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LOWER CLOSURE THEOREMS FOR LAGRANGE PROBLEMS OF OPTIMIZATION
WITH DISTRIBUTED AND BOUNDARY CONTROLS*

David E. Cowles

I. INTRODUCTION

In this paper we prove lower closure theorems for multidimensional
problems of optimization with distributed and boundary controls. The concept
of lower closure, introduced by Cesari [1,2,3,4] in connection with his
existence theorems for optimal solutions, has the same role for Lagrange
problems that Tonelli's lower semicontinuity has for free problems.

The present analysis extends Cesari's theory in [3,4], but differs
from it in two respects. First, we use the property Q(p), 0 <p <rtl, of
upper semicontinuity of variable sets in Er+l, which we introduced in a
previous paper (D.E. Cowles [5]), instead of properties (U) (Kuratowski)
and (Q) (Cesari) used in [3,4]. Property Q(p) reduces to property (U) for
p = 0, and to property (Q) for p = r+l, as we proved in [5]. Also, for
every 0 < p < r, property Q(p+l) implies property Q(p) (see our paper [5]).

As in Cesari's analysis, we first prové a closure theorem (§ 2), which

is then used to prove lower closure theorems (gé 3,k).

2. A CLOSURE THEOREM

Let G be a measurable bounded subset of the t-space EV, v>1l, t=

¥Work done in the frame of US-AFOSR Research Project 69-1662. This is
part of the author's Ph.D, thesis at The University of Michigan, 1970.



(t ,...,tv). It is not restrictive to assume that G is a subset of the
interior of the interval [-1,1], or -1 < t* <1l,i=1,...,v. We shall de-
note by -1 and 1 the points (-1,...,-1), (1,...,1) respectively. Analo-

1

1 . .
gously, for a = (a,...,a") and b = (b,...,b") with a’ < b, 1= 1,...,v,

we shall denote by [a,b] the interval [t ¢ B | a <t <b, i=1,...,v].

1
We shall denote by {t), the set of all t = (t oo 8Y) € B with t,...,t

rational,
For every t € G let A(t) be a closed subset of the y-space ES,
y = (y ,...,ys). Let A be the set of all points (t,y) € g’ x E° with
t e G, ye A(t), For every (t,y) € A let U(t,y) be a nonempty subset of
m 1 m v
the u-space E, u = (u,...,u ). Let M be the set of all (t,y,u) ¢ E x
E> x E" with (t,y) € A and u € U(t,y). For any subset F of G let AF’ MF

denote the sets

>
n

{(t,y) | teF, ye A(t)} c A,

{(t,y,u) | t e F, y e A(t), ue U(t,y)} c M

Y

Let f(t,y,u) = (fo’fl""’fQ) be a continuous r+l vector function on

M, and for any point (t,y) € A let Q(t,y) < E © denote the set

Qt,y) = {:z € Er+l l z = f(t,y,u), ue U(t,yi} .

We shall denote below by ¥(t), J(t), t € G, given measurable real

valued functions on G, and by y(t), y. (t), z(t), z (t), u (t), t € G,

k k k

k =1,2,..., gilven measurable vector functions on G as follows:



y(8) = e,y 7 () = (yi , ,yi )s
2(t) = (2,.,2), 2 (8) = (2 .., ),
1 (8) = (el ),
for t € G and k = 1,2,.... We shall actually set all these functions

\
equal to zero in E - G, and we take

ZO
k
['l,t]

D(t) = [ (t) dt for t ¢ [-1,1], k = 1,2,....

As in our previous paper [4] we denote by Né(to’yo) the set of all
(t,y) € A at a distance <& from (to,y ). For any (to,yo) € Aandd >0
o
we denote by Q(t ,y ; &) the set
o’ o

Qt ,y_38) = U At,¥)e
o O

(t,y) e Ns(to,yo)

Finally, if p if any integer, o <p < r+l, we say that the subsets

+1
Q(t,y) of E have property Q(p) at a point (to,yo) € A provided for every

zi = zi i = p f}
o yeve




+ . s
¢l co [é(to,y , €) N {é c BF 1| IZl-Z;I
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>
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We say that the sets Q(t,y) have property Q(p) on A if they have this
property at every point (to,yo) € A.

It is suitable to use the notations

i

Né(zo; p) = {} 5 Er+l

|2

i L]
'ZO'SB, 1 = p,ooo,r}o

As in [L4] we shall say that the sets Q(t,y) have the upper set

. o 1 r .
property provided (to,yo) € A, z = (zo, zo,...,zo) € Q(to,yo) implies that
- - 1 + - .
every other point z = (zo, Z s ,zz) e 't with z° > zz, is also a point

of Q(to,yo).

Lemma 2.1 Let G be measurable and assume that for every closed subset F of

G the set M is closed. Let £(t,y,u) = (fo,fl,...,fr), (t,y,u) € M, be a

1 s
continuous (r+l)-vector function on M, and let y(t) = (y ,...,¥y ), t € G,

be a measurable s-vector valued function on G with y(t) € A(t) a.e. on G.

Then, for every measurable (r+l)-vector function E(t) = (EO,...,ET), t e G,

with E(t) € Q(t,y(t)) a.e. on G, there exists a measurable m-vector function

u(t) = (u,...,u"), t € G, with u(t) € U (,y(t)) and E(t) = £(t,y(t), u(t))



This lemma is a well known consequence of a McShane-Warfield theorem

[7] and the proof, therefore, is omitted.

Theorem 2.1 (a closure theorem). Let G be a bounded and measurable subset
of En, for the sake of simplicity, say G < (-1,1). Let us assume that for
every closed subset F of G the set MF is closed. Let y(t) >0, t € G,

be a given L-integrable function in G such that f£(t,y,u) > - ¥(t) for all
(t,y,u) e M. Let J(t), t € G, be a bounded positive measurable function
satisfying 0 < K-:L < J(t) <K, t € G, for some fixed constant K. Let p be

a given integer, 0 <p <r, let f(t,y,u) = (fo,f 'fr) be continuous on

l,.-

M, and let us assume that the sets Q(t,y) have the upper set property and

property Q(p+l) on A, Let us assume that

v, € (L,(8)7, k= 1,2, (2.1)
yli{ > yi strongly in Ll(G) as k o, 1 = 1,...,s, (2.2)
2 2 e (Ll(G))r+l, ko= 1,2,... (2.3)
z‘lj; > 7 weakly in Ll(G) as k >0, j = 1,...,0, (2.4)
ZIJ; > z'j strongly in Ll(G) as k o, § = ptl,...,r, (2.5)



(t), u (£)).d(t), §=1,...

J
zo(t = T (t
W8 = f (6 (6), u

a.e. in G,

2(t) = (£,(6,7,(8), u (£))% ¥(£))(t), k

a.e. in G,

yk(t> € A(t); uk(t> € U(t)y (t))) k = 1,2,...

k

Let Do(t), t € [-1,1] be a monotone nondecreasing (in each variable)

function of t with D(-1) = 0, and assume that Dk(t) +> Do(t) pointwise as

k +» for every t ¢ {t}R N [-1,1]. Let us assume that there is a de-

composition Do(t) = X(t) + 8(t) of Do(t) into two parts X(t) > 0, 8(t) >0

both defined on [-1,1] with

X(t) = [ 2°(t)at, z°(t) >0 on [-1,1
[-1,t]

2 €L (G), z

1 O(

1

t) = 0on [-1,1] - G, and S(t) a singular function.

Then y(t) € A(t) a.e. in G, and there is a measurable function

u(t), t € G, such that u(t) € U(t,y(t)) a.e. in G, and

2 (t) = (£ (t,5(t), u(t)) + (1)) J(¢)
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a.e. in G.(2.11)



Proof. We shall first introduce suitable notations.

For (t,y)eA, we define the following sets:

%L(t,y) ={zeE T|z=p+ (¥(t),0,...,0) for D e Qt,y))

and

%5§%y)5(2h==plt)fw'peQ“tJJL

We will work with subsets C., N = 1,2,..., of G. For to € Cx and

}\}

(to,yo) € A, define

+ ' +

t = U t
QW, Ch( O)yoye) QW( »¥)
(t,y) ¢ AﬂNe(tO,yo) with t € Cx

and

Q (t e) = U Q (t

0,0 o) o)

t ANN (t itht ¢ C
(8,y) € AON (4 ,y ) with ¢ € O

For any interval [a,b] < E' and any function z(t), t e Ev, we shall

consider the usual differences of order v relative to the 2v vertices of

[a)b];

z = z(b) - z(a) if v=1

’ 1.2 1 2 2 1 1 2
Az = A z = z(b,b) -z(b,a) - z(b,a) +z(a,a)



if v = 2, and so on. Using this notation, we deduce from the pointwise
convergence Dk(t) -+ Do(t) for t € {t}R, that for all intervals I = [a,b]

< [-1,1], having rational coordinates

z2(t) dt + 8D (t) as k .

k

AD =
Ik I

1 v
tt =(t,...,t ) denot int of G, let S =S (t ) denot
Le 5 ( EIRRY O) enote any point of G, let S_ O( o) enote
the distance of to from the boundary of [-1,1], and let q = qh denote any

closed hypercube
+h, j=1,2,...,v]

where EJ is rational, j = 1,2,...,v, h is a positive rational with
0<h< Bo/v and_to € q. By differentiation of multiple integrals and the

definition of a singular function we have

lim b [y (t)at = yl(to), i= 1,2,...,s, (2.12)
h~0 q

1im b7 [z(t)at = 2z (t ), i = 1,...,r, (2.13)

(e}

h+0 q

lim b [22(t)dt = zo(to), (2.14)
h~0 q

lim h''AS = 0 (2.15)
10 9

for almost all to € G,



For’almost all t € G, we have (t,yk(t)) € A for all k = 1,2,.... The
convergencés yk(t) + y(t) in (Ll(G))s and zi(t) -> zi(t) in Ll(G)’
i=p +1,...,r, as k > o, imply convergence in measure on G, and hence
there is a subsequence [yk (t)1, [zi (t)] which converges pointwise almost

D D
everywhere in G as p *», 1 =p + 1,...,r. For simplicity of notations we
denote this subsequence still [k]. Let G be the set of all t € G where
o)

relations (2.12) through (2.15) hold, where (t,yk(t)) € A for all k and

where
. . i i .
lin y, (t) = y(t), Um z (t) = z7(t) i = p+1,..,r.
koo ko
(2.16)
We see that G_ is measurable and IGOI = |G|. Since A(t) is a closed set,

yk(t) + y(t) and yk(t) € A(t) for t ¢ Go’ we have y(t) € A(t) for t ¢ GO,

that is, y(t) € A(t) almost everywhere in G.

Because of the pointwise convergences (2.16) on GO with !GO! = |g|,
we know that there are closed sets Ck’ N=1,2,..., with CX c GO,
-1 i i
C S C 'Cx| > |GO! - N~ such that y(t), yk(t), zk(t), z (t), J(t), and

¥(t) are continuous on C%, i=p+1l,...,r, k =1,2,..., limits (2.16)

take place uniformly on Ck as k + «, and this holds for every A = 1,2,....

(t)

Since G is bounded, each set Cx is compact and hence yk(t),y(t), zi

i . . . . ,
and z (t), i =p + 1,...,r, are equicontinous and uniformly continuous on
each C_.

A

. -1
Let N be any fixed integer, A > |G| 3 hence ICKI >0. Let e >0 be

an arbitrary positive number. There exists some Sé = gé(e,k) > 0 such that



[t-t'] <®' with t,t' € C, implies ly(t) - y(t')]| <€ and ka(t) -V,

(t')| < e for every k = 1,2,.... Also there exists some ko = ko(e,x) such

that k > ko(e,x), teC , implies |y(t) -y

: A
\ (B < Let A, M denote the

sets Ah = ACX = {(t,y)]|t € Ck’ y € A(t)} €A, and N& = Mck = ((t,y,u)]

(t,y,u) e M, t e Cx].

Let Xi(t) and X%(t) be the characteristic functions of the sets CX
and [-1,1] - €, s0 that X (t) + X¥(t) = 1 for t ¢ G. ALl X (t) and Xi(t)zl(t)
are in Ll(G) for i = 1,2,...,p. For every to € CX we have Xx(to) =1 and

Xx(t )z7(t ) =0, i =1,2,...,0. Then for almost all t_ e C, we have

lin b [ X (t)at = lin lan C}\l/lql =1 (2.17)
h~0 o] h>0
, -V i
lim _ h J X*(t) z7(t) dt = 0 (2.18)
A
h+0 q

where i = 1,2,...,p. Let C* be the subset of C) where (2.17) and (2.18)
occur. Let H and H* be the sets H=q N Ci and H* = q¢ -~ H. Then Ci is
o0
measurable, O S C), € G < Gand [C)| = [¢,| >0, [ U ¢l = |a | = |al.
B o A=1 ©

Let 1> 0 and B > O be any positive numbers independent of €. Let to
be any point of C), and set v, = y(to) and M1 = max[!zl(to)l + 1}, where
the maximum is taken over i = O,1,...,p.

Let us fix h so small that 0 <h < e/v, h < 6O/v, h < Sé and also so

small that

10



25t ) - 17 [ 2h6) at] S min (a(e) 1), 1 = 0,10,
q
(2.19)
1 -(al/IED)| < min (a(ee) ™), (2. 20)
In™" f zi(t) X (t) at| = n(r+1)'l, i = 1,2,...,5. (2.21)
q
|h'VAqs| s n(r+1) " (2.22)

A

min (n(r+l)_l, B}, i = p + 1,...,r,
(2.23)

i i
sup  [27(¢) - 27(¢ )]
teq N CX

This is possible because of relations (2.12-18).

For any integer k > 0, let zk(t) be the (r+l)-vector function zk(t)

r

S(),2(8),00,7,(8)), t e G

For t € Hand k >k (e,N\) we have

- s £ mi ! - = -
6=t | = vh S min (e,8,00),  ly(8) - v )1 = [y (8) -7, (8 )]

A
m
+
m
I
N
m

+ v () - y(t )]

and hence (t,yk(t)) € Nﬁe(to’yo) for t € Hand k > ko(e,x).

For all t € H we have, therefore,

zk(t) € QW,J,CK(to’yo’ze)’ k > ko(e,k). (2.24)

The hypothesis of weak convergence of z;(t) to zl(t), as k +» implies

11



that

We can determine an integer k' = k'(to,€,x,nﬁ3), k' 2 kb(e,x), such that for

k > k' we have

sup |zo(t) - z°(4)] S min (n(ra1) B), 1 = p +1,...,r, (2.25)

teH k

|fzi (t) dt - fzi(t) at| s n(r+1)'1|Hl, i = 1,...,p. (2.26)
H H

Now for k 2 k'(to,e,k,Tbﬁ), and i = 1,2,...,p, we have

() - 1H7 [ o (t) at] =
2(8,) = lal™ 1 28 asl + [(lal ™ |57 2%6) as]
q g
17 IR - s e) asl + | fu T EN) at |
H i

sa, td, +d, T4 (2.27)
By (2.19) we have a, = n(r+1)'l, by (2.26) we have 4 s n(r+1)'1, and by
(2.21) we have q, = n(r+l) . Also a, = | 1- lql(lHl)'ll-llql'lfzi(t) dt |

q

-1

s (r+1) MilMln by the definition of Ml’ (2.19) and (2.20). Thus (2.27)

yields for i = 1,2,...,p,

12
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N
e

—~
c+

N—r
o
C'_
A

For 1 =p + 1,...,r, we have

Using (2.25) and (2.23) we have for i = p+l,...,r,

. é zk(t) at| = 2(r+1)’1n

For i = 0, because of assumption (2.7),

nYr 2t) at 2 0 for all k.
H* k
We also have
-v. 0 -y
t) dt = h AD
h é Zk( ) o
and
-V 0 -V
h ' [z(t)dt = h AD.
q q 0

On the other hand, DO = X + S and by (2.22)

A D = n’ax+hn’AS
q o0 q q

13

W(r+1) .

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)



- -1
with |h quSI S (r+l) "m. Also, since Aqu approaches AqDO as k approaches
infinity, q € G having vertices with rational coordinates, and we can

determine k'(to,e,k,q,ﬁ) above sc that for k > k' we have also

|h'VAqu - h'VAqDO| s n(r+1) L (2.3L)

Finally, (2.32), (2.33) and (2.3L4) yield

0
k

™ [z

() at - ™" [22(t) at| = |naD -nVax| s
q a 1k a

lh'VAqu - h'VAqDO{ + lh'VAqsl < o(r+1) . (2.35)

We have

oot g

z (t)dt = d_+d, +d_+4d : (2.36)
I k )

6 7 8

By (2.19) we have d5 z - (r+1)-1, by (2.20) and (2.35) we have d7

z —lt(r+1)_ln, and by (2.31) we have d8 2 0, Also,

L



-1 -1 .0 -1
d, = -|(-[af([B) D) ol ™ f27(t) at] 2 ~(x+1) T,
q
where we have used (2.20), (2.19), and the definition of Ml' Hence,
yields
0 - -
(6 ) - |17 22(8) ab = -6n(ee)
We have also
25 ) - B fzlee) at] s bn(en) 7T
0 H k
i = 1,2,...,0, and
i -1 i -1
z7(¢,) - [H] [27(%) dt| = en(r+1)
i = p+tl,...,r
Equations (2.23) and (2.25) imply that

z, (%)

€ NéB(Z(to); p+1) for t e H

Because of (2.24) and (2.38)

-1
5|

Jz (t) dt € cleo (Q (t_,y ,3¢) NN (z(t ); o + 1)).
Kk v,3;0.° » °

(2.36)

(2.28)

(2.30)

(2.38)

The latter set has the upper set property by statements (3.1), (3.ii) and

(3.1i1) of [4].

From (2.37), (2.28), and (2.30),

15



z(t ) € (elco

o (QIV,J,C)StO,yO,ie) nN

(2t ) 50+ 1)

127

for every n >0, B >0, and € > 0. Since n is an arbitrary positive number

and the set inside the parenthesis is closed,

Z(to) e cleo (Q

v,5,0, (Bor¥or3€) Ml (2(t ) 50+ 1))

for every € > O and every B > C. By statements (2.v) and (2.vi) of [L],

+ .
the set QW’J(t,y) has property Q(p+l) on Ax Therefore, z(to) € QW,J(to’yo>
and
26 )(3( )™ - (¥(t),0,...,0) € Qlt ¥ )
o o/’ 0’Yo
for t_e€C. But [ UC | = |G|. Therefore,
o) N
A=1
-1

- (¥(%),0,...,0) e a(t,y(t))

for almost all t € G. The conclusion of the thecrem now follows from

lemma (2.1).

3., A PRELIMINARY LOWER CLOSURE THEOREM
We shall use the same notations as in § 2, in particular let f(t,y,u)
denote a vector function f(t,y,u) = (fo,fl,...,fr) defined on M. Here we

shall consider the functional

Iyl = J £ (6,5(8), ua(t) ) at.
G

16



Instead of the sets Q(t,y) of § 2, we shall consider here the sets

. r+l
zm = fi(t,y,u), i = 1l,...,r, ue U(t,y)} CE

defined for every (t,y) € A.

Theorem 3.1 (a lower closure theorem). Let G, A(t), A, U(t,y), M, and
MF be defined as in g 2, G measurable, A closed, M? closed for every

f ) be continuous on

closed subset F of G. Let f(t,y,u) = (fo,fl,..., .

M, let p be any integer, 0 < p <r, and let us assume that the sets

Q(t,y) have property Q(p+l) on A. Let ¥(t), J(t), t € G, be measurable

functions real valued on G with O < K-1 < J(t) <K for all t € G and

1 8
some constant K. Let y(t) = (y ,...,ys), yk(t) = (yi,...,yk), z(t)
1 r 1 r 1 m .
= (2 ,000,2 ), zk(t) = (zk,...,zk), uk(t) = (uk,...,uk), t e G, be as in

Theorem (2.1), k = 1,2,..., satisfying (2.1-6) and (2.8-9), and let us

assume that limk%m I [yk,uk] =a < +w. Then y(t) € A(t) ae. on G, and
1

there exists a measurable function u(t) = (u ,...,um), t ¢ G, such that

a(t) € U(t,5(8)), 2'(6) = £,(b,3(8), u(t)) (), L= Luoo,m, ae. on G,

and I [y,u] < 8

Proof First set D (t), t ¢ [-1,1], equal to

k

256 (1) () ¥ 3L0) g

17



and let e be the real number, e = [ J(t)¥(t) dt. We may assume without loss
['l)l]

t) s 8, * e + 1. Then using a diagonal process, we

may extract a subsequence of the original sequence, say still k = 1,2,..., so

of generality that O = Dk(

that Dk<t) converges pointwise to a number Do(t) for each point t e [-1,1]

having all rational coordinates. We have defined Do(t) on the rationals. For

1
a point t = (% ,...,tv) € [-1,1] having at least one irrational coordinate

PR

we define Do(t) = sup DO(E), where sup is taken over all £ = (El . Ev),

i

i .
,1=1,...,v.

with T rational, % <t
Hence, Do(t) is defined on [-1,1]. Also, since the functions

Dk(t), k =1,2,..., are nonnegative, monotone nondecreasing (in each

variable) and equibounded, D.(t) is nonnegative, monotone nondecreasing

ol
and bounded. Since Do(t) is of bounded variation, we may, using the Le-

besgue decomposition theorem, decompose Do(t) as Do(t) = X(t) + 8(t), where

Oy ar, t e [-1,1]

S(t) > 0 is singular and monotone decreasing, and 2°(%) > 0 is L-integrable
in [-1,1] and zero on [-1,1] - G.
We now set up an auxiliary problem to which we will apply theorem 2.1.

In this situation, A(t) and A are defined as above. We define the set ﬁ(t,y) as

0

Tt,p) = ((%0) € B0 2 2(6,3,0), w e U(,y))

for (t,y) € A, and we define the set M as

M= ((t,y,0) | (t,y) ¢ A and T € U(t,y))

0 0
((t,y,u,u) | (t,y) € A and u” 2 £,(t,y,u)

18



for u € U(t,y)J.

~

For any subset F of G, the set M, is defined as the set of (t,y,a) e M

for which t € F. For each closed subset F of G, since fo is continuous

and MF is assumed to be closed, ﬁF is closed.
~ ~ 0
Let £(t,y,u) = (u,f (t)Y)u);-")fr(tJY)u))-

r+1

1

The set Q(t,y) = {z € E | z = }(t,y,u), u e U(t,y)} has the upper

set property, and we have assumed that it also has property Q(p+1) on A.

(t), z(t), z (t), J(t) and ¥(t) be as in the statement

Let y(t), Yy .

and proof of this theorem, with

2 (8) = (3(8), 2(8),ne (1)),
2 (8) = (6 F¥(E) ) a(8) ko= L2,

Let Ek(t) be the control vector for the auxiliary problem defined by

w () = (£,(t,3,(6),u (8)), u (b)), & = 1,2,....

We have D (t), D

. O(t), X(t) and S(t) defined as above.

Relations (2.1-6), (2.8-9) of Theorem (2.1) hold by hypothesis, and
we have just verified (2.7), as well as the pointwise convergence
Dk(t) +> Do(t) as k *« for every t = (tl,...,tv), t e [-1,1], with rational

coordinates. Thus, theorem (2.1) holds in the present situation. Hence,

y(t) € A(t) ae. on G, and there is a measurable function u(t) = (u°,u)
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1
= (uo,u ,...,um), t € G, such that

u® 2 £ (,7)t),u(t)), u(t) € U(t,¥(t)),

2 (t) =

I

-
—

d.
A
]
—

c—*.
~—~
-

o
~—~
d—
~—
S~—
oy
—~~
o+
S~—r

-
H
I
'—l
-
.
H
-

and

[2(t) + w(t)] I(t) ae. on G.

i

z (t)

We set uo(t) = 0 on [-1,1] - G, and then, because of S(1) > 0, we have

) - y(t)a(t))at

I}
D
+
(0]
]
(0]
+
(@3]
—
]
~
~
]
s
]
@]
—
=
~
A
o)

Because fo(t,y(t),u(t)) is a continuous function of three measurable
0
functions, it is measurable. Also, ¥(t) and u (t) are integrable and we

have -y(t) < fo(t,y(t),u(t)) < uo(t), and K < J(t) <Kaeon G Thus,

fo(t,y(t), u(t)) J(t) is integrable on G, and

I[y;u] = f fo(t)Y(t)) u(t)) J(t) at =
G
= [ £ (t,y(t), u(t) J(t) at <[ uw’(t) I(t) at
[-1,1] ° [-1,1]
<a
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Theorem 3.1 is thereby proved.
L. A LOWER CLOSURE THEOREM FOR OPTIMIZATION PROBLEMS WITH DISTRIBUTED AND
AND BOUNDARY CONTROLS

In this section we state and prove a lower closure theorem for optimi-
zation problems with controls, state variables, constraints, and state
equations on both the domain and its boundary.

We shall first introduce a few definitions.

We begin with C. B, Morrey's definition of regular transformations of
class K from his paper [8].

Let T and S be subsets of Euclidean spaces. A transformation
x = x(y) of T onto S is said to be of class K provided it is one to one
and continuous, and the functions x = x(y) and y = y(x) satisfy a uniform
Lipschitz condition on each compact subset of T and S respectively. The
transformation is said to be regular if, in addition, the functions x(y)
and y(x) satisfy a uniform Lipschitz condition on the whole of T and S
respectively.

Let G be a bounded measurable subset of EV, v > 1, whose boundary
will be denoted by 0G.

Let ', j = 1,2,...,N, be subsets of‘BG, each of which is the image

J

under a regular transformation tj of class K of a bounded interval Ré of

Ev-l. Let I' be a closed subset of U?—lrj’ and let p be a measure defined

on U?_lfj. For each j = 1,.. ,N, we assume that if e is a subset of Pj,

-1
measurable with respect to u, then E = tj (e) is measurable with respect

21



to Lebesgue (v-1)-dimensional measure | | on Ré. Also, we assume the
converse, so that measurable sets on Iﬁ and R' correspond under t ,

J J
j=1,2,...,N. We assume that there is a constant K > 1 such that if

tj(E) is p-measurable, then

0]
1}

-1
|

A

K 7|E| = u(e) = K[E| (k.1)

independent of j = 1,...,N, Since p induces a measure on each set Ré
via the transformation tj, j=1,2,...,N, we may define Jj(E), te Ré,

as the functions in Ll(Ré) which satisfy the equations

for every measurable subset E of Ré, Jg=L2,...,N

For every t € cl(G), let A(t) be a nonempty closed subset of y-space

E°. Tet A be the set of all points (t,y) with t € c1(G) and y € A(t).

For every (t,y) € A, let U(t,y) be a nonempty subset of u-space E. Let

M be the set of all (t,y,u) € E' x E° x E° such that (t,y) € A and u ¢

U(t,y).

For every t € I', let B(t) be a nonempty closed subset of ?—space B,

0
Let B be the set of all (t,y) with t € I' and § € B(t). For every (t,g) € B,

!

m

let V(t,?) be a nonempty closed subset of v-space E . Let M be the set
s 1 !

of all (t,9,v) ¢ EY x E° x E* with (%,9) € Band v € V(t,¥).

- Let }(t,y,u) = (f ’fr) be a continuous (r+l)-vector function

o Ty

on M, and let us consider the sets
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Uty) = (2=(2,0.,2) e B |2 2 £ (t,,u),

= (fl)"')fr)(t:y,u); ue U(t,y)) (&3)

~ 0
Let g(t,y,v) = (go,...,gr,)be a continuous (r'+l)-vector function on

ﬁ, and let us consider the sets

(le-’-JZr') = (gl:"°;gr,)(t)§;v)) v € V(t;Y)} (L. k)

We assume that there are two functions y(t), t € G and $(t), t € I', such

that f‘o(t,y,u) 2 -y(t) for all (t,y,u) in M, ¥(t) 2 0, y(t) € Ll(G), and

go(6:¥,7) 2 (t) for a1l (£,3,v) 1n fl, $(t) 2 0, Y(t) € 1 (D).

We consider here the functional

Iy, 5,u,v] = [ £ (6,5(8),u(t)) at + [ g (£,5(t), v(t) au.
G r

- In the lower closure theorem below we shall deal with sequences of

functions all defined on G and I':

1 r 1 r
Z(t) = (Z yeee 2 ); Zk(t) = (Zk)- -;Zk))
1 S 1 s
y(t) = (y seee sy ); yk(t) = (yk:"')yk))
1 m
uk(t) = (uk" -)uk); teG, k=12
o ol or' o) o 1 ol opr!
Z(t) = (Z geeey2 )) Zk(t) = ( K Zk,' )Zk ))
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° o] og! ° ol og!

Y(t> = (y seeesY ), yk(t> = (yk"“’yk ))
1 m'

vk(t) = (Vk" s )s terl, k =1,2,....

Theorem k.1 (a lower closure theorem). Let G be bounded and measurable,

o

A, B, M, Mclosed, f(t,y,u) continuous on M, g(t,y,v) continuous on M, and
assume that for some integers p, p', 0<p <r, o <p' Srr', the sets
E(t,y) have property Q(p+l) on A, and the sets ﬁ(t,;) have property

Qlp '*+1) on B.

Let us assume that there are functions y¥(t) >0, t € G, ¥ ¢ Ll(G) and

¥(t) >0, t e, ye L (), such that f (4,y,u) > - ¥(t) for all

o o

(t,7,u) € M, and g_(t,y,v) > - ¥(¢) for all (t,y,v) € M.

i(t)) yj(t)) yj(t)) i=1,...

Let us assume that the functions zl(t), z, K

j=1,...,8, are in Ll(G), that the functions ui(t) are measurable on

Gy, j = 1,...,m, that fo(t,yk(t), u (t)) e Ll(G), and that

k

‘ N i
7,(8) € A(8), w () € Uty (8), 2h(6) = (6, (), u (£))
a.e. on G, k =1,2,.... (k. 5)
. °1 ol °J °J .
Let us assume that the functions z (t), zk(t), ve(t), yk(t), i

= 1,i.e,r'y, j=1,...,8", are in Ll(F), that the functions vi(t) are

measurable in I', j = 1,...,m', that go(t,yk(t), vk(t)) € Ll (I'), and that

] o4 o

v (t) € B(t), v (t) € V (t,7,(8), 2,(t) = g (t,

. (553, (8),7,(8))

2k



p.-a.e.onl, k = 1,2,.... (4. 6)

Finally, let us assume that as k + » we have

2 (t) > 27(t) weakly in L(6), 1= 1,00, (b.7)
zi(t) -> zi(t) strongly in Ll(G), i=p+Hl,...,r, (4. 8)
yi(t) - yj(t) strongly in Ll(G), j=1,...,s, (4. 9)
2 (t) > 2°(t) weakly in L(0), 1= 10000, (4.10)
Zi(t) > Qi(t) strongly in Ll(F), i=p'+tl,...,r", (4. 11)

§i(t) *3°(t) strongly in L (), § = 1,...,s",

i y + o, .12
-]—'H-]k-bo I [yk’yk’ uk’vk] < ao <to (k. 12)

Then, y(t) € A(t) a.e. on G, v(t) € B(t) p-a.e. on I, and there are

m
measurable functions u(t) = (u,...,u ), t € G, and p~- measurable functions

v(8) = (v5,e. 9" ), b e T, such that £ (,3(8), u(t)) € 1,(6), & (6,5(t),

v(t)) € L, (T'), and such that

1

u(t) e U(t,y(t)), zi(t) fi(t,y(t), u(t)), i =1,...,r, a.e. on G,

°i

v(t) € Vt,y(t)), 21(8) = g (6,7(), v()), 1

i}
=
-

.or'y, u-a e
o
on I, I[y,y,u,v] < a
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Proof: We may write

I(yk’§k’uk’vk) = éfo(t,yk(t),uk(t)) dt +
N - o -~ - - -
Jil fAJ go tj(t)) yk(tj(t))’ vk(tj(t))) Jj(t) dt,

where

by = el tt [rn(r

Jql
- U T k=1,2,....
j j i=l .)], )=

1

We may assume that I[yk,yk,uk,vk] S a * 1. Since fo(t,y,u)
2 -y(t) for all (t,y,u) in M, the integrals of fo on G are uniformly
bounded below by the number f—&(t) dt. Also, because of the fact that
go(t,§,v) 2 J(t) and J(t) £ K, the integrals of g on Aj are uniformly

bounded below by the numbers

Hence, each of the integrals in I(yk,§k,uk,vk) on G and Aj, J=1,2,...,N
is uniformly bounded above and below. We may, assume, therefore without

loss of generality, that

approaches a finite limit aj, j=12,...,N, as k approaches infinity.



We then have

N
lim [ fo(t,y (1), uk(t)) it = a - T a..

kxo G k ° 41

We shall apply lower closure theorem 3.1 on each set Aj C R',
- d

]

j = 1,2,...,N. Here we have B(t) = B(t (t)), t ¢ Aj, which is a

J
] !
nonempty closed subset of y-space E® . Let Bj’ j=12,...,N, be the set

- o

of all (%,y) with t e by and y € B(f). For every (%,y) e B, let V(%,y)

]

be defined as the set V(t,y) V(tj(E),y). Let M, j=1,2,...,N, be

the set

o -

M, = .{(E)Y;V) l <t:§) € Bj and v € V(E:Y)}-

o

Since M is assumed to be closed and Aj is closed, Mj is a closed subset

1 1
of B xE x E

The function E(tj(f), v, v) = (go ...,gr,)(tj(E),y,v) is a continuous
(r'+1l)-vector function on ﬁj' Let §3(5,§) be the set

r'+l -
(z € E | 27 2 g (£.(t),y,v), (2,0..,2

(tj(E);§)V)J for v € V(£)§)} for (5)5) € BjL

- 0

Then, we have ﬁj(E,§) = §(tj(£),§) for (£,y) € By 3= 1,200, Now if

o

(E',y)e Né(f,§)ﬂBj, then (tj(E'),§) is in NK€+€(t,§) B, where K is the

Lipschitz constant of the transformation tj and t = tj(E). Hence, for

- O

each j = 1,2,...,N, and (t,y) e Bj’
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N neleo (R.(,7,6) NN (230" + 1))
e>0 >0 J

is a subset of

n n clco(?(t,(%), §, Ke+e)n Nb(z ;e + 1)),
>0 B>0 ©
We see that, since R(t,y) has property 3(p’+l) on B, the set E(E,§)
has property Q(p'+1) on:Bj, for each j = 1,2,...,N
We have (t,y (t (% B, and v (t (%)) in V(t (%),y (t.(% e
e have (t,y,( j( ))) € , an Vk(j( )) in (’EJ.( ),yk(j( ))), a.e. on
Aj’ Jj=1,2,...,N, and k = 1,2,.... For j=1,...,N, i =1,...,r", and
k=1,2,..., let us take

By virtue of the convergence relations (4.10), (L4.11), and the relation

K-llEl s p(e) = K|E|, e = t (E), we have
J

0<K sJ/(t) £K, a.e. on A,
dJ J
ol ., = °i , = . .
zk(J;t) + 27(j3t) weakly in Ll(Aj), i=1,2,...,0",
ol , = oi . = . .
zk(J;t) + 27 (J3t) strongly 1n11(Aj)’ i=p't,...,r'",

(8,),

j=1,2,...,N, as k approaches », Finally, &(tJ(E)) is in Ll ;
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g <tj<£>,§,v> z _j(t (%)) for all (%,7,v)

in faj, i=1,2,0..,N

Applying lower closure theorem, 3.1 we see that §(t,(£)) e B(t (t)) and
J.

dJ
there are measurable controls VJ(E), t € Aj’ such that Vj(E) e V(t,y(t (£))),
J

;i(tj(%)) = gi(tsl(t)), Vj(E))) and {jgo(t’ y(t), Vj(t))du < aj;

j=1,2,...,N. Setting v(t) = vj(tj (t)) on tj(Aj), we see that there is

a measurable control v(t), t € I', such that ;(t) e B(t), v(t) e V(t,¥y(t)),

ZOi(t) = gi(t,§(t),v(t)) pa.ce. onl,
and
o N
[ g (t,y(t),v(t)) dp s Z a
r ° j:l J

On G itself, we have exactly the situation of the lower closure
theorem with J(t) = 1. Therefore, y(t) € A(t), a.e. on G, and there

exists a measurable control u(t), t € G, with

u(t) e U(t)Y(t))) Zi(t) = fi(t;y(t);u(t))) a.e. on G, i=l,...,r,
N

[ £ (t,y(t),u(t) dt =a - ¥ a,.

G ° 5=

The conclusion of theorem 4.1 follows from the conclusions of this and



the preceding paragraphs.

Remark 1. Suppose that all of the hypotheses of theorem 4.1 hold ex-
cept that I(y,y,u,v) is written as

Iy, y,uv) = [ £ (t,y(t),u(t)) at +
G

[ & (5,9(8),v(t))du + T(x(t),¥(¢))
r

We see that we could have proven the same lower closure theorem for

I(y,7,u,v) provided that N(y,y) < Lim Ny,,¥,) and [ £ (t,y,(t),u (t)) at

k-0 G kook

+ [ go(t,yk(t),vk(t)) du approaches a finite limit as k + c.
r

Remark 2. We mention a variant of theorem 4.1. We may assume that
G and I' are made up of a finite number of components Gl""’Gd and
r

.,['_ and that, in each of these, there is a different system of

g
control equations similar to the ones on G and I' in theorem L. 1.

Also, we mention that the sets Pj throughout this paper are thought of

as subsets of the boundary oG of G because this will be the main application

we have in mind, but actually the sets Fj could be subsets of G instead,

or even abstract sets in no way connected with G.

Examples

The following two examples illustrate the use of the intermediate
properties Q(p), 0 < p < r, used in connection with lower closure theorems

in the present paper. Both examples have been mentioned already in [51.



Example 1. Let us consider the problem of the minimum of the cost

2 2 2 2 2
functional I[x,u_,u.,v] = [[({ +n +x +u  +u_ )dtdy
1’2 a 1 2
with differential equations

XC = Uy, xn = U, a.e. in G,
and boundary conditions
X = v s a.e. on I = oG,

2 2
where G = [({,1)]¢” + 7" < 1], T is the boundary of G, s is the arc

length on I', yx the boundary values of x, and the control functions Uys Ups

v have their values (ul,ug) €U = Eg, ve V= {-1} U {1}, Actually, we want

to minimize I in the class Q of all systems (X,ul,u v) with u U, measurable

2)

in G, v measurable on I'y and x any element of the Sobolev space Wl(G). We

2
shall consider here the sets
~ 2 2 2 2 2 2
Qt,n,x) = [(zo,zl,z )Izo>§ +n X tu. tu o, z1 =u, 2z =u,
- 1 2 1 2
2 I~ 2
(ul’ug) €eE]c EB, Rz:[(zoyz)lzofp; z=v, v=+1l} CE,

We have here r = 2, the sets 3 have property (Q), or Q(3),

in A =4dr x El We have also r' = 1, the sets ? have property Q(1) in

B = I', have property (U), but they are not convex and do not have property
(Q).

In the search of the minimum of I in § we can limit ourselves to those
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2
elements (xo,ul,ug,v) € Q with I < M for some constant M. Here fo =t +1

2 2 0 .
txotu ¥ ug, g, = 0, hence ¥ = 0, ¥ = 0. We take z(t) = (XC’XW), y(t) = x,

2(t) = 7x, y(t) = 0. If [xk] is a minimizing sequence, hence”xkﬂwl < N for
2
some constant N, there is a subsequence, say still [k] for the sake of simpli-

1 . 2
city, such that X, 7 X weakly in W2(G), z, > 2 weakly in (L2(G)) » ¥

strongly in L_(G), gk >z strongly in LQ(F), N

K y strongly in LE(P)' Lower

2

closure theorem (L4.1) may be applied witj b =2, p' = 0.

Example 2. Let us consider the problem of the minimum of the cost

functional

2 2 2 2 2 2
Ity 7] = [ e o S %(1m0))%) ag an + [ (1) as

1 q ¢ r

with differential equations
u, tu =u a.e. in G,
7xC =cos v, 7yx = sinv, s- a.e. on I' = oG,

where G and T' are as in example 1, where yx denotes the boundary values of x,

v have their values (u,,u_ ) € U = E2,

and the control functions ul,ug, 1Y%

veVs= El. We want to minimize I in a class  of systems (x,ul,uz,v) with

ul,u2 measurable in G, v measurable on [', x any element of the Sobolev space

WQ(G) satisfying an inequality [x “2+Hx H2+Hx H2 < M (M a constant large
2 ge’2 TEn2 T2 =

enoﬁgh so that Q is not empty). We shall consider here the sets

32



~ o1 2,0 2 2 2 2 2 2 1
= > o+ + + + -
Ay) = [(z,27,2 )]z > Yy, ey Ty (1-u))", =

n
<

p (1) e F1c P,

=~ . 1 2 o 2 2
R(Y) = [(zo,z ,Z )lzO > (§-1), 2> = cos v, 2 =sinv, ve El]

where y = (yl,yg,yB) in a(y), and ¥ in R(y) are arbitrary. Here we have

r =2, r =2. The sets 6 have property Q(2), but they are not convex, and

~
do not have property (Q), or Q(3). The sets R have property Q(1), but they
are not convex, and do not have property (Q), or Q(3). They all have property

> 2 92 2 2 2 2
. f = + + + + - = - d
Q(0), or (U). Here o TV F Y, F Yz tuy (1 u2) > 8, =(y 1)7, an

we can take ¥ = 0, ¥ = 0. We have here z2(t) =(x,, +x, , x, +x ), y(t) =
g tn” ¢
(x, xg, xn), z(t) = (7x§, 7xn), y(t) = yx. 1If [Xk] is any sequence x, € (x}Q,

2
then there is a subsequence, say still [k], such that x_ -+ x weakly in WE(G>’

k
2
) + y strongly

1 1 2
(zk) > (z)” weakly in LQ(G), (zk + (z)” strongly in LQ(G), y

k

in (L2(G))3, 2.+ z strongly in L2(P), and §k > y strongly in LQ(P). Lower

k

closure theorem (4.1) applies with p = 1 and p' = 0.
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