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Models and model value in stochastic programming 
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Finding optimal decisions often involves the consideration of certain random or 
unknown parameters. A standard approach is to replace the random parameters by the 
expectations and to solve a deterministic mathematical program. A second approach is 
to consider possible future scenarios and the decision that would be best under each of 
these scenarios. The question then becomes how to choose among these alternatives. 
Both approaches may produce solutions that are far from optimal in the stochastic 
programming model that explicitly includes the random parameters. In this paper, we 
illustrate this advantage of a stochastic program model through two examples that are 
representative of the range of problems considered in stochastic programming. The 
paper focuses on the relative value of the stochastic program solution over a deterministic 
problem solution. 
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1. Introduction 

Practical decisions often involve the consideration of uncertain or stochastic 
parameters. Optimization procedures are increasingly helpful as the size and complexity 
of  tractable problems grow. Ignoring fundamentally random characteristics may, 
however, limit the usefulness of an optimal solution. Stochastic programs that explicitly 
consider randomness may be much more beneficial than deterministic approximations 
for actual operations. 

The expected objective value advantage of using a stochastic solution over a 
deterministic program solution is called the value of  the stochastic solution (VSS). 
This quantity represents the added value of using a stochastic model. The VSS is 
related to the expected value of perfect information (EVPI), which measures the 
potential added value from determining which outcomes might actually occur, but 
VSS and EVPI can be quite different. In the examples below, we illustrate how they 
differ and why VSS may be more relevant than EVPI for modelers who cannot obtain 
further information about the future. 

*The author's work was supported in part by the National Science Foundation under Grant DDM- 
9215921. 
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The value of a stochastic programming model stems from the ability to represent 
solutions that hedge against multiple possible future outcomes. In deterministic 
optimization, in particular, linear programming, optimal solutions tend toward extreme 
point solutions which rely on a limited set of activities (basic variables) and force 
a solution to meet critical constraints tightly. Stochastic program solutions, however, 
allow for broader sets of activities and naturally impose penalties that enable solutions 
to meet critical constraints with some cushion to avoid costly violations. 

These features give stochastic programming solutions a significant practical 
validation advantage over deterministic model solutions. The deterministic result 
with few activities and tight critical constraints is often adjusted or rejected because 
of the practitioners' intuitive feeling that the result is not sufficiently diversified and 
may lead to large penalties when small deviations violate constraints. The stochastic 
program solution's inclusion of diversification and constraint violation penalties gives 
it immediate validity. 

This paper explores the ability of stochastic programs to diversify among 
activities and to weigh constraint violations as they hedge against varying outcomes. 
We consider two simple examples. In each case, a deterministic model cannot provide 
adequate solutions. The VSS becomes quite significant. 

The first example, in section 2, illustrates the VSS through a financial planning 
model concerning a child's higher education. The model includes risk aversion in an 
objective function, multiple period decisions, and linear constraints. The second 
example, in section 3, concerns the design of a part with manufacturing and end-use 
variability. The model includes nonlinear constraints and illustrates the dangers of 
setting constraints that can be violated with small parameter variations. 

These simple examples highlight the practical advantages of stochastic 
programming models over deterministic models. Other stochastic programs may have 
much more complicated structures, but their added values over deterministic models 
remain the core hedging advantages of diversified activities and economically based 
safety margins on critical constraints. Section 4 briefly discusses these advantages in 
other application areas and discusses the additional costs in terms of model development 
and computation that must be weighted against the VSS. 

2. Financial planning and the value of the stochastic solution 

Financial models are natural for illustrating the value of diversification among 
different potential investments. Investors clearly recognize this value, making financial 
decision making one of the largest application areas of stochastic programming. 
Many references can be found in, for example, Golub et al. [11], Mulvey and 
Vladimirou [20], Zenios [27], and Ziemba and Vickson [28]. 

We consider a simple example that illustrates basic stochastic programming 
properties and, in particular, the value of diversification. The random variables reflect 
uncertain investment yields. The role of the stochastic program is to hedge against 
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poor outcomes by maximizing an expected objective function that is concave to 
represent aversion to risk. 

For the current problem, suppose we wish to provide for a child's college 
education Y years from now. We currently have $w to invest in any of K investments. 
After Y years, we will have a wealth of $W that we would like to have exceed the 
tuition goal of $G. We suppose that we can change investments every y years, so we 
have T = Yly investment periods. For our purposes here, we ignore transaction costs 
and taxes on income, although these considerations would be important in practice. 
The model can, in fact, easily incorporate them. 

In formulating the problem, we must first describe our objective in mathematical 
terms. Generally, we can expect that the investor has some aversion to risk and that 
increases in wealth below G are more valuable to the investor than the same increase 
at a wealth above G. The simplest way to incorporate this form of utility into a model 
is to assume a piecewise linear utility function. For this, we suppose that exceeding 
$G after Y years would be equivalent to an income i of the excess while not meeting 
the goal would lead to a cost q of the amount short. This gives us the concave utility 
function in figure 1. Many other forms of nonlinear utility functions are of course 
possible, such as the popular von Neumann-Morgenstern isoelastic utility function 
(see, e.g., Ingersoll [14]). See Kallberg and Ziemba [16] for a description of their 
relevance in financial planning and of the effect of varying utilities on decisions. 

Uti l i ty 

U 

J ' T i  ~ W e i l t h  

Figure 1. Utility function for value of wealth 
above and below goal G. 

Discontinuous utilities, such as a function which is zero for any wealth below 
G and one for values above G, can also be used. This utility function corresponds 
to maximizing the probability of reaching the goal. Constraints on the probability of 
reaching the goal can also be included. The inclusion of these chance constraints (see 
Charnes and Cooper [5]) or probabilistic constraints (see Pr6kopa [23]) depends on 
the investor's preferences. The same type of diversification value would still result 
from these alternative models. 
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The major uncertainty in this model is the return on each investment k within 
each period t. To illustrate the effects of  including alternative returns, we use a simple 
example with K = 2 possible investments types, stocks (1) and government securities 
(bonds) (2). We begin by setting Y at fifteen years and allow investment changes 
every five years so that T = 3. 

From examining the data, suppose we assume that in each five-year period it 
is equally likely to have one of  two outcomes: (inflation adjusted) returns of  1.25 for 
stocks and 1.14 for bonds or 1.06 for stocks and 1.12 for bonds. With three periods, 
the result is a tree with eight branches or scenario paths, corresponding to the 
possible future scenarios (see figure 2). We first consider the common optimization 
approach to replace these uncertain quantities by their expectations. Now, if we take 
expectations, then stocks have an expected return in each five-year period of  1.155 
and bonds have an expected return of  1.13. 

Figure 2. Tree of possible outcomes for 
high and low stock returns in each period. 

The remaining data are the initial wealth w = 55,000, the target value G = 80,000, 
the surplus reward i = 1, and the shortage penalty q = 4. The deterministic mean 
value problem is to maximize the surplus minus penalty over the three periods. The 
decisions are x(k, t) for investment in k at time t. The resulting linear program is 

m a x  

s.t. x(l, 1) + x(2, 1) 

- 1.155x(1,1) - 1.13x(2,1) + x(1, 2)+x(1, 2) + x(2, 2) 

-1.155x(1, 2) - 1.13x(2, 2) 

1.155x(1, 3) + 1.13x(2, 3) 

x(1,1),x(2,1) 

v - 4 s  

= 55, 

---- 0~ 

+x(1, 3) +x(2, 3) = 0, 

- t ~  + s  = 8 0 ,  

x(1, 2), x(2, 2), x(1, 3), x(2, 3) v s > 0, 

(1) 

which has a solution with x(1,1) = 55, x(1,2) = 63.525, x(1,3) = 73.372, and v = 4.74 
to yield a value of  4.74. This result is, of  course, deceiving because the expected 
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return will not occur. If this solution is followed (to invest all funds in stock) with 
the two-outcome distributiuon we assume, then the result is much different in expectation. 

In this case, we consider each of the eight possible outcomes or scenarios over 
three periods and weigh each by a probability of 0.125. Now, the return on stock is 
1.953 with probability 0.125, 1.65625 with probability 0.375, 1.4045 with probability 
0.375, and 1.191 with probability 0.125. Notice that we need a return of 80/55 = 1.45 
to reach the goal. Investing in stock alone misses this goal with probability 0.5. The 
expected value of the utility is in fact -3.8,  which we call EMV for the expectation 
of  the mean value solution. 

The other common solution approach is to find the optimal decision under 
each of the future scenarios. In figure 2, this policy would correspond to making a 
separate decision for each of the eight separate paths from the root to the leaves in 
the decision tree. This would be the strategy if we could postpone our decision or 
knew the future with certainty. This perfect information (or, in stochastic programming, 
following Madansky [16], the wait-and-see solution (WS)) is to invest in whatever 
has the highest yield in each period. In this case, we would invest in stocks if stocks 
increase 25% in a five-year period (bonds increase 14%) and we would invest in 
bonds if bonds increase 12% (stocks increase 6%). Thus, with probability 0.135, we 
receive a return of (1.25)3= 1.953, with probability 0.125, we receive a return of 
(1.12) 3 = 1.405, with probability 0.375, we receive a return of 1.12 * (1.25) 2 = 1.75, 
and, with probability 0.375, we receive a return of (1.12) 2 * 1.25 = 1.568. The result 
is that we would have an expected utility of WS = 10.5. It is quite difficult to imagine 
how this analysis can be used, however. The recommendations depend on the realized 
returns which, unfortunately, are not known a priori. 

Now, let us consider a formulation that considers the uncertainty explicitly in 
a single mathematical program. We have two alternative methods for writing the 
formulation in general. They correspond either to taking each outcome in each period 
separately, or to model the scenarios more explicitly. We describe the general forms 
of these formulations, denoting the random return by r(k, t) = r(k, t, co), where co is 
some underlying random element in ft. We can think of f2 as the set of all possible 
outcome paths from the initial period to the end of the horizon. Decisions are associated 
with each path or scenario and denoted by x(k, t) = x(k, t, 09). The final wealth on 
each path is W = W(to). 

A key point about this investment model is that we cannot completely observe 
the path, the random element to, when we make our decisions x(k, t, to). We can only 
observe the returns that have already taken place through the branches up to time t. 
In stochastic programming, we say that we cannot anticipate every possible outcome 
so that our decisions are nonanticipative of future outcomes. Before the first period, 
this restriction corresponds to saying that we must make fixed investments x(k, 1) for 
all paths to ~ ~ .  

After making the initial investment decisions, suppose there are Nl different 
possible outcomes in the first investment period. These outcomes correspond to 
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partitioning the set of  all paths fa into sets ~ ]  ..... fl~, corresponding to these different 
initial outcomes. Decisions for a given value of  o~ must be the same for every ¢.o 
within the set. We can therefore describe our second period decisions just in terms 
of  the f~l that occurs in the first period. We write these decision variables as x(k ,  2, i), 
where i = 1,...,NI. In figure 2, these variables would be x(k,  2, 1) for f~], the set of  
the top four paths, and x(k,  2, 2) for the fl~, the set of  the bottom four paths. 

We can continue this process by splitting each set of  paths at time t -  1 into 
i t distinct sets of  paths that are still combined at time t. Assuming the number of  new 
branches is the same for each t, we can then describe the nonanticipative decisions 
as x(k ,  t + 1, il . . . . .  i t )  , which depends on the outcomes r(t ,  il . . . . .  it). In the following, 
for simplicity, we assume that each set of  outcomes il . . . . .  i t _  1 up to time t -  1 leads 
to Nt outcomes at time t. In all T periods, we would then have N1 • N 2 " "  N r  different 
possible outcomes, corresponding to all the paths in the problem. To illustrate how 
quickly these problems can grow, note that, with just ten outcomes per period, we 
would obtain 10 I° outcomes in 10 periods. 

The probabilities of  each outcome at time t correspond to the sum of the path 
probabilities with a given set of paths. We let the probability of the ith outcome in 
period t given outcomes ij in periodsj  = 1 ..... t - 1 be p(t, i l , . . . , i t ) .  Note that we must 

Nt have Y'i=l p(t ,  il ..... i t-l ,  i) = 1 for all t and il ..... it-1. 
We can then state a general formulation for our problem. We wish to find 

max z = ~ p ( T ,  il . . . . .  i r ) ( i v ( i l  . . . . .  i t )  - q s ( i l  . . . . .  i t ) )  
il ,., .,iT 

K 

s.t. ~_~ x (k ,  11 = w, 
k = l  

K 

~_~ r(k ,  t, i I . . . . .  i t-1 )x (k ,  t - 1, i I . . . . .  i t -2  ) 
k = l  

K 

- £ x ( k , t , i  1 . . . . .  i t _ l )  = O, 
k = l  

K 

r(k,  T, il . . . . .  i r  ) x (k ,  T, il . . . . .  i t -  ! ) 
k = l  

- v(il  . . . . .  ir  ) + s(il . . . . .  ir  ) = G,  

x ( k , t ,  il . . . . .  i t_ 1 ) >_ 0, 

v( i l  . . . . .  i r  ) >_ 0, 

s(il  . . . . .  i r  ) >__ 0, 

(2) 

for all (il .... , i,_ I ), 

t = 2  . . . . .  T; 

for all 1 < it < N t ;  

I < k < K ;  

l < t < T ,  
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where v(il . . . . .  it) represents any amount  above the goal and s(it . . . . .  iT) represents 
any shortfall from the target value G. 

With the data given above, each period has two new alternative outcomes,  so 
Nr = 2 for t = 1, 2, 3. Each p(il, i2, i3) is 0.125. The resulting specification of  (2) is 

s.t. 

2 2 2 

m a x z =  ~ ~ E0.125(1~(ii,i2,i3) -4s ( i l ,  i2,i3) ) 
il=l i2=i i3=1 

x(1, 1) + x(2,1) 

1.25x(1,1) - 1.14x(1,2) + x(1,2,1) + x(2, 2, 1) 

1.06x(1,1) - 1.12x(1,2) + x(1,2,2) + x(2,2,2)  D 

D 

= 55, 

= 0, 

= 0, 

1.25x(1,2 ,1)- l .14x(2,2 ,1)+x(1,3 ,1 ,1)+x(2,3 ,1 ,1)  = 0, 

1.06x(1,2 ,1)- l .12x(2,2 ,1)+x(1,3 ,1 ,2)+x(2,3 ,1 ,2)  = O, 

1 .25x(1 ,2 ,2 ) -  1.14x(2,2,2)+x(1,3,2,1)+x(2,3,2,1) = O, 

1 .06x(1,2 ,2)- l .12x(2,2 ,2)+x(1,3 ,1 ,2)+x(2,3 ,1 ,2)  = O, 

1.25x(1 ,3 ,1 ,1)+  1.14x(2,3 ,1 ,1)-v(1,1 ,1)+s(1,1 ,1)  = 8 0 ,  (3) 

1.06x(1,3, 1, 1) + 1.12x(2,3, 1, 1) - v(1, 1,2) + s(1, 1,2) =80 ,  

1.25x(1,3,1,2)+ l .14x(2 ,3 ,1 ,2) -v(1 ,2 ,1)+s(1 ,2 ,1)  =80 ,  

1.06x(1,3,1,1) + 1.12x(2,3, 1,2) - ~(1,2,2) + s(1,2,2)  =80 ,  

1.25x(1,3,2, 1) + 1.14x(2,3,2 ,1)-v(2,1 ,1)+s(2,1,1)  =80 ,  

1.06x(1,3,2,1)+ l .12x(2 ,3 ,2 ,1)-v(2 ,1 ,2)+s(2 ,1 ,2)  =80 ,  

1.25x(1,3,2,2) + 1.14x(2,3,2,2) - 0(2,2, 1) + s(2,2, 1) = 80, 

1.06x(1,3,2,2) + 1.12x(2,3,2,2) - v(2,2,2) + s(2,2,2)  = 80, 

x(k, t, ii . . . . .  i t - l )  > O, V(i l ,  i 2, i3) > 0, S ( i l ,  i 2, i3) >- 0,  

for all k, t, il, i2, i3. 

Another  formulation approach to multistage problems is to consider decisions 
as dependent  on each complete path or scenario co. We must  still maintain non- 
anticipativity, but this t ime we do so explicitly in the formulation via constraints. 
This corresponds to splitting the tree from figure 2 into the form in figure 3. In that 
case, all the paths are separate but are grouped together in every period where paths 
have the same history. The result is an alternative formation: 

m ~ z  = p(09) (iv(co) - qs(to)) 
to 

K 
s.t. ~_, x(k, 1, co) = w,  V¢O E f~; 

k=l  
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Period 

2 3 

o 
0 

Figure 3. Separate paths with linking nonanticipativity constraints. 

K K 
~ r(k,t, og)x (k , t - l ,  og) - ~ x(k,t ,  og) 
k=l  k=l  

K 
~.~ r(k, T, og)x(k, T, 09) 
k= l  

- v ( o g )  + s (og)  

x(k,t ,  og) 

= 0, Vo9 ~ f~; 

t =  2, . . . ,T;  

= G; 

(4) 

= 0 ,  V I < k < K ;  

V1 < t < T; Vo9 E f~; 

x(k, t, 09) > O, v(og) > O, s(og) > 0; 

V1 < k < K; V1 < t < T; Vo9 E ~ ;  

where 1(o9, t) = [ i l  . . . . .  it-l } such that o9 ~ ~ ,  ..... i,_t. Note that the last equality constraint 
indeed forces all decisions within the same group at t ime t to be the same. We use 
the form above because it represents a projection constraint that is both computationally 
useful (see, e.g. [20]) and allows simple representation of optimality conditions (see 
Dempster  [8]). Formulation (4) has a special advantage for the problem here because 
these nonanticipativity constraints are the only constraints linking the separate scenarios. 
Without them, the problem would decompose into a separate problem for each co, 
maintaining the structure of that problem. 

In modeling terms, the nonanticipativity constraint makes it relatively easy to 
move from a deterministic model to a stochastic model of the same problem. The 
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addition of the scenario indicators and nonanticipativity constraints are the only 
additions to a deterministic model. Given the ease of this modeling effort, standard 
optimization procedures can be simply applied to this problem. However, as we noted 
above, the number of scenarios can become extremely large. The model in (4) also 
has more constraints than (2) to compensate for a loosening of the restrictions among 
scenarios with similar pasts. Standard methods may not be able to solve the problem 
in any reasonable fashion, necessitating other techniques. 

In this financial problem, it is particularly worthwhile to try to exploit the 
underlying structure of the problem without the nonanticipativity constraints. This 
relaxed problem may be solved as a generalized network that allows the use of 
efficient network techniques (see Mulvey and Vladimirou [20]). 

With either formulation (2) or (4), in completing the model, some decisions 
must be made about the possible set of  outcomes or scenarios and the coarseness of 
the period structure, i.e. the number of periods T allowed for investment. We must 
also find probabilities to attach to outcomes within each of these periods. These 
probabilities are often approximations (see Birge and Wets [4] and Kall et al. [15]). 
A key observation is that the important step is to include stochastic elements at least 
approximately in order to obtain any form of a hedging policy. Deterministic solutions 
most often give misleading results, as illustrated with the example here. 

Solving (3) yields an optimal expected utility value of -1.52. We will call this 
value RP for the expected recourse problem solution value. The optimal solution (in 
thousands of dollars) appears in table 1. We have labeled the scenario paths in 
figure 2 from 1 to 8 (top to bottom). 

Table 1 

Optimal solution with a 3-period stochastic program. 

Period, Scenario(s) Stocks Bonds 

1, 1-8 41.5 13.5 
2, 1-4 65.1 2.17 
2, 5-8 36.7 22.4 
3, 1,2 83.8 0.0 
3, 3,4 0.0 71.4 
3, 5,6 0.0 71.4 
3, 7, 8 64.0 0.0 

Scenario Above G (v) Below G (s) 

1 24.8 0.0 
2 8.87 0.0 
3 1.42 0.0 
4 0.0 0.0 
5 1.42 0.0 
6 0.0 0.0 
7 0.0 0.0 
8 0.0 12.2 
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In this solution, the initial investment is heavily in stocks ($41,500), with only 
$13,500 in government securities. Notice the reaction to fh'st-period outcomes, however. 
In the case of scenarios 1-4 ,  stocks are even more prominent, while scenarios 5 - 8  
reflect a more conservative bond portfolio. In the last period, notice how the investments 
are either completely in stocks or completely in bonds. This is a general trait of one- 
period decisions. The optimization leads to an extreme point in which only one type 
of investment is made. The main advantage of the multiperiod stochastic formulation 
is indeed to enable a hedging solution involving multiple investment types. 

The solution in table 1 shows only stock investment in scenarios 1,2 because 
there is no risk of missing the target. In scenarios 3-6 ,  stock investments may cause 
one to miss the target, so they are avoided. In scenarios 7, 8, the only .hope of 
reaching the target is through stocks. The stock investment is not, therefore, a monotonic 
function of wealth. A general observation is that any monotonic decision rule based 
on the current state is suboptimal. 

We compare the results of table 1 to the deterministic model, where all investments 
would be in stock in each period because of its high expected return. If this policy 
is followed in each period, we would realize an expected utility of EMV =-3 .84 ,  
while the stochastic program value RP = - 1.52. The difference between these quantities 
is the value o f  the stochastic solution (introduced in Birge [1]), 

VSS = RP - EMV = - 1.52 - (-3.84) = 2.32. (5) 

Another comparison is in terms of the probability of reaching the goal, which 
might be an alternative objective. Notice that the stochastic program solution reaches 
the goal 87.5% of the time, while the mean value solution reaches the goal only 50% 
of the time. In this case, the value of the stochastic solution is even more significant. 

Some distinction should be made between the value of the stochastic solution 
and the expected value of  perfect information, which compares the recourse problem 
value (or maximum expected utility RP) to the expectation of scenario solution 
values that would be obtained if the future was known perfectly (WS). Here, the 
expected value of perfect information is 

EVPI= W S - R P  = 10 .5-  ( - 1 . 5 2 ) =  12.0. 

In this case, EVP1 > VSS, but in many cases (see Birge [I]), we may have VSS > EVPL 
In fact, since WS > RP > EMV, VSS and EVPI are only assured of being the same 
when WS = EMV. Either could be zero, while the other is positive. 

Another option in practice is to formulate a simpler model by limiting the 
horizon. This may seem quite reasonable since indeed we are only interested now in 
the first-period decision. Consider then a two-period, 10-year model. In this case, we 
need to determine conditions on the end of the horizon to make our shorter time 
horizon model reflect the original model as closely as possible. This is the problem 
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Table 2 

Optimal solution with a 2-period, 10-year stochastic program. 

Period, Scenario(s) Stocks Govt secs 

1, 1-4 9.8 45.2 
2, 1,2 0.0 63.8 
2, 3,4 17.1 44.0 

Scenario Above G Below G 

1 1.28 0.0 
2 0.0 0.0 
3 0.0 0.0 
4 0.0 4.12 

of mitigating end effects (see Grinold [12]). It seems reasonable here to choose a 
target value that will ensure our achieving the original $80,000 target value at year 
15. We therefore make our 10-year target equal to $71,400. Solving this two-period, 
10-year problem with all other data as in the original three-period model, we obtain 
the optimal solution in table 2. 

Notice how different the 10-year solution is from the 15-year solution. We now 
predominantly invest in bonds in the first period because we have not fully considered 
the chances of later recovering from initial poor stock investments. In this case, in 
five years, with probability one half, we have $63,800 and, with probability one half, 
we have $61,100. Again, we may solve the model with two five-year periods and 
from these wealth levels. The result is an expected utility of 1.87 in the first case 
and -5 .77 in the second case. The overall expected utility is -3.9.  This expected 
utility is quite close to that obtained by the completely deterministic model. It demonstrates 
the importance of the horizon. 

In general, the middle period in the first stochastic programming model in (3) 
is useful because it allows for a type of steady state or turnpike policy (see Birge 
and Dempster [3]) while the first and last periods have start-up or shut-down 
characteristics. A general result is that for stochastic programs over a long horizon, 
much of the solution in middle periods is relatively independent of the beginning and 
ending boundary conditions. This part of the solution is like a turnpike that would 
be followed in going between major cities. The beginning and ending period solutions 
give directions from the origin to the turnpike and from the turnpike to the destination, 
but the turnpike directions remain unchanged for most changes in origin or destination. 
To allow for this type of turnpike behavior, it is often necessary to have at least a 
three-period model. Two-period solutions as in table 2 tend to reflect starting or 
ending behavior that may be far from optimal. 

In closing this section, note that the mathematical form of (2) or (4) actually 
represents a broad class of control problems. In fact, it is basically equivalent to any 
control problem governed by a linear system of differential or difference equations. 
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We have merely taken a discrete time approach to this problem. The approach can 
be applied to the control of a wide variety of electrical, mechanical, chemical, and 
economic systems. We merely redefine state variables (now, wealth) in each time 
period and the controls (investment levels). The random gain or loss is reflected in 
the return coefficients. Typically, these types of control problems would have nonlinear 
(e.g. quadratic) costs associated with the control in each time period. This presents 
no complication for our purposes, so we may include any of these problems as 
potential applications. 

In the current problem, we have a limited set of possible outcomes in each 
period. In practical problems, we could not expect such a small finite set of realizations. 
One of the main steps in stochastic program modeling is how to select such sets of 
scenarios and how to compare their use with what may actually happen. One goal 
is to create approximations with a small number of realizations that bound the 
expected objective value from above and below (see Birge and Wets [4]). Another 
goal may be to obtain asymptotic convergences through sampling (see Dantzig and 
Glynn [7], Ermoliev [9], and Higle and Sen [13]). 

In this financial model, we used a piecewise linear utility function to obtain 
a linear program. This form allows very large-scale computations (see Wets [26]) and 
can lead to great efficiencies over standard linear programming techniques (see 
Birge [2] and Gassmann [10]). Linear programming structure is not, however, necessary 
in stochastic programs. Large-scale nonlinear stochastic programming problems (see 
Nielsen and Zenios [21]) can now be solved quite efficiently. The next section gives 
one example of the range of nonlinear models in stochastic programming. 

3. Design for manufacturing quality 

This section illustrates a common engineering design problem that we model 
as a stochastic program. The problem demonstrates nonlinear functions in stochastic 
programming and provides further evidence of the importance of the stochastic 
solution. The key advantage of the model in this situation is that the stochastic 
program does not force an extremal solution that may have significant consequences 
due to minor variations that violate important constraints. 

Consider a designer deciding various product specifications to achieve some 
measure of product cost and performance. The specifications do not, however, completely 
determine the characteristics of each manufactured product. Key characteristics of 
the product are often random. For example, every item includes variations due to 
machining or other processing. Each consumer also does not use the product in the 
same way. Cost and performance characteristics thus become random variables. 

Deterministic methods may yield costly results that are only discovered after 
production has begun. From this experience, designing for quality and consideration 
of variable outcomes has become an increasingly important aspect of modern 
manufacturing (see, for example, Taguchi et al. [25]). In this development, the methods 
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of Taguchi have been widely used (see also Taguchi [24]). These approaches can, in 
fact, be seen as examples of stochastic programming, although they are not often 
described this way. 

In this section, we give a small example of the uses of stochastic programming 
in manufacturing design and show how the general stochastic programming approach 
can be applied. We base our analysis on actual performance measures (or predictions), 
whereas the Taguchi methods generally attach surrogate penalties to deviations from 
nominal parameter values. The important characteristic in both approaches, however, 
is that they lead to designs that protect against violating critical constraints with small 
variations. 

We consider the design of a simple axle assembly for a bicycle cart. The axle 
has the general appearance shown in figure 4. 

P 
d 

[ ...... T 

Figure 4. An axle of length l, diameter d, 
with a central load P. 

The designer must determine the specified length I and diameter d of the axle. 
We use inches to measure these quantities and assume that other dimensions are 
fixed. Together, these quantities determine the performance characteristics of the 
product. The goal is to determine a combination that will give the greatest expected 
profit. 

The initial costs are for manufacturing. We assume a single process with no 
alternative technologies although, in practice, several processes might be available. 

Due to machining variations, the actual dimensions of a finished product are 
not exactly those that are specified. For our example, we suppose that the length l 
can be produced exactly but that the diameter d is a random variable d(d)  that 
depends on a specified mean value or machine setting d. We assume a triangular 
distribution for d(d)  on [0.9d, 1.1 d-]. This distribution has a density 

{ ~---~ ( d -  0.9d) 

f~(d)  = ~---~-~2 (1 .1d-  d) 

0 

if 0.9d < d < d; 

i f ~  r < d < 1.1d; 

otherwise. 

(6) 
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The decision is then to determine I and d, subject to certain limits l < l max and 
< d max, in order to maximize expected profits. For revenues, we assume that, if the 

product is profitable, we sell as many as we can produce. This amount is fixed by 
labor and equipment regardless of the size of the axle. We therefore only wish to 
determine the maximum selling price that generates enough demand for all production. 
From marketing studies, we determine that this maximum selling price depends on 
the length, and is expressed as 

s(1 - e -°'Ii ), (7) 

where s is a maximum possible for any such product. 
Our production costs for labor and equipment are assumed fixed, so that only 

material cost is variable. This cost is proportional to the mean values of the specified 
dimensions since material is acquired before the actual machining process and producing 
many units leads to low unit material cost variance. For c, the cost of a single axle 
material unit, the total manufacturing cost for an item is then 

In this simplified model, we assume that no quantity discounts apply in the production 
process. 

Other costs are incurred after the product is made due to warranty claims and 
potential future sales losses from product defects. These costs are often called quality 
losses. In stochastic programming terms, these are the recourse costs. Here, the 
product may perform poorly if the axle becomes bent or broken due to excess stress 
of deflection. The stress limit, assuming a steel axle and lO0-pound maximum central 
load, is 

l 
- -  < 39.27. (9) 
d 3 -  

For deflection, we use a maximum 2000 rpm speed to obtain 

l 3 
< 63169. (10) 

d 4 - 

When either of these constraints is violated, the axle generally deforms. The cost of 
violation may vary according to the exposure time beyond the limits and the actual 
load placed on the axle. The main direct cost will be replacement if the axle fails, 
but other costs due to damages (injury insurance claims, for example) and loss of 
future market may push the cost of violation higher. For a single axle, we put these 
costs together into an expected cost for not meeting the stress and deflection constraints. 
We assume the cost is proportional to the square of the violation, written as 

{ d --TI d ---TI 3 } Q(1 ,d ,d )  := min wy 2 s.t. - y < 39.27, - 300y < 63169 , (11) 
Y 
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where y is, therefore, the maximum of stress violation and (to maintain similar units) 
11300 of the deflection violation. 

The cost in (11) is for a single axle with known dimensions. The full expected 
recourse costs, given l and d, is found by integrating over d as 

Q(I, d) = f Q(I, d, d)f~(d)dd, (12) 

d 
which can also be written here as 

l.ld 

Q(l,d) = w f (lOO/d2)min{d -O.9d, l . ld-  d}[max (O,(~T) 
0.9d 

(13) 

Note that, if the cost calculation in (11) and the distribution model for axle diameters 
are correct, then the expected value in (13) is quite close to the actual future unit cost 
for a large number of sales. The risk-neutral approach becomes quite appropriate in 
this case (in contrast to the financial planning model) because the risk or variance 
in the objective becomes quite small with large production quantifies. Other models 
with large numbers of realizations corresponding to individual customers or products 
would also fit this risk-neutral form, while models with single random realizations 
in each period would generally include some form of risk aversion as in financial 
planning objectives. 

The overall problem is to find 

max (total revenue per i t e m -  manufacturing cost per item 

-expec ted  future cost per item). (14) 

Mathematically, we write this as 

maxz(l,d)=s(l-e-°A1) - c ( ~ ) - Q ( l , d )  

s.t. 0<-1<-I max, O - < d < d  max. 

(15) 

In stochastic programming terms, this formulation gives the deterministic 
equivalent problem to the stochastic program for minimizing the current value for 
the design decision plus future reactions to deviations in the axle diameter. Standard 
optimization procedures can be used to solve this problem. Assuming maximum 
values of I max = 35, d max = 1.25, a maximum sales price of $10 (s = 10), a material 
cost of $0.025 per cubic inch (c = 0.025), and a unit penalty w = 1, an optimal 
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solution is found at l* = 33.6, d* = 1.038, and z* = z(l*, 4*) = 8.94. In this solution, 
the stress constraint is only violated when 0 .9d  = 0.934 < d < 0.949 = (//39.27) 1/3. 

We next consider the expected value problem where random variables are 
replaced with their means to obtain a deterministic problem. For this problem, we 
would obtain 

maxzOet( l ,d)=s(1-e-° ' l l )  - C ( ~ - ~  - )  

Imp{0 39 7 I3  41   036}] (16) 

s.t. O < l < l  max, 0 < d < d  max. 

Using the same data as above, an optimal solution to (16) is l mt= 35.0719, d net = 0.963, 
and z net (l pet , d Det ) = 9.07. In this case, the deterministic solution makes the stress 
constraint active. As in any deterministic model, this solution pushes against one of 
the constraints. The result is that any randomness leads to frequent constraint violations 
and warranty or quality costs. 

At first glance, it appears that the deterministic solution obtains a higher unit 
profit than the stochastic problem solution. However, this deterministic problem 
again paints an overly optimistic picture of the actual situation. The deterministic 
objective is (in the case of concave maximization) always an overestimate of the 
actual expected profit. As is often seen in practice, prediction based on mean value 
optimization problems are always biased. In this case, the true expected value of the 
deterministic solution is z(l rot, d Det) = 5.88. This problem then has a value of the 
stochastic solution equal to the difference between the expected value of the stochastic 
solution and the expected value of the deterministic solution of z* - z( l  Det, d pet) = 3.06. 
In other words, solving the stochastic program yields an expected profit increase of 
3.06/5.88 = 52% over solving the deterministic problem. 

This problem is another example of how stochastic programming can be used. 
It has nonlinear functions and a future penalty cost on constraint violation, called 
simple recourse structure. In other problems, decisions may also be taken after the 
observation of the outcome to reduce this penalty. For example, we could inspect and 
then decide whether to sell the product. This often leads to tolerance settings and is 
indeed the focus of much of quality control. 

The general stochastic program provides a framework for uniting design and 
quality control. Many loss functions can be used to measure performance degradation 
to help to improve designs in their initial stages. These functions may include the 
stress performance here, the Taguchi-type of quadratic loss, or methods based on 
reliability characterizations. 

Most traditional approaches assume some form for the distribution as we have 
done here. This situation rarely matches practice, however. Approximations can 



J.R. Birge, Models and model value 17 

nevertheless be used that obtain bounds on the actual solution value so that robust 
decisions may be made without complete distributional information (see, for example, 
[4] and [15]). 

5. Conclusions 

This paper presented a brief discussion of stochastic programming models. We 
began with a simple example in financial planning that illustrated the value of the 
stochastic solution over that of a deterministic model solution. We also showed how 
this quantity is different from the expected value of perfect information and noted 
how the model could take advantage of linear programming methods. 

This first model illustrated the advantage of a stochastic programming solution in 
terms of hedging with investments in two types of securities. Any deterministic approximation 
with only a single outcome in each period can only lead to one security investment. 
Diversification is never optimal. A stochastic programming model is indeed necessary 
to demonstrate the utility of this fundamental aspect of investment planning. 

We then described a problem with highly nonlinear functions as an example 
of using stochastic programming for designing to meet quality goals. In this example, 
we also demonstrated the value of the stochastic solution in protecting against costly 
constraint violations. In contrast to the financial planning model, this model used a 
risk-neutral objective due to anticipated large production quantities. 

These models illustrate the type of advantages possible in stochastic programs. 
They show the typical benefits of stochastic programs in terms of hedging and safety 
against constraint violations. The models each have a form of action before observation, 
observation, new action and, perhaps, repetition. This characteristic sequence fits 
most stochastic programming models. 

While the advantages in stochastic programming are often quite clear, constructing 
stochastic programs usually requires information that has not been routinely gathered. 
Distributions and basic parameter values might not be known. Approximations deal 
with these difficulties by constructing models that use whatever information is known. 
The goal in these approximations and stochastic programming in general is always to 
use all information that is available and to make decisions as well informed as possible. 

As the other papers in this volume indicate, there are many more examples of 
stochastic programming formulations. We should mention the extensive work in 
energy and power planning (see Dantzig and Glynn [6], Louveaux [ 18], and NoSl and 
Smeers [22]) as just one additional example. Several other references appear in the 
survey by King [17]. Many more applications are open to stochastic programming 
as powerful new solution and modeling techniques become increasingly available. 
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