 
only updated with the relevant probability Pi. 

5. Combined approximation 

In the last two sections, we discussed approaches to approximate a con- 
tinuous distribution by a simpler continuous distribution. In this section, we 
discuss the approach to approximate a continuous distribution by a combination 
of several simple distributions. The combined approximation is of the form 

pv(d )= VpT(a ), (5.1) 
I<_j<N,, 

where V >- 0, ~ A)' = 1. For brevity of symbols, we use Aj and Pj instead of A~ and 
Pf though they actually depend upon v. By (1.3), (1.5) and (5.1), ~(x) and V~(x)  
are now approximated by 

• V(x)= (5.2) 
I < j < N  v 

and 

V ~ ( x ) =  ~ AjV%(x), (5.3) 
l<_j<_Nu 

where 

• j(x) = J  (7"x - (5.4) 
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and 

V~j(x) = J V¢(Tx - {)Pj(d,~). (5.5) 

Pj should be simple such that the right-hand sides of (5.4) and (5.5) are easy to 
calculate. Depending upon the choices of Pj, we have different variants of 
combined approximations: 

(1) Discrete approximation: Let 

(2) 

1, i f { = {  j, 
Pj(d{)= O, otherwise, 

where ~1,..., ~A,, are points in IR t. Then we have a discrete approximation, 
which has been discussed intensively in the literature of stochastic 
programming. 

Combined box approximation: Let 

{ 1/(2e~) t, i f lg -gJ l  < e~, 
Pj(d~)= O, elsewhere. 

Then 

f 
Vg, j(x) = ] 

, /  

I~-UI<~ 

(3) 

Here, V~b(Tx - ~) only assumes a small number of values of {Tq,..., 7rjv}, yet 
VSj is continuous. 

Combined normal distribution approximation: Let Pj be a multi-variable 
normal distribution such that the expectations, variances and covariances 
of {~t,...,~t} are specified. Then we may use theorem 2.2 to estimate 
Wj(x). 

6. Examples 

In this section, we consider some specific examples and demonstrate how the 
basic procedures can be implemented. The two examples will be a simple two- 
dimensional problem to demonstrate the geometry and a slightly larger problem 
with three random variables that comes from a power planning problem (see 
Louveaux and Smeers [22]). The methods are chosen to be representative and to 
give some idea of the efficiency of the continuous approximations presented 
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above. In each case, we consider the approximation of  the recourse (second-stage) 
problem. 

The first example has the following form: 

min 5y~ +101Y21 +10lY31 / 
~b(w) = s.t. Yl +Y2 = ~I - Xl, 

Yl +Y3 = ~2 -- x2, 

Yl > O, 

(6.I) 

where - w  = ~ - Tx, T = (1, 1) T. In the computational  tests below, we assume that 
xl = x2 = 0 and the random variables ~i are independently uniformly distributed on 
[-0.5, t.5]. 

The second example is the recourse function described in Louveaux and 
Smeers [22]. The first period variables x correspond to investments made into 
capacity available in the second period. We assume the second period demands in 
all three different sectors are random. (The model in [22] has only one random 
demand.) This example has the following form: 

min 40y I +45y 2 +32y 3 +55y 4 

+24y 5 +27y 6 +19.2y 7 +33y8 

+4y9 +2.5y10 +3.23ql +5.5y12 

s.t. Yl +Y2 +Y3 +Y4 --> ~1, 

Y5 +Y6 +Y7 +Y8 -> ~2, 

~b(w) = Y9 +YlO +Yll +YI2 -> ~3, 

Yl +Y5 +Y9 -< Xl, 

Y2 +Y6 +YlO < x2, 

Y3 +Y7 +Yll < x3, 

Y4 +Y8 +YI2 < x4, 

Yi _>0, i =  1 , . . . , 12 ,  

(6.2) 

where - w  again represents the right-hand side coefficient vector with 

where 0 is a 3 x 4 matrix and I is a four dimensional identity matrix. The xi corres- 
pond to input capacities while the ~i random variables correspond to demands in the 
three operating modes. In the computational  tests below, we assume that xl = 2, 
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Fig. 1. Simulation errors for example 6.1. 

x2 = 5, x3 = 5, x4 = 6, and the random variables ~i are independently uniformly 
distributed on [3, 7] for i = 1, on [2, 6] for i = 2, and on [1,5] for i = 3. For i = 4, 
5, 6, 7, we can interpret ~, as having zero values with probability one. 

We will compare the following techniques: 

(i) Sampling distribution; 
(ii) Refinements of Jensen and Edmundson-Madansky bounds; 
(iii) Boole-Bonferroni probability approximation; 
(iv) Box truncation; 
(v) Limited basis truncation; 
(vi) Lower-dimensional approximation. 

In each example, for an approximation represented by ~ ,  we consider the 
gradient error, [[VkTJ ~ ' -  V ll. This gradient error was used as a metric because 
our main goal in this exercise is in evaluating gradient-based methods. 

(i) Sampling distribution: Here we sample the random vector. In our tests, since we 
had low dimensions, we used a low discrepancy quasi-random sequence to 
choose the samples. We followed the Hammersley sequence (see Fox [14], 
De~k [11]) which has been shown to produce small errors in low dimensions. 

The errors from using the quasi-random sample appear in figure 1 for exam- 
ple 6.1 and in figure 2 for example 6.2 as functions of the number of observations. 
Figure 2 also includes the error function from using a lower-dimensional sample 
described below. Note that the errors fluctuate, indicating some difficulty in provid- 
ing coverage with a sampling procedure. An error of 0.01 is approximately one 
percent of llV ll in example 6.1. An error of 0.1 is approximately one percent of 
11 7 11 in example 6.2. Note that this level of accuracy is achieved in about 1000 
iterations for the example 6.2 although the lower dimensional example 6.1 requires 
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Fig. 2. Simulation errors using full and lower dimension for example 6.2. 

more than 2000 iterations to achieve a similar percentage error. The difference is 
attributable to higher overall variance in the sample gradients in example 6.1. 

(ii) Refinements of Jensen and Edmundson-Madansky bounds: These bounds 
result from extremal measures in the space of measures satisfying the same 
first moment condition as the true distribution (see [6]). We consider the 
refinements suggested in Frauendorfer and Kall [16] to observe their con- 
vergence to the optimal objective value and their effectiveness in predicting 
the gradient values. These bounds will be taken as examples of bounds 
using discrete measures although improvements exists (see [8]). 

The gradient errors from the E - M  and Jensen bound approximations appear 
in figure 3 for example 6.1 and figure 4 for example 6.2. Here, iterations refer to the 
number of partitions used for these approximations. The errors in function value in 
each case are less than 0.5% of ~(x) after 40 iterations, but gradient errors may still 
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Fig. 3. Bound errors for example 6.1. 
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Fig. 4. Bound errors for example 6.2. 

remain high. The main reason for this, in terms of the upper bound in particular, is 
that degenerate bases are chosen at extreme points. Their incorporation into the 
bound may always lead to some error. The lower bound estimate does not suffer 
this effect so dramatically (because indeed these estimates converge to true values, 
see [4]), but evaluations at nondifferentiable points still affect the bound. The 
overall observation here is that the bounding approximations are not indicated 
for gradient-based methods although they still appear quite useful in cutting 
plane methods (see, e.g., [1]). 

(iii) Probability approximation: For this approach, we use the Boole-Bonferroni 
method to approximate the probability of a basis's optimality. This approx- 
imation is not useful for the first problem, with only two variables, but 
example 6.2 contains 7 constraints so that evaluating the probability of 
each basis involves evaluating the probability of a region corresponding to 
the intersection of 7 half-spaces. Some preprocessing was required to find 
each optimal basis for the range of possible demand outcomes given. To 
obtain these, we use the following extreme point generation approach. 

Step 1. Solve ~b(Tx- 4) to obtain an optimal basis, BI (also optimal as long as 
(B1)- I (~-  Tx) > 0). Let k = 1, r = 1, i =  1. 

Step 2. If (Bl)-;.1 (~ _ Tx) < 0 for any ~ E =, perform a dual simplex pivot step to 
drop the variable which is basic in row r for B i (maintaining dual feasibil- 
ity). Let the new basis be B*. Otherwise, let r = r + 1, go to step 4. 

Step 3. If B* E {B1, . . . ,  Bk}, let r = r + 1, go to step 4. Otherwise, go to step 5. 

Step 4. If  r < l, then let i = i + 1. If  i < k, let r = 1, go to 2. If  i = k, STOP - all 
optimal bases have been identified. 

Step 5. If {~EEl(B*)r)(~-t-eie-Tx)>0} # 0  for i =  1 , . . . , l  and some e > 0 ,  
then let Bk+l = B*, k = k +  1, r = r +  1, and go to step 4. Otherwise, let 
r = r + 1, and go to step 4. 
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The use of variations of e in each component of ~i is used to ensure that B* is 
feasible with some positive probability (assuming = has full dimension) so that zero 
probability bases are not included. The above procedure identifies all such optimal 
bases for the linear program in (1.2) with - w  = ( -  T x  by ensuring that any 
infeasible component leads an additional iteration with the branch only ending 
when all adjacent dual feasible bases are either infeasible or have already been 
identified. Under degeneracy, several bases B* may be adjacent to a given basis. 
We assume that a lexicographic ordering is used to avoid this difficulty. The 
result is then an unambiguous listing of the bases. 

Given identification of the bases, the Boole-Bonferroni approach calculates 
bounds using the formula in proposition 2.1. In example 6.2, the aj probabilities 
were calculated exactly using tj = 1 for five of the six alternative optimal bases. 
For the other basis, the optimal tj = 0.75. The result for the five bases with tj = 1 
is that it is suffÉcient to calculate c~j only using aj and bj, or there is no probability 
that three regions of the form, r/j i > sji(x), intersect. It appears that performing cal- 
culations with combinations of up to three intersecting rlji > sji(x) regions yields 
good results. In example 6.2, all basis probabilities were calculated exactly using 
three (of a possible seven) terms of the inclusion-exclusion approach, i.e., aj = 
1 - aj + bj - ~-]~l<_i<i,<i"<_tP(~ji > Sji(X),7]ji' > Sji'(X),7~ji" > Sjtq'(X)). 

If tj = 1 was used for all bases, the gradient error was 0.66 or approximately 
5% of IIV ll. For tj = 0.5, some basis probability estimates became negative. In 
general, it has been observed (see [23]) that the bound with tj = 1 (due to 
Dawson and Sankoff) is much sharper than with tj = 0, so that one might generally 
bias toward higher tj values and use tj = 1 in most instances. 

Given the difficulty in choosing tj universally, it appears best to consider the 
values of ~--]~1 <i<i' <i" <l POTji > Sji(X), 7~ji' > Sji'(X), 7~ji" > Sjin(X) ) if this additional 
computation is not difficult and the distributions of the r/j i are known (as in the 
normal case). It appears that relatively small numbers of intersecting regions need 
to be considered to obtain fairly accurate bounds on a basis's probability of 
optimality. This is again consistent with Pr6kopa's observations. 

The remaining difficulty in this probability approximation choice is the iden- 
tification of optimal bases. This number may be too great for easy computation. For 
this reason, we consider methods for reducing the number of optimal bases consid- 
ered. The next approaches do this explicitly. 

(iv) B o x  truncation: We use the box approximation method by considering 
boxes centered at the mean value of each random vector and considering 
progressively larger fractions of the full range of each component of the 
random vector. The gradient errors, []Vqg'-~7~][, for example 6.1 as a 
function of the fraction of range in each component covered appear in 
figure 5. The corresponding errors for example 6.2 appear in figure 6. 
The range is covered symmetrically starting at the mean of each 
component. 
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Fig. 5. Box truncation errors for example 6.1. 

Note that the bounds do not improve until new bases beyond those immedi- 
ately adjacent to the mean point are added. In each case, this improvement only 
begins when half of each component's region is considered. The error then 
improves almost linearly to zero. 

The advantage of box truncation would be in conjunction with a basis prob- 
ability approximation. For smaller regions, fewer bases are required so that less 
computation is necessary. In example 6.1, two bases are optimal for component 
fractions less than 0.5, but all five bases are optimal for fractions above 0.5. In 
example 6.2, four bases are optimal until the fraction covered in each component 
exceeds 0.5. At this point, five bases are optimal until the fraction exceeds 0.75, 
when all six optimal bases are included. The relatively small range of these numbers 
of bases indicates that box truncation may not have significant advantages over 
including all bases. In larger problems, however, the total number of optimal 
bases may make it practically impossible to include all bases. In that case, box 
truncation may offer some advantages. 

(v) Limited basis truncation: We considered the sets of bases identified near the 
mean values as in the box truncation step. For example 6.1, using the two 
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Fig. 6. Box truncation errors for example 6.2. 
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bases optimal at the mean ~ = (0.5, 0.5) T yields the same error, 2.43, as in 
figure 5 for fractions less than 0.5. The only other consistent choice would 
be to include all optimal bases which results in zero error. In this case, limited 
bases do not appear too useful. 

In example 6.2, the error using the optimal basis found at the mean ~is 4.89 or 
more than 40% of IlV ll. The error with the four neighboring bases is 1.09 or about 
10% of IlVq'll. Note that this error is higher than the box truncation errors for any 
coverage fraction. This difference results from the lack of symmetry in including the 
complete region where each of these four bases is optimal. It appears from this 
observation that symmetry makes box truncation more effective than using full 
regions where a basis is optimal. 

(vi) Lower-dimensional approximation: We suppose that the r/vector from section 
4 is one-dimensional so that all computations of Q~(B) only involve single 
integrals. In both examples, 6.1 and 6.2, we used the last random component 
for r/and used the quasi-random sampling procedure to determine the Ai 
areas (implicitly defined as equal probability regions around each point, j3i). 

For example 6.1, the use of this lower dimensional computation led to rapid 
convergence. Gradient errors were 0.78 after ten iterations, but became less than 
0.001 after thirty iterations. This represents a considerable improvement over the 
results in figure 1. Some additional calculation was necessary for the calculation 
of each Q[(B) but this integration simply involved a single parametric linear 
program solution with little additional work (at most two pivot steps) over the 
linear program required for each function evaluation. 

For example 6.2, the results of the lower dimensional approximation appear 
in figure 2 as mentioned earlier. The results here are less conclusive. The lower 
dimensional approximation does have somewhat lower error after 600 iterations 
(by approximately 50% over iterations from 600 to 2500), but improvement is 
not as dramatic as in the smaller example. 

For larger problems, the modest improvements of the lower dimensional 
approach for a single gradient evaluation may still hold. One key to its effectiveness 
is in choosing the most critical component as the r/variable. The other advantage of 
the lower dimensional approximation is that it is possible to maintain differentiability 
and to achieve better algorithm performance based on this attribute. This aspect of 
the approximations is a subject for future study. 

Overall, our computational study indicates that lower dimensional sampling 
distributions, lower bounding and Boole-Bonferroni probability approximations, 
and some form of distribution support truncation may all be useful in providing 
efficient and reasonably accurate gradient estimates for stochastic programming 
algorithms. The results here indicate basic forms for these approximations and 
some characteristics on small problems. Each approach may be preferred in certain 
examples, but these results do indicate that degeneracy issues with upper bounding 
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approximations and symmetry issues with limited basis truncation seem to make 
these methods the least preferred for gradient estimation among the approaches 
given here. 

7. Conclusions 

This paper presented several results on using continuous distribution 
functions in approximations for stochastic programs. The main motivation is in 
providing differentiable approximate value functions that will lead to more stable 
computational implementations. The results are based on abilities to approximate 
probabilities accurately in higher dimensions and on using low dimension integra- 
tion combined with discrete approximation to achieve differentiable but computa- 
ble estimates. Some example results indicate that probability and gradient 
approximations can be accurate with separate low dimensional integrals. Future 
research will investigate these procedures in the context of optimization methods. 
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