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In this paper, we present a variant of the primal affine scaling method, which we
call the primal power affine scaling method. This method is defined by choosing a real
r> 0.5, and is similar to the power barrier variant of the primal-dual homotopy methods
considered by den Hertog, Roos and Terlaky and Sheu and Fang. Here, we analyze
the methods for r> 1. The analysis for 0.50 < r <1 is similar, and can be readily
carried out with minor modifications. Under the non-degeneracy assumption, we show
that the method converges for any choice of the step size . To analyze the convergence
without the non-degeneracy assumption, we define a power center of a polytope. We
use the connection of the computation of the power center by Newton’s method and
the steps of the method to generalize the 2/3rd result of Tsuchiya and Muramatsu. We
show that with a constant step size ¢ such that o/(1 — @)% <2/(2r—1) and with a
variable asymptotic step size @, uniformly bounded away from 2/(2r + 1), the primal
sequence converges to the relative interior of the optimal primal face, and the dual
sequence converges to the power center of the optimal dual face. We also present an
accelerated version of the method. We show that the two-step superlinear convergence
rate of the method is 1+ r/(r+ 1), while the three-step convergence rate is 1 +
3r/(r +2). Using the measure of Ostrowski, we note that the three-step method for
r = 4 is more efficient than the two-step quadratically convergent method, which is the
limit of the two-step method as r approaches infinity.

Keywords: Linear programming, affine scaling methods, interior point methods, power
barrier method, power center, merit function, superlinear convergence, three-step
quadratic convergence, efficient acceleration.

Introduction

We consider here the linear programming problem:

minimize c¢x
Ax = b,
x20,
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with its dual
maximize b7y
ATy +5 =0, (2)
s20,

where A is an m X n matrix and b and c are appropriate vectors. We also assume
that

ASSUMPTION 1

The primal linear program has an interior solution.

ASSUMPTION 2

The objective function is not constant on the primal feasible region.

ASSUMPTION 3

The matrix A has rank m.

In this paper, we consider application of the primal affine scaling method for
solving this problem. The primal method was proposed by Dikin [6] in 1967, who
subsequently proved its convergence under the primal non-degeneracy assumption
(Dikin [7]). His proof also appears in Vanderbei and Lagarias [27]. This method was
rediscovered by Barnes [3], who proved its convergence under the non-degeneracy
assumption on both the primal and the dual linear programs. In addition, several
of its variants like the dual (Adler et al. [1]) and the primal-dual (Monteiro et al.
[14]) were generated in the process of implementing the projective transformation
method of Karmarkar [12]. See also Adler and Monteiro [2] for an analysis of the
limiting trajectories generated by these methods.

The convergence behavior of the affine scaling method without the non-
degeneracy assumption is now known. For example, Mascarenhas [13] has recently
produced an example on which the method fails when ¢, the step size to the
boundary in the affine scaling direction, is 0.999. Starting with the work of Tsuchiya
[22], who introduced a local potential function to analyze the convergence of this
method, significant developments have occurred. Dikin [8], using the local potential
function, has shown the convergence of the primal sequence to the interior of the
optimal primal face and the dual sequence to the analytic center of the optimal dual
face for @ <1/2. Tsuchiya and Muramatsu [25] subsequently proved the same
convergence behavior when a<2/3. Simpler proofs of this result have been
developed by Monteiro et al. [15] and Saigal [17]. It is also known that the dual
sequence may not converge when o > 2/3. Hall and Vanderbei [11] have produced
an example where this happens. Saigal [17] and Gonzaga [10] have shown the
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convergence to optimality of the limit of the primal sequence and a cluster point
of the dual sequence for a slightly larger step size of < 2q/(3q — 1), where g is
the number of zero components in the limit of primal sequence. It appears that this
may be the largest step size for which convergence to optimality can be proved.

Using the connection between the steps of Newton’s method for computing
an analytic center of a certain polytope, and the affine scaling method interpreted
on this polytope, Saigal [18] and Tsuchiya and Monteiro [24] have devised a
variable step size selection strategy which produces super-linearly convergent
sequences. This strategy makes the affine scaling method, asymptotically, behave
like a predictor-corrector method. Reference [18] shows that a two-step method,
i.e., one corrector step taken between each pair of predictor steps, attains a con-
vergence rate of 1.5 ([24] shows a rate of 1.3) and a three-step method, i.e., two
corrector steps taken between each pair of predictor steps, converges quadratically.
Using the measure of Ostrowski [16], it can be shown that the three-step method
is more “efficient” than the two-step method.

For each r> 0.5, we will consider in this paper the primal power affine
scaling method based on the following approximating problem:

minimize c¢x

Ax = b, 3

X, (x-x°l<1,

where x° > 0 is a given interior point of the linear program (1). Problem (3) is well
defined for all r > 0. We note here that the sequences may not converge for values
0<r<1/2, and thus these methods are not considered in this paper. When r=1,
the above approximating problem generates the primal affine scaling method, see
for example, Barnes [3]. The method thus generated by choosing r > 0.5 is analogous
to the power barrier method of primal-dual homotopy (barrier) method of den
Hertog et al. [5] and Sheu and Fang [20]. Under the non-degeneracy assumption
on the primal, we prove convergence of primal and dual sequences to respective
optimal solutions for any step size & < 1. To prove convergence under degeneracy,
we introduce the concept of a power center of a polytope. We define two polytopes,
with their power centers defined by maximization of concave functions. These
functions are related to each other in the same manner as “dual norms” are. By
using the connection of iterates of Newton’s method applied to computing a power
center of polytope associated with the primal problem, we prove two results. In the
first result, we consider the case of constant step size, and prove that if the step
size o satisfies a/(1 — @)* <2/(2r-1), the primal sequence converges to the
relative interior of the primal optimal face, and the dual sequence to the power
center of the optimal dual face. In the second result, which gives the same
convergence behavior of sequences as the first, we consider the case of variable step
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size, and implement step size ¢, at iteration k. We choose sequence { ¢} such that
it is, asymptotically, defined by &, /(1 — &) < 2/(2r - 1) with ¢ uniformly bounded
away from 2/(2r + 1), which is 2/3 for r = 1. Our result can thus be considered a
generalization of the 2/3rd result of Tsuchiya and Muramatsu [25]. In both these
cases, the proof is obtained by considering a merit function (which is the objective
function of the center problem related to primal), which plays the same role as the
local potential function used in analysis of affine scaling method [8,22,25].

By exploiting the relationship between Newton and affine scaling iterates, we
present an accelerated version of the method, which generalizes the accelerated
version of Saigal [18]. We prove its convergence, and show that the primal sequence
converges to the relative interior of the optimal primal face, while the dual sequence
converges to the power center of the optimal dual face. In addition, for each r > 1,
we obtain the two-step superlinear convergence rate of 1 + r/(r + 1) and the three-
step rate of 1 + 3r/(r + 2). These rates are 1.5 and 2 when r = 1, and thus generalize
the two-step convergence rate and the three-step quadratic convergence rate of
Saigal [18]. Using the measure of Ostrowski [16], we investigate the efficiency of
each of these methods, and note that for each r > 1, the three-step version is more
efficient than the two-step version. )

Considering convergence and convergence rate results of the methods for
r # 1, we note that they specialize to the corresponding results for the affine scaling
method when the value of one is substituted for r. But analysis for the the affine
scaling method is different, and thus its results are not obtainable as a corollary,
by setting r =1 in results for the power primal affine scaling method. When r is
set to one, the objective function of power center problems must be changed to one
defining an analytic center, and the merit function must be changed to a local
potential function (which is also the objective function of analytic center problem).
However, the power center approaches the analytic center as r approaches 1, even
though the objective function of the power center problem does not approach the
objective function of the analytic center problem. In this sense, the power affine
scaling method is a proper generalization of the classical affine scaling method of
Dikin [6].

In this paper, we restrict our attention to vaiues of r > 1, and note that with
minor modifications in several formulae as well as the objective functions of the
power center problems, our analysis carries over to the values of 0.50<r< 1 as
well. In addition to the introduction, this paper has five other sections. In section 2,
we present the primal power affine scaling method and obtain some properties of
the sequences. In section 3, we prove convergence of the sequences to optimality
with the primal non-degeneracy assumption, and in section 4, using a merit function,
we prove convergence to optimality when the step size is a constant and when the
step size is variable. In section 5, we present the accelerated primal affine scaling
method, prove its convergence and derive its convergence rate. Finally, we end the
paper with concluding remarks in section 6.



R. Saigal, Primal power affine scaling method 379

We now present the notation. Given a vector v, the largest component of v
is denoted by ¢(v), i.e., ¢(v) = max;v; and || v|| represents its 2-norm. e is a vector
of appropriate size with each component equal to 1. Given a matrix A and a subset
N, we represent by

1. vy the subvector of v composed of components indexed in N.

2. Ay the submatrix of A with columns indexed in N.

V represents the diagonal matrix generated by the corresponding components
of v. k is the iteration counter. v*, k=1,2,..., is a sequence of vectors, which is
also denoted by {v*}. K denotes a subsequence and is a subset of the positive
integers. Thus, {v*};cx is the subsequence of {v*} generated by K. {V,} is a
sequence of matrices. If v" is the limit of {v*}, Vs represents the diagonal matrix
generated by v*. Thus, V{ y represents the diagonal matrix generated by vy raised
to the power p.

2. The primal power affine scaling method

We now present the primal power affine scaling method generated when
r>0.5.

Step 0. Let x° be an interior point solution, 0 < @< 1, and let k = 0.
Step 1. Tentative solution to the dual:

k — (AX%’AT)_IAX,%"C.

Step 2. Tentative dual slack:
sk =c— ATy*,

If s*< 0 then STOP. The solution is unbounded.

“XZrlk” '
6k=mm W.Sj >0
J

J

Step 3. Min-ratio test:

I xz ! "ll

where ¢(t) = max;;. If 6, =1, set a=1.
Step 4. Next interior point:
X2r k

k+1 _ !
2 1 :
“Xkr sk“

x =xk—ab
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Step 5. Iterative step: If xj"+I =0 for some j, then STOP. x**! is an optimal
solution. Otherwise set k =k + 1 and go to step 1.

We now comment on our choice of r. The method presented above is also
defined for 0 <r <1/2. As can be seen from step 3, when the sequence {x*}
converges to the boundary of the primal polyhedron and the sequence {s*} to a non-
negative vector (this will happen when convergence is to optimality), ¢(X2"~!'s%)
— oo if there is at least one pair of variables satisfying the strict complementarity
condition. This makes the analysis of these methods different, and we do not
consider them in this paper.

We can prove the following theorem related to this algorithm:

THEOREM 1
{cTx*} is strictly decreasing. Also, exactly one of the following holds:

1. The algorithm stops at step 2. Then the linear program has an unbounded

solution, i.e., its dual is infeasible.

2. The algorithm stops at step 5. Then x**! is an optimal solution of the primal

and y* is an optimal solution of the dual.

3. The sequence {x*} is infinite and {c"x*} is not bounded below. Then the
linear program has an unbounded solution.

4. The sequence {x*} is infinite and {c’x*} is bounded below. Then {c’x*}
converges to, say, c".

Proof
To see the first part, from step 4, we note that
Tv2r_k
c' X{'s
chk” = chk - aGk 2’_—5”6
| X, "l

As can be readily established from the definitions, x*>0 and 6, > 1. Also,
cTXYs* =cTX} (c— ATy*)
=cTX (I - X[AT(AXZ"AT)Y VAX]) X c
=l RXcll?,

where P, =1-XAT(AX¥"AT)"!AX[ is the projection matrix into the null space
N(AXY) of the matrix AX[. Now, by a simple calculation, we see that ||P.X/c||
= ||X/s*|| and thus we have
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Il Xp 5|2
chk+1 = chk - Qo Zkr——lk (4)
| X, s Il

From assumption 2, the subtracted term in the above formula is non-zero.
To see part 1, we note that for s* < 0, x**! remains strictly positive for every

a> 0, and thus ¢’x**! - —c0 as 0 — co.

To see part 2, let J\c,"+1 =(. Then, from step 4 we see that
kN2r Jk
k+1 _ &k (%) s
O=x,"" =x -

er—l k
and thus oX s)

kEv2r—1 k
(x; )75

So a=1 and (x,k )2"1s," = ¢(X,f’_1sk) 2 0. It then follows that s{‘ >0 and, from
step 3, that 6, = 1. Thus, (x¥)?"~'sk = || X7"~'s¥||. Hence, for every j 1, (xf)> sk
=0, and so s}‘ =0 and x;‘” = x}‘ > 0. Thus, s¥ > 0 and x*¥*! > 0 satisfy the conditions
of the complementary slackness theorem.

Part 3 follows from the monotonicity of {cTx*}, and part 4 from the fact that
every bounded monotone sequence converges. |

We will henceforth make the following assumption:

ASSUMPTION 4

The sequence {x*} is infinite and the sequence {c”x*} is bounded below.
Under assumption 4, we now establish some important properties of the
sequences {x*}, {y*}, {s*} and {X,s*} and show that the first and the fourth

converge. For this purpose, consider the approximating problem defined for k=0
by (3). Setting p = x* — x, we obtain the equivalent problem:

maximize c’p

Ap =0, (%)
X "pll<1.
It is readily confirmed that the solution to problem (5) is
X2r k
sk _ k,-sk ) (6)
I Xgs™ll

The following result is stated without proof, which can be found in the cited
reference.
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THEOREM 2

Let p¥ solve the approximating problem (5). There is a p > 0 such that for

each k=1,2,..., T nk Ak
c' p* 2 pll p*ll.

Proof
See corollary 6 of Saigal [17]. O

We can now prove the convergence of the primal sequence.

COROLLARY 3

Let assumption 4 hold. Then

1. The sequence {x*} converges, say, to x*.
2. There is a p> 0 such that for every k=1, 2,...
cTxk—¢*

2 p.

| x* — x*|

Proof

To see part 1, let p* be the solution to the approx1matlng problem (5) given
by (6). For each %, defme 7. > 0 such that x**! — x* = y, p*. From theorem 2, we
obtain the relation

o >clxl ¢ Ec (x* =¥ 2 p Yyl pHll = p P — K.
k=1 k=1

From the above relation, we see that the sequence {x*} is a Cauchy sequence, and
thus converges to some vector x".

To see part 2, let k be arbitrary. The following relation is a consequence of
theorem 2 and the triangular inequality:

CTxk P ZCT(xk+j _xk+j+l) > p z”xk+j+l _xk+j”2 p“xk _x*”
j:o _]=O
and we are done. O
Given that the sequence {x*} converges to x*, define

> 0},
= 0}.

={j:x}
={j:xj=

The next theorem relates to the dual sequences { y*} and {s*}, and is well known.
We state it here without proof.
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THEOREM 4

The sequences {y*} and {s*} are bounded.

Proof
Follows from step 1 and theorem 4 of Saigal [17]. O

Now consider the sequence {X,s*}. We prove that it converges to zero.

THEOREM 5
Let assumption 4 hold, and r > 1/2. Then X,s* — 0.

Proof
From theorem 1, {c7x*} converges, and thus from relation (4), we note that

o I X7 s*]|2
k 2r— 1
X" skl

where a> 0 and 6, > 1. Since {x*} converges and { y*} and {s*} are bounded when
r 2 1/2, the denominator of the above expression is bounded; thus

X,:sk - 0.

But this is only possible if X;s* — 0, and we are done. O

3. Optimality under non-degeneracy

We now show that if the primal is non-degenerate, the dual sequences also
converge, and the limit points are optimal for their respective problems. We do this
in the next theorem.

THEOREM 6

Let the assumptions 1—4 hold, and let the primal be non-degenerate. Then
there exist vectors x*, y* and s* such that

1. xk—)x*,

k *
2. y oy,
3. skos,

where x* is an optimal solution to the primal linear program, (y*, s*) is an optimal
solution to the dual linear program.
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Proof
Using theorem 4, let (y*, s*) be a cluster point of the sequence {(yk, s9).
From theorem 5, sz = 0. Thus,
Agy* =Cpg.

From the non-degeneracy assumption, Ag has full row rank m, and thus the above
system has at most one solution. But each cluster point y* of {y*} solves this
system, thus the sequence has only one cluster point y*, and so

yk -y

and thus s* — s*. Now assume that for some j €N, sj <0. Then there is an L > 1
such that for all k2> L, sj" < 0. Thus, from step 4,

g DTS
J J ¢(X,fr_lsk)

k
>xj

k+1
X = x’-‘

and thus x;‘ 4 0, and we have a contradiction. Thus, s* 2 0 and so (y*, s*) is dual
feasible, and the theorem follows from the complementary slackness theorem. []

4. Optimality without non-degeneracy

In this section, we investigate the convergence to optimality without the non-
degeneracy assumption. We will first develop some results on sequences, then
introduce the power center of two polytopes and establish their relationship. We
then establish a relationship between the Newton step for finding the power center
and the affine scaling step, and then use this relationship to establish convergence
to optimality. We use a merit function to establish this result.

4.1. MORE ON SEQUENCES

In this subsection, we will derive some important properties of sequences
generated by the method. Consider the translated sequences:

ok = xk - x*
cTxk ~¢*
~k stk
u-= T k * ?
c'x* -¢
r.k
X X;s

- (cTxk —c*yr’

pk — X,%’Sk.
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The following are simple consequences of the results already established.

PROPOSITION 7

The sequence {v*} is bounded.

Proof
Follows from corollary 3, part 2. O

PROPOSITION 8§

The sequence {uk} is bounded.

Proof
Follows from the definition of u¥, theorem 4 and corollary 3, part 2. [

PROPOSITION 9

For every k=1,2, ..., Ap*=0.

Proof
Readily follows by substitution of definitions. O

Given B and N as defined by relations (7), we define the set of all possible
dual estimates that are complementary to x* as the polyhedron:

Fp={(y,8): ATy +s=c, s5=0}. 9

We can then prove:

PROPOSITION 10
Fp# .

Proof

From theorem 4, the sequences {y"} and {s*} are bounded; thus on some
common subsequence K, y*— y* and sk — s*. Using theorem 5, it is readily
established that (y*, s*) € Fp. O

Consider (¥,5) € Fp. We can show that:

LEMMA 11

For each k=1, 2,...:
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T k _ % _ <T k
c'xt —c" =3yxy.

2. There are constants p; > 0 and r, > 0 such that
pi(cTx* = c*) < x%ll < pa(cTxk = ¢*).

3. stN =1.

Proof
Part 1 of the theorem follows from the following identity:

cTxk —c* =5T(x* ~x*)=50x%. (10)

The upper bound of part 2 follows from corollary 3 part 2, and the lower bound
from part 1. Part 3 readily follows from the identity (10). O

As a consequence of lemma 11, we can define the polyhedron
={v:Ayvy + Agvp =0,§,€’UN =1,vy 2 0} an

and we note that the sequence (v} C V.
We are now ready to prove two important results.

LEMMA 12
There exist p;3 >0 and p4 > 0 such that for every k=1, 2,...,
L IXIsHl < pag(ak ).
2. Ipsl< pagCe) I X[ skl

Proof

Using the argument of the proof of theorem 1 and proposition 9, for
(¥,5) € Fp, we obtain:

“X,:sk“:z - CTpk
=(ATy +5)7 p*
=SypN
= (X; NSV (Xe v PE)
<5l (i) I X yshll

and part 1 follows with p3 = IIENII To see part 2, note that from theorem 2 for

some p>0, || pll <l p*ll < 4-c7p* ——szN LUsnllo(x}) 1 X[ yskll and the
result follows from part 1 w1th ps =21 5 P1- O
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LEMMA 13

There are constants ps >0, pg>0 and L 21 such that for all k> L,

1. Nubll < ps(c™x* = c*yllubll.
2. lsgll < pe(cx* —c*)?r.
3.0 ¢V k) = (v ub).
4.
T k+l _ .+
T =1-asul)20,
c'x* -c¢
where 2
Sty = eI
(Vi n un)
Proof
Since x* — x” and xj > 0, there is a p> 0 and an L > 1 such that for all k > L,

| X, 5ll < p. Let k> L. Part 1 follows from corollary 3, part 2, lemma 12 and

—r k
Lt < NEEaloSL
B (CTxk _C*)r

To see part 2, note that

- I X; pssll
Isgll <1 X5 (C : (cTxk

— —c*) =X B ukll(cTxk - c*)yr.
Tok _ o*)r kBl Up

Substituting part 1, part 2 follows from proposition 8. Part 3 follows from proposition
7 and part 1. Part 4 follows readily by substitution, results of proposition 7 and
part 1. g

42. TWO POWER CENTERS AND THEIR RELATION

In this subsection, we consider the situation when r > 1, and the polyhedrons
Vand Fp N {s: sy 20} defined by (11) and (9), respectively. We define the power
center of V as the solution to the following concave maximization problem:

- -2(r-1)
maximize —j;Nv ;
Ayvy + Agug =0, 12)
Syoy =1,
vy >0,

where the K.K.T. conditions defining the center are:
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2r =DV ® Ve — ALz — 05y =0, (13)
-Arz =0, (14)

Ayvy + Agvg = 0, (15)

shoy =1. (16)

We also define the power center of Fp M {s: sy =0} as the solution to the
concave maximization problem:

2r-1/2r-1)

maximize 2 )y

jenN

Aly + sy = cy, (17)
Agy =Cg,

Sy > 0,

where the K.K.T. conditions defining the center are:

2(r=1) ¢-1/@r-n, _ _ 18
2r_1 SN e uN - O, ( )
ANuN + AB“B =0, (19)

ALY =9+ (sy —5n) =0, (20)
ALy -y =0, 21)

where (y,5) is an arbitrary element of Fp, with §5 = 0.
By modifying the objective function of power center problem (17) to

2r-1 2r-n/r-1
2(r-1) jen 1

we note that equation (18) is modified to

S _yy =0,

And, as r — 1, this approaches the analogous equation for K.K.T. conditions defining
the analytic center of Fp N {s:sy20}, which uses 3. ylog(s;) as its objective
function. Thus, the power center of Fp M {s : sy 2 0} approaches its analytic center
as r approaches 1. This is curious, since the objective functions do not share this
property.

There is an intimate relationship between the two centers, and we explore this
in the next theorem.
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THEOREM 14

(v*, z*, 8") is a center of V if and only if (s* u*,y*) is a center of Fp
N {s:sy=0}, and

* 2r =1 2r41
SN = — V. e
N 0 N
Proof
Let (v*, z*, 6") be the solution to system (13)—(16). Then it can be verified
that
2r—1_,-2r41
SN = ——— V* e,
N P N
y-3=- oz’
6* ’
L Ar=D (2r-1 “/‘2"””*
2r—1 0"

will solve the system (18)—(21).
Now let the center of Fp N {s: sy =0} exist and the system (18)—(21) have
the solution (s*, u*, y*). Then it can be verified that the transformation

y = eTs,i%“)/‘z’“‘)e,
2r—1

T

8 =2(r-y> !,

z=-6(y" - y),

v=Pu*
will solve the system (13)—(16). Here we have used § §u~ = s,{,u ~» which is readily
established using equations (19)—(21). O

Please note that these power centers may not exist, since the concave functions
involved are not bounded above, and we have not shown that the polyhedrons
involved are bounded.

43. NEWTON'S METHOD AND POWER CENTER OF V

In the previous subsection, we have seen that the power center of V is
determined by solving the system of equations (13)—(16). This is a nonlinear system
of equations, to which we can apply Newton’s method to find its zero. The purpose
of this subsection is to investigate this application.



390 R. Saigal, Primal power affine scaling method

Given v, z, 6, with v €V, the Newton direction Av, Az, A8 is given by:

—2(r ~1)(2r - DVy ¥ Av — AL Az ~ AB5y

=—2r-)Vy¥* e+ ALz + 05y, (22)
-AYAz = ALz, (23)
AyAvy + AgAvg =0, 24)
shAvy =0. (25)

Consider the change of variables:

z+ Az
2(r-1)°

0+ A6
2(r-1)° (26)

Avj = (2r - )Avg,

Z

D>
1l

Wy = (2r - I)VA_,-’A‘UN.

Substituting this change in the system (22)—(25), we can derive the following
equivalent system with Ay = AyVy and §y = V{5y,

wy +AlZ + 530 = vy Ve, 27)
-Alz =0, (28)
Aywy + AgAvy =0, (29)
§Twy =0. (30)

We can then prove the following result:

LEMMA 15

Up to a choice of Avg, the solution to the system (27)—(30) is unique. Also,

1. eTV];(r_l)wN = w,{;wN.

2. |lwpll® < eTng(rhl)e.

Proof

The uniqueness follows from the fact that when the columns of the matrix
Ap are linearly independent, the system has a unique solution. Otherwise, it is
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readily confirmed that a unique solution can be found by replacing Az with a
submatrix spanning the column space R(Ag) of Ap. This only changes the value of
Avg.

Multiplying equation (27) by w}, we obtain

T TATs L Te 6= wTy-
wywy + WyANZ + wiySy0 = wy Vy

(r=D,

The second and the third terms on the left-hand side of the above expression, from
equations (28)—(30), are readily seen as zero, and we have part 1. To see part 2,
consider the optimization problem:

maximize x7x

xTx = eTV];(r—l)x,
whose solution is x = V5 Ve, 0

For every v>0, by an appropriate choice of a submatrix of Ap, we can
guarantee that the system (27)—(30) is defined by a non-singular matrix. By a simple
argument, it can be shown that different submatrices of Ap affect only the value of
Avg. The following is a well-known result relating to the rate and the convergence
of Newton’s method, not involving Avg. We state this result without proof.

Assume that the sequence {v*} in "V is converging to the power center v*.
Then the following can be proved about the Newton steps taken at the iterates v*:

THEOREM 16
There is an L 2 1 and constants p; > 0, p, > 0 such that for all k> L,
1 Avkll/lv% = oyl = 1+ 8, with [ 8] < pillvk —oill.

2. |lof + Avﬁ, — oyl < pallvk — oyll2.

44.  AFFINE SCALING AND NEWTON STEPS IN V

In this subsection, we will investigate the relationship between the affine
scaling step interpreted in the polyhedron V, and the Newton step for computing
the power center of this polyhedron. We will show that there is a close connection
between these steps, and this connection will be used in the sections that follow.
We first investigate the affine scaling step.

The affine scaling step is defined by solving the optimization problem (5).
Using part 1 of lemma 11 we can restate the problem (5) as:

minimize 5 py
Anpny +Appp =0,

-2 9
pIT\IXk,NrpN + Png,BrPB <1
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The K.K.T. conditions for the above problem are

Sy — ALy - 26X,y pn =0, (31)
~ ALy - 26X, 5 pg =0, (32)
Aypy + Appp =0, (33)
X, pll=1. (34)
Using the definitions of u* and v* given in (8), and setting u = u*, v=v* and
k
’ pB
PB = x ’
(cTx* = c*)lull
- —(CTxk __C*)ryk
Y 260ull (33
5 x* —c)llul
- 20
=1,
we can rewrite the system (31)—(34) as:
Uy AT~ ~ é
— = —ANY — Sy = =0, (36)
llull? N flull?
T _Sg
-Agy = —=, (37)
B )2
A _Un ’
Ay — = + Agpp =0, (38)
Nl
AT _UN
3 =1, (39)
Nlul?

where Ay = ANVy and Sy = Vysy.
The next proposition relates to the system that defines the affine scaling step.

PROPOSITION 17
Consider the systems represented by the equations (31)-(34) and (36)—(39).

1. (31)-(34) have a unique solution which generates a solution to (36)—(39).

2. The solution to (36)—(39) is unique up to a choice of pg, and there is a value
for pg for which the resulting solution also solves (31)—(34).

3. When Ap has full column rank, the two systems of equations are equivalent.
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Proof

Since equations (31)—(34) represent the solution to a strictly convex problem,
they have a unique solution. It is now readily confirmed, by simple algebra, that
u,y, p and pg, defined by the change of variables (35), solve the system (36)—(39).
Thus we have proved part 1.

From part 1, it follows that (36)—(39) have a solution. Considering gy
=uyn/llull?, p =p/llull®, 5 and p} as variables, this system is linear in these
variables. If Ag has full column rank, the solution to (36)—(39) is unique, and part 3
follows. Otherwise, since (36)—(39) can have a solution only if sz lies in the row
space R(A}) of Ag, the third condition must have redundant constraints readily
identified by choosing any full column rank submatrix of Ap.

To see part 2, let Ag = (A, Ap), where A¢ has full column rank and spans the
range (or column space) R (Ap) of Ag. Thus, for some unique matrix A, Ap = AcA.
Replacing equations (37) and (38) by

k

-5
~ ALY = 5 (40)
T ull?
and y
AN —E? +ACP&' = 0, (41)

el

respectively, we obtain a new system that has a unique solution. By setting
ps = (pé, pp), and letting pp = 0, the solution to equation (41) generates a solution
to (38). Now, let (gn,¥, P, pp) be any solution to (36)—(39). This then generates
the unique solution (qy, ¥, P, pc — App) to (36) and (39)—(41). Since only the
vector pg is modified in any solution to (36)—(39), part 2 is established with the
required pg = pg/(c"x* - ¢l ull. O

As a byproduct of the representation of the affine scaling step by the equations

(36)—-(39), we prove the following important property of the sequences.

LEMMA 18
There exist a p>0 and an L 21 such that for all k2L
elif, =1+ 6y,

where | ;| < p(cTx* - c*)?".

Proof
Multiplying equation (36) by eV, ™", we obtain
T~k T -
v
©UN _eTy, yaly - ETRVIN _ g

Il u®|?
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Substituting Ayvy = —Agvp, and equation (37), we obtain

eTak +vlsk —1=0.

The theorem now follows from proposition 7 and lemma 13.

O

Now consider the system (27)—(30), defining the Newton step in V. By

making the change of variables

Wy = V,;(r_l)e - Wy,

Adg = vp — Avg

in the system (27)—(30), we obtain the equivalent system:

wy — Alz —§y6 = 0,
-Afz=0,
Aywi + AgAdg =0,
stN =1

(42)
(43)
(44)
(45)

Comparing systems (42)—(45) and (36)—(39), we note that if py = uy/|lull?,

a; = V) y(wiy — Bn)

"<t

ay = 2
1
fluell®”

as = Adg - pp,

a3=9

and b = (0,-s&/1lull,0,0)7,

M(v)a = b,
where
Vi —AL sy 0
0 -A} O
M(v) = .
Ay 0 0 Ap
| 5y 0 0

(46)

We now prove an important result relating to the solutions of the two systems.
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PROPOSITION 19
There are an L > 1 and > 0 such that for all k> L

k
Uy —-(r=1 k k
”uk”Z Vk,N e—wy +A

with || A¥ll < Bllsgll/llull?.

Proof

It is readily confirmed that system (46) represents the K.K.T. conditions of
the following quadratic programming problem:

minimize alTVk a1+ a; Tsk/lull?
Ayay; + Agayg =0,
SNa1 - 0

where we can assume, because of lemma 15 and proposition 17, that the columns
of Ap are linearly independent. Thus, we can substitute

ay = —(ALAg) 1Al Aya,

in the above optimization problem to obtain the equivalent problem

N Tyr Tk
minimize a; V, ya; — a,5Sg

ANal = 0,
ENal = 0,

where Ay = Ay — Ap(AL, Ag) ' ATAy and 55 = — ATAg(ATAg)~'sk/llull®.
The above problem is a quadratic programming problem, and thus, its K.K.T
multipliers are bounded independent of the diagonal matrix V, y. Thus,

) ll(az,a3)ll < g(A L.
Since

by defining
A = -V y(Afa, +5ya3)

we obtain our result. O
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We now investigate the Newton step and the affine scaling step in the
projected polyhedron Vy = {vy: v€ V}.
Consider the sequence {vf} € Vy generated by the affine scaling method. We
now prove the following corollary to proposition 19 which establishes the connection
between an affine scaling step and the Newton step.

COROLLARY 20
Let v& € Vy. Then

1. The affine scaling direction at v, is

~ r k
ok ok = (211 vk Vk,N”N
N ~Uy= ~ NT TRz |
1-ay [|u¥||?
where
- llu¥]}?
Ce =0 Ty
oV, u)
2. The Newton step at vl is
r k
1 k kLNUN k
Avk = —— | vk - 22 L yr oA
N N kN
2r-1 [luk|I?
Proof
To see the proof of part 1, by simple substitutions, we note that
k+1 k
S BN S *N _ XN
N N eTxk+l_ox o (Tyk _o#
k
ok — aVi w4y
_ ey
_ _alluf|? N
PV k)
alluk||? )
— r
o0 e Vewun
TG N TPUTE
PV k)

Part 2 follows from the change of variables (26) and proposition 19. [

45. CONVERGENCE TO OPTIMALITY

We now investigate the convergence to optimality of primal and dual se-
quences, without the non-degeneracy assumption. This proof closely relates to the
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proof of the 2/3rd result for r = 1. In that case, a local potential function is analyzed
to establish the convergence of the dual sequence. Here, we will instead use a merit
function, which also defines the power center of V. We will introduce this function
after proving a technical lemma.

LEMMA 21

There are an L= 1, >0, y>0, 6> 0 and 8, > 0 such that for every k2L,

1 llugll = 8.
2. 1-=|lwkll =18 < 8uf) <1 with |§] < B(cTx* = ¢*)*" where
k(12
6(11;:/) = _—“L: |1| X
¢( k,N N)
3. Suky=y>o0.

4. (cTxk*' = ¢*) < 8(cTx* - ¢*) and thus T_o(cTxk - ¢*) < .

Proof

From lemma 18 and definitions, uf;, = Ven uN, and for some L’ 2>1 and all
k=L, eTaf =1+ 8, with §, < pcx " —¢*)?". Thus, there is an L > L’ such that for

all k2 L
1+6k > 1

q 2q°

Now assume that, on some subsequence K, |{u%|l — 0. Then, for k €K,

o) =

VkN iy =0

or
v;7li¥ - 0 forall j € N.

Let u, = ¢(uN)> 1/(2q) Thus, on some subsequence K’ C K, [, =1. Now, for
k € K’, we note that i} >1/(2q). Thus,

vf = 0.

But L”t, = v} s, Thus, sf — oo, a contradiction, as theorem 4 implies that the dual
variables s are bounded, and part 1 follows.
To see part 2, from proposition 19,

r 1 k r—1 r
(Ve v un) = ¢ Vin 4N
IIu"II2 Il

= p(e — wh + AY)

<1+ llwkll + &y, (47)
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where ||A*|| = §,; and the lower bound follows from lemma 18 and part 1 for each
real a > -1, 1/(1 +a) 2 1 — a.. The upper bound follows from the fact that lemma
13 part 4 holds for every o < 1. Part 3 follows from part 1 and propositions 7 and 8.
Part 4 follows from part 3 and lemma 13 part 4. O

When r = 1, the convergence to optimality is proved by using a merit function,
called a local potential function, which is shown to decrease locally. This merit
function also defines the analytic center. Here, we will use

Fy(x)= Y (v;)720"D
jeN

as the merit function in our analysis, and it is the negative of the objective function
of the power center problem on V.
We now prove a simple lemma related to this function:

LEMMA 22

Let w and v > 0 be arbitrary p vectors with V the diagonal matrix generated
by v.

1. Let ¢(-w)<0. Then

p —_—
Yo @+w)2D < =2(r = 1)(e"Vw - (2’—21—) wlVw).
j=1
2. Let1>@¢(—w)>0. Then
@r-1) wTVw).

p
. =201 _ 1y < —2(r — 1) (eT Vi —
Z‘lv,((uwj) D<-20r-1D(e"vw T

Proof

Part 1 follows from the following identity, obtained by using the mean value
version of Taylor’s formula and noting that w; 20 w; 2 0. This implies that the last
term in the expression below is non-negative.

2r-D@2r-1 ,
2 Wi

A+w;)20"D =1-2(r - Dw; +

20r —1)(2r - 1)2r
B 31

A N=(2r+1) 3
A+w;) wi.

Part 2 follows from the following relations, obtained by again applying the
mean value version of Taylor’s formula, where w; 2 — ¢(—w):
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20r=-DH2r-1 ,

w*

20+ w;)>

20r=-0D@2r-1 ,

w*

20 - p(=w)*"
and we have our result. O

A+ w))20"D =1-2(r = Dw; +

<1-2(r—Dyw; +

We are now ready to prove the main result related to the decrease in the merit
function:

PROPOSITION 23

Let o2
~ (7! Ak =1 Ak
=0 ——— and Wy —(2r—1)Vk,NAvN.

oV, ~'uk)

Then, there are an L>1 and a > 0 such that for every k2 L

k+1 k 2(r - l)d (2r - 1)& ~ =-2(r-1) ~
Fy(x*") = Fy(x")< - W((l_ WJ(WN)TVI(,N Wy |

where | 1| < B(—=9(=vj )~V (eTx* - ")

Proof
From step 4 and proposition 19, for each j €N,
k+1 -
X lukl? @)y
i =l-a r—=1_k k|2
X (v, Ry llufl
kyr=1, k
g W)y
k112

— ~ ~k Ak
=1-a(1-wk + A%),

where AF = VkrﬁlA" . From the above, definitions and lemma 13 parts 3 and 4, we
obtain

k+1 k+1

‘Uj. 3 xj chk —c*
kT k T _k+1 *
vj X; c'x c

~

_ Xk Ak
=1+ 1—6:(Wj Aj)

> 0.
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Let 6% = vf“/vl -1=a/(l-a)(w? - A" ), and note that 6" > —1. First, consider
the case when 1> ¢(—8%) > 0. Then, from lemma 22 part 2 we obtain

FN(Xk+1) _ FN(xk) = 2((vf+l)—2(r—1) _(vf)—Z(r—l)) ‘

jEN
< B (< i
(2r-la ATy 20D gk _ Ak
_ - A —AY)|.
2(1— @)1 - ¢(— 8% )" 0 " o )j

Using proposition 19 and lemma 13 part 3, we obtain

1-¢(-65)=1- I_i&-m—w'g, + A

1 - " ~
——67(1-oc¢(e—w,kV + A%Y)

1 -
_ 1 [, a¢(""
1-a lla* |12
1-«
=

Thus, from lemma 15, as 1 — & < 1, we obtain

Fy (x**1) = Fy (x*)

28(r-1) Qr-Dada-a* '\, ., Ty 2(, 1ok
<-— _ 1-
1-@a [( 21 - @) ()Y, P+ b
20(r-1) Q2r-Da ), . Ty 2(, Dk
<- 1- 4
T % [( 2(1_a)2,J( WiV, Nt He | (48)
where
a1} 4 2r-Da(l-a)* ! . - - —2r—1) A
L =€TVk,§,(r I)Ak _( r—1a( 2,-) Q2w k )T 2(" 1)Ak (Ak)T Vk [%/( ])Ak)
2Al-a) '
—(r— 2r-1Da1 - a)*!
=TV A - 2 2()1_(a)2,) (2wh)T A — (AT 4.

Now consider the case when ¢(—6%) < 0. Then lemma 22 part 1 must be used
to calculate this change. By an identical analysis as above, in this case we obtain
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. 2 1 ok
Fy (1) = Fy (%) < - "{(f&)((l ﬁ)( £ VR N+uk],

where

pp =TV Tk - @2r-na

T Ak KNT Ak
2= )(2( MTAF — (AT A%,

As o<1, &< a, it is readily seen that the bound obtained by part 2 of lemma 22
is larger. As —¢(—v§,)= vfk = Min je v vf we see, using lemma 15 part 2

leT Ve y DA < q(uk )Tl AR
[(wi)T A < Jg(of y~U=DjIAM,
and our result follows from proposition 19 and lemma 21 part 1. O

We are now ready to prove the main convergence theorem.

THEOREM 24

Let a/(1 — @)*" <2/(2r—1), and assumptions 1-4 hold. Then there exist
vectors x*, y* and s* such that
1. xfF->x"
2. Yoy
3. sk,
where x* is an optimum solution of the primal, and (y*, s*) is an optimum solution

of the dual. In addition, (y*, s*) is the power center of the optimal dual face, and
thus strict complementarity holds between this pair of optimum solutions.

Proof
From lemma 21 part 3, we see that there is a > 0 such that &, > ya. Thus,

2(r — 1)@y S 2(r - Day
1-ay 1-ay

= 91 > O,
and from lemma 21 upper bound in part 2, & 2 &;. Thus,

_ @r-hay >1- Q2r-Ha

> =6, >0.
201 — a)?" 20— )2 ?

Let v = min v¥, K be the subsequence such that for each k €K, v" < 6 with
§>0and 1 - 2Mq5’ !'> 0 when M > 0 is an upper bound on [lufll. Any cluster
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point 7 of the subsequence satisfies 7 < §. From proposition 19, there is an L > 1
such that for all £k > L,

k k \r—1 _
e o_q_ Y@ 1-2gM8!

wi = 2> > 0,
Jk ||uk||2 2

R Ven' W 2 1,
where 1, = 0.25(1 - 2Mg6"~")*(v% )7%"~D_Thus, from proposition 23,

Fn (x**1) = Fy(x%) < - 0,(8, + &) Wi)T V3~ Dwk,
where

|l _
|€k| = (,. )TVA—L;(r—l)wk < #Z.B(Ufk )r I(CTxk _C*)Zr,
Wy kN N

and from proposition 7, & — 0. Thus there is an L > L such that for all k> L,
k+1 ky < _ 0102 kT -20-1) ok
Fy(x*") = Fy(x*) £ - —Z——(WN) Vk'N Wy
Now, from corollary 3 part 2, there is a p > 0 such that

KAk
952D

2(r-1
T k _ .+
>| w§||2(—c X —¢ ]

%

Ak AT y=2r=1) ~k
(wy) Vk,N Wy 2

> P12,
Thus, for each k=L in K,

6102 20r—1)1
Fy e+ = Fy (%) < = =22 o201,

From the definition of K, for each k €K,

Thus, from proposition 23 there is a 8’ > 0 such that |u,| < B(cTx* - ¢*)¥, where

B=p/6"""and
Fn (¥ — Fy (%) < — 0, (p20 D0, Wh 112 + ).

Thus, for each k > L there is a ¢, > 0 such that
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3 (Fy(x**1) = Fy(x*)) £ =616,p2701 3 LIwxlZ+ Y IwEI2 | -0, Y e

k=L keK ke K ke K

<= Y ol Wil -6, Y, wy.
k=L kek
From lemma 21 part 4,

z#k

keK

< Y Tl € Y BleTx* — ") < oo,

ke K keK

From corollary 3 part 2, Fy(x*) is bounded below by zero on this sequence. Thus,
Wkl — 0. As Wk = (2r - l)Vk_,,t,Av',f,, from proposition 7,

Avl, =0
and, from proposition 19,
Vkrﬁlufv
k112
Since the only vector in Vy for which the Newton step Avy = 0 is its power center

vy, we must have } .

Let K be such that for k € K (it exists since all these sequences are bounded) for
some vectors x*, y* and s,
sk 5™,
-y,
u*t > our,
and so
r-1 k r—1 x
VN N V. n un
k”2

" =e. (49)
Il u 12

Using theorem 14, it is readily seen that (y*, s*) is the power center of the optimal
dual face; and our result follows from the complementary slackness theorem. [J

We get the following sharp bound on the linear convergence rate of { cTxky.

PROPOSITION 25
Let a/(1 — &)* <2/(2r—1). Then

. CTxk+1 P
lim Tk =1-a.
k—>e ¢ x° —
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Proof
Follows readily from proposition 19, lemma 21 part 2 and equation (49).

O

Theorem 24 proves the convergence to optimality for a constant step size

o > 0 determined such that
o 1

(1-a)? NPT

For r = 1, this requires &< 1/2. To obtain a result analogous to the 2/3rd for the
standard affine scaling method, we introduce a variable step strategy, i.e., we will
allow the stepsize to vary, and in iteration k, we will choose the stepsize o, by rules
described below. This increases the step size implemented, which will be shown,
asymptotically to be given by the formula

(047 < 2
—a ~2r-1’

which for r =1 gives the required 2/3rd. We obtain this increase by using the
following estimate for 8(u*) (of lemma 21)

_ i x;s*11?
pxXy sk ()T sk

Tk (50)

We now establish the goodness of the estimate (50).

LEMMA 26

Let 7, be defined by equation (50). There are an L > 1 and a 8> 0 such that
forall k2L
5(“5) =T + 5/(1

where | 8, < B(cx* - c*) and 8(ufy) = uk12/ ¢V, ' uk).

Proof

This result follows readily from lemmas 13 part 2, 18 and the upper bound
of part 2 of lemma 21. O

Since 7, is, asymptotically, a very good estimate of §(u%), in place of using
a/(1 — &)* as an estimate of &(1 — &)>"~!/(1 — &)?" in the relations (48), we will
use the estimate 7, of & in the above formula. Also, from lemma 21 part 2,
whenever [[wk|| — 0, 8(uX) — 1. Thus, in this case 7, — 1, and the new estimate
approaches /(1 — o). We now present this step selection strategy.
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Define &' such that
a* < 2
(1-a*)?r 2r-1

Let 6> 0 be very small and at iteration k choose the step size o by the following
strategy:

Step 1. Let o’ be such that

7.0’ (1 - t0")? ! 2
= -0. 51
(1-an? (2r-1 ©b
Step 2. Define
a ifa 2a,
oy = (52)
a*  otherwise.

The above choice guarantees that the estimate is not smaller than one
obtained from theorem 24. The next lemma establishes a relationship between the
o’ computed in (51) and the related expression in system (48). Note that the non-
linear system (51) has to be solved to obtain «”.

LEMMA 27

Let ¢’ be computed by (51) and let & = S(u',ﬁ, Ya’. Then, there are an L > 1
and a >0 such that for all k2L

ad-a)¥ ' =01 -10) " + 5,
where |8, < B(cTx* - c*)?".

Proof

Follows readily from lemma 26, and the fact that for small €>0, (1 + €
<1+4'e O

)2r—1

We are now ready to prove the main theorem of this section.

THEOREM 28

For each k, let a; be generated by the above rules and let the assumptions
1-4 hold. Then, there exist vectors x*, y* and s* such that
1. x*—x,
2. yk -y,
3. skt
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where x* is an optimum solution of the primal, and (y”, s*) is an optimum solution
of the dual. In addition, (y*, s*) is the power center of the optimal dual face, and
thus strict complementarity holds between this pair of optimum solutions.

Proof

Assume that o = @ for each k. Then this theorem follows from theorem 24.
Otherwise, for each k for which a; = a’ > ", using the same argument of theorem
24, it is readily shown that for some > 0,

Fy(x* 1y = Py (x%) < ~ BlIwk 2 + s

where 1, < Y(c"x* - ¢")*". The proof is completed in the same way as in theorem 24.
Hi P P y

0
We now obtain the asymptotic behavior of .
COROLLARY 29
o, — &, where .
a __2 0
1-a 2r-1 ’
Proof
As a consequence of theorem 28, we obtain the fact that ||w}|| — 0. From
lemma 21, 8(uf) — 1, from lemma 26, 7, — 1, and we have our result. O
5. Accelerated primal power affine scaling method

We will now use the connection between the Newton and the Affine Scaling
step, developed in section 4, to accelerate the convergence of the method. We first
present the accelerated version of the method and then investigate its convergence
and convergence rate. This accelerated primal power affine scaling method is
generated by replacing steps 3 and 4 of the method described in section 2 by the
following three steps, where 0 < §< 1 is a constant whose value will be specified
later:

Step 3.1. Min-ratio test:

O

1l

sk,
mn{m:sj>0
J

j
2r-1
X 5"

Cop(xlsky’

If 6,=1, set ;=1 and go to step 5.
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Step 3.2. Step size selection: If eTX,s*> 1, set o = arand go to step 4. Otherwise,

define
o defined by (52),

Ny = {j : xf < (9T sk }
Ve = € Xin, Sy, »
by, = 2r1—1 X;’Nk B er]jkl" T )
k | Xz s*ll
e = IIKE I,
. log(e
Py = min {3r + 2, Tc%}

1. Predictor step: If p, = 1.5r, then
4
o =1- max{sk,ykp“ }

2. Corrector step: Otherwise,

2r-1 &k

o mi Yk‘p(Xk N st) o
k= n » Lk
2r|| X;s*11?
Step 4. Next interior point:
X2rsk
k+1 k k
x**th=x - 0,0, Toar—1 k0"
[P |

Some comments are in order here. This acceleration scheme is identical to
the two-step acceleration scheme of Salgal [18]. k% computed in step 4 is a very
good estimate of the Newton step Avf, and its magnitude &, is used to estimate the
distance to the power center vy of Vy N {vy: vy 2 0}. Asymptotically, we apply
a predictor step when the size & of the Newton step is of the order O(c'x* - c*)?,
and the corrector step otherwise. As is well known about the Newton step, || Avk!
is a very good estimate of || v — vy|l. During the corrector step, @, is chosen so

that

vkl vk = Ak + O(cTxF - e

and thus the affine scaling step behaves, asymptotically, like a Newton step. We
now establish three straightforward results and then prove the convergence of this
accelerated method.
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LEMMA 30

Let N be defined by the system (7). There is an L =1 such that for all
k> L, N,=N, where N, is defined in step 3.2.

Proof

From lemmas 13 part 2 and 18, there are p; >0, 7, >0 and L 2 1 such that
for all k> L we have llijll = | X, psgll/(c7x* - c*) < py(c"x* - ¢*)* 7! and eTiif;
=1 + 8, with | 8| < p,(cTx* ~ ¢*)*. Thus, for some 63 >0, L > L and all k > L, we

have
eTXps* = (cTxk —c*)(eTuk + eTiik)

> 0.50(cTxk — ¢c*),
eTxk < py(cTxk - c*),
k> JeT Xps® forall j € B,
x}‘ <\/m forall j € N,

where the second inequality follows from lemma 11 part 2. The third inequality
follows from the fact that x; > 0 for each j € B and the fourth from first and second

inequalities. 0

And now a corollary to theorem 16.

COROLLARY 31

There is a 6> 0 such that for all || vy — vyl < 6,
0.50[lvy — vyl <llAvyll £ 1.50]vy — vl

Proof
Follows from theorem 16, part 1. |

Another lemma follows:

LEMMA 32

Let L be generated by lemma 30, and M > 0 be large. There is an L > I,
6, >0 and 6, > 0 such that for all k > L,

1. |lhk - Avkll < 6(cTxF - )P
2. 0.50(cTx*-¢*) < % £ 1.50(cTxk — ¢*).
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3. Whenever || v — il € B(cTx* - c*)?, with M> B> 0 and p > 1.5r, then
Iwkil < B(cTxk —c*y?.

Proof

We note that by substitution of the results of lemma 18 and corollary 20
part 2, and definitions, we get

k
g~ 1 vh  Vinun
Yooar-aeTay et

k
_ 1 v VEnuN r Ak
= 2r—1(vN 1512 + Vi NA
1 é
- Vs Ak k k
2r—1( kNS T 1Y, N
=Av’,§, —tk,

As v is bounded by proposition 7, part 1 follows. Part 2 readily follows from
lemma 18. To see part 3, since vy > 0, there is an L 2 L such that for all k¥ > L,

. *
min; v;
2.'1 ] > M(CTxk __c*)l‘Sr.

Thus, under the hypothesis of the lemma,

a=

k * * k
v; Zvj—|vj—vj|2a

and our result now follows by observing from the change of variables (26), that
lw |l < (2r = 1) (min; v})~"Il Avgl, and the result of corollary 31. a

We now use the connection of the power affine scaling method to Newton’s
method computing the power center vy of Vy and establish convergence and
convergence rate of the accelerated algorithm. We will give a choice of the constant
&> 0 for both the two-step and the three-step cases, and obtain a rate which is a
function of r. This rate approaches two-step quadratic as r approaches infinity. We
now investigate the predictor and the corrector steps under the assumption that
power center vy of Vy exists. This will be implicit in the hypothesis of the
propositions.

We are now ready to investigate the predictor step.

PROPOSITION 33

Let L be as in lemma 32. Assume that 0< 6< 1, k> L, M>B>0,1.5r<p
and || v% - vyl < BcTx* - c*)P. Then
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1. There are 0 < 8, < 6, such that
0, (cTxk = c*)1+%Pe < (eTxk*! — c*) < 0,(cTxF - c*)PE .
2. There is a 85 > 0 such that
”vk+l — ol < B5(cTxk+! = ¢*ypi/U+00r)
where p; =1+ min{p,p,} and p; = min{2p,(1 - 6)p,}.

Proof
From corollary 31, IIAv’,i,Il <1.58(cTx* — ¢*)P. Also, by lemma 32,

Bg I < | Avk Il + (1 kY — Avk Il < 1.5B(cTx* = c*)P
+0(cTx*k = )2 < 8(cTxk - c*)P.

We note the following sequence_of inequalities which follow from lemmas 13, 21,
32 part 2, 32 part 3 and some 6 > 0:

(0.50)% (cTxk = c*)%x < y P

Sl—'ak

<1-(1- max{ed, v} a - Iwhll -18.)

L
< max {ef,y{P |+ [ whll +1 8]
< B(cTxk — c*yminip.ope)

and we have part 1. From corollary 20 parts 1 and 2, and some simple algebra, we

obtain

k+1 k k k
Uy  — Uy = Avy +15,

where

o 2roduf) -1 1 [, 1 & ok | = =Ly oAk
- kN
l—ak(S(uf‘,) 2r—1 2"—1 1+5k 2r—1
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Using the facts that SwH<l, o<1 - Ef, we obtain, for some 6 > 0,

1251l < B(cTx* — ¢*)1-9p

Now for appropriate positive constants, from theorem 16 we see that

“vl;vﬂ -yl € ||U’,i, + Avf\, —onll+ 2%
< pallvk = vyl +8(cTx* — c*)1-0px
< py(eTxk = c*)2P + 6(cTxk — c*)1=9p
and part 2 follows from the lower bound of part 1. O

We are now ready to investigate the corrector step of the algorithm.

PROPOSITION 34

Let L be as in lemma 32. Assume that for some k > L and B> 0, || v& - v}/l
< B(cTx* - c*)?. In the case

1. 1.5r/2 < p <r, one corrector step will be taken, after which, for some 6, > 0,
Tk - vill < 81 (cTx ! - M.

2. 1.5r/4<p<r/2, at least one corrector step will be taken, and after at most
two steps, for some 6, >0,

lok*2 — vl < 6,(cTx**2 - c*)*.

Proof

Let -
_ Yed(Xiw sk

S P

From lemmas 18 and 21 part 2, 2ry, 2 eTi, =1+ 8. From equation (47),
2rpte S 1+ 8¢) (L + [l will + 11 Agll). Thus,

1 , 1 ,
5 —{oil sy < 5 +|pil,

where, using lemma 32 part 3, we note that |8;] < 8°(c"x*-c")* and [pf] <
& (cTx* = ¢*)?. From corollary 29, as «} approaches 2/(2r + 1) — € for some small
€> 0, for all sufficiently large k, at step 3.2,

V(X2 sk
O = kN2
2r I XLs*
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Thus, from lemma 13 part 1, corollary 20 parts 1, 2, and simple algebra, we see

that s .
k+1 k _ 1+ k k Uy
Uy TUN T 2r-1- 96y [UN - kr,N ||uk||2]
= Avf‘V — ¢k,
where
k 2r - )8 + 67 Ly wh ) e Ak
T D@ -1-80 (N T RN AT | T 2r =1 R

Using propositions 7, 8 and lemma 21 part 2, we can show that
511 < B(cTx* - c*)*.

Thus, after one step with &, we see that (using theorem 16),

k+1

— oyl <llvg + Avg = ol + 1]

< p'llvk —onll? + Br(eTxk —c*)?r (53)
< B (cTx* —c*)?r.

oy

From, lemma 13 part 4,
k+1 —-c*

cx
Tk

=1- a;6(uk)

2r
and using lemma 18, we see that for all sufficiently large k,
15  cTx**t - ¢ 0.5
o7

_ <1- 2=
1 2r xk —c* 1 2r (54)

Substituting the above inequality, we obtain part 1 of the theorem for 6, =
(1-1.5/2r*f".

To see part 2, we note that after one corrector step, either 2p becomes greater
than 1.57 and we stop the corrector iterates and go to the predictor step; or, after
one more corrector step, the desired result is obtained. O

We are now ready to prove the main convergence theorem.

THEOREM 35

Let the sequences {x*}, {y*} and {s*} be generated by the accelerated method
with r> 1, and let assumptions 1—4 hold. Then, there exist vectors x*, y* and s*
such that
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1. x*>x",
2.y
3. skos*

where x” lies in the relative interior of the optimal face of the primal, and (y”, s*)
is the power center of the optimal face of the dual. In addition, asymptotically, the

sequence {c’x* - cTx*} converges to zero as follows:

1. For 6=1/2(r+1), the convergence is two-step superlinear at the rate
1+r/(r+1).

2. For 6=3/2(r +1), the convergence is three-step superlinear at the rate
1+3r/(r+2).

Proof

We now show that asymptotically a predictor step must be taken. Assume that
there is an L 2 1 such that for every k£ 2 L, a corrector step is taken. Then g is
selected by the variable step selection strategy, from theorem 28, {v}} converges
to the power center vy.

As in the proof of proposition 34, from equations (53) and (54) we obtain

05 — oyl < pllvk — oyll2 + BeTx*+! — ).

Thus, after several such corrector iterations, IIUI;,” — oyl € p'(cTx** = c*)Pfor
p21.5rand /> 1. From corollary 31 and lemma 32, p,,, 2 1.5r and a predictor step
must be taken, and we have a contradiction. We note that the constant p” > 0 is
independent of k, and is the required M in proposition 33.

Let k be an index, sufficiently large, at which a predictor step is performed.
To investigate the convergence rate of the two-step method, assume p, = 1.5r, and
let 8= (pr—r)/(pu(r+1)). By the choice of p,, at step 3.2, for p=>1.5r,
pr=min{2p, (1 - §)p,} = (1 — )p, after one corrector step, from propositions 33
and 34, we obtain

“va+2 _ U7v|| < 03(chk+2 _ c*)z(l—ﬁ)pk/(l+6pk),

where 2(1 — 8)p,/(1 + 6p,) = 2r. Thus, part 1 follows as

o= 30— 1) when p, =2r,

and the convergence rate obtained is

’
r+1°

p* =l+min{2r,5pk}=1+6pk =1+
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For the three-step method, let 6 = (2p; — r)/( pi(r + 2)). After two corrector
steps
“va+3 _ v;\l“ < 94(chk+3 _ C*)4(I—5)pk/(l+5pk)’
where 4(1 — 6)p,/(1 + 6p,) = 2r. Part 2 now follows since d = 3/(2(r + 2)) if p, = 2r
and the convergence rate 1+ 8p, =1+ 3r/(r +2). O

We now investigate the efficiency of the asymptotic convergence rates obtained,
and thus get some measure of the relative effectiveness of the acceleration. For this
purpose, we will use the measure introduced by Ostrowski [16, section 6.11] to
compare algorithms achieving different asymptotic rates of convergence, and requir-
ing different amounts of work per iteration. He suggested the following measure:

log(p)
w *

where p is the asymptotic convergence rate of the acceleration, and w is a measure
of the work per iteration. The larger this measure, the more efficient the acceleration.
This measure has been used by Brent [4], who investigated the hybrids of Newton’s
method proposed by Shamanskii, and by Saigal and Todd [19], who investigated the
hybrids of fixed point computing methods with variants of Newton’s method.

The asymptotic convergence rate of the accelerated power primal affine
scaling method depends on the choice of r and the two-step or three-step method.
Table 1 shows these calculations for several choices.

Table 1
Two-step Three-step
rate  efficiency rate efficiency
r=10 1s5v 022 202 0210
r=15 16 2230 2.2857 02136
r=20 167 028 250 03054
r=40 180 2% 3.09 03662

D Tsuchiya and Monteiro [24] obtain a rate of 1.3.
This can be established by the method of Saigal [18).

2 This is obtained in Saigal [18].

3 The efficiency of the three-step cubic is greater than
the two-step quadratic, which is 0.3466/w.
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6. Concluding remarks

In this paper, we have shown that for every r > 0.50, there is a variant of the
affine scaling method, which we call the primal power affine scaling method. The
usual method is generated when r = 1. We have analyzed the convergence of these
methods for r > 1. The analysis for 0.50 < r < 1 is analogous, with a few changes
in the formulae to account for the sign changes and the objective functions of the
power center problems.

Under the assumption of non—degeneracy, convergence to optimality of the
primal sequence is shown for any step size less than 1. To investigate the con-
vergence without the non-degeneracy assumption, the concept of a power center is
introduced. The power center associated with the optimal primal face and the power
center of the optimal dual face are related in an intimate way, and the objective
functions defining these centers are related in the same sense as the “dual norms”
are. In this case, it is shown that if the step size ¢ is chosen such that /(1 — &)*"
< 2/@2r-1), for r> 1, the primal sequence converges to the relative interior of the
optimal primal face and the dual sequence converges to the power center of the
optimal dual face. Also, a variable step selection strategy is presented where the
sequence {ay} of step sizes, asymptotically is selected by o /(1 — o) <2/(2r - 1).
This sequence is required to stay uniformly away from from 2/(2r—1). Thus,
o <2/(2r+ 1), and hence this result is a generalization of the 2/3rd result of
Tsuchiya and Muramatsu [25] for r = 1.

An accelerated primal power affine scaling method is also presented. This
method achieves superlinear convergence, and the rate is higher for larger values
of r> 1. This generalizes the work of Saigal [18] and Tsuchiya and Monteiro [24].

This work opens up the study of hybrid variants of the power affine scaling
method in which different values of r are implemented at different stages of the
method. From lemmas 11 and 13, it is evident that the rate of convergence of || x}|l
is O(cTx* - ¢*), while that of ||s§|l is O(c™x* - ¢*)¥. Implementing 0.50 < r < 1 in
the early iterates will reduce this disparity between the accuracy of the primal and
the dual sequence, and thus make the method behave more like the primal-dual
methods where the accuracy of the two sequences is similar. In the later iterations
(when 7, < 1), a value of r>1 (say r=1.5 or 2.0) can be implemented to get a
higher rate of convergence. These hybrids have not been studied yet, and we expect
to report computational experience on them at a later date.
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