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The primal power affine scaling method 
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In this paper, we present a variant of the primal affine scaling method, which we 
call the primal power affine scaling method. This method is defined by choosing a real 
r > 0.5, and is similar to the power barrier variant of the primal-dual homotopy methods 
considered by den Hertog, Roos and Terlaky and Sheu and Fang. Here, we analyze 
the methods for r > 1. The analysis for 0.50 < r < 1 is similar, and can be readily 
carried out with minor modifications. Under the non-degeneracy assumption, we show 
that the method converges for any choice of the step size a. To analyze the convergence 
without the non-degeneracy assumption, we define a power center of a polytope. We 
use the connection of the computation of the power center by Newton's method and 
the steps of the method to generalize the 2/3rd result of Tsuchiya and Muramatsu. We 
show that with a constant step size a such that c~/(1 - tx) 2r < 2 / ( 2 r -  1) and with a 
variable asymptotic step size ot k uniformly bounded away from 2/(2r + 1), the primal 
sequence converges to the relative interior of the optimal primal face, and the dual 
sequence converges to the power center of the optimal dual face. We also present an 
accelerated version of the method. We show that the two-step superlinear convergence 
rate of the method is 1 +r/(r+ 1), while the three-step convergence rate is 1 + 
3r/(r + 2). Using the measure of Ostrowski, we note that the three-step method for 
r = 4 is more efficient than the two-step quadratically convergent method, which is the 
limit of the two-step method as r approaches infinity. 

Keywords: Linear programming, affine scaling methods, interior point methods, power 
barrier method, power center, merit function, superlinear convergence, three-step 
quadratic convergence, efficient acceleration. 

1. I n t r o d u c t i o n  

We  c o n s i d e r  here  the l i n e a r  p r o g r a m m i n g  p r o b l e m :  

m i n i m i z e  cr x 

A x = b ,  

x > O ,  
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(1) 
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with its dual 
maximize b T y 

A r y  + s = b, (2) 

s>_0, 

where A is an m x n matrix and b and c are appropriate vectors. We also assume 
that 

ASSUMPTION 1 

The primal linear program has an interior solution. 

ASSUMPTION 2 

The objective function is not constant on the primal feasible region. 

ASSUMPTION 3 

The matrix A has rank m. 

In this paper, we consider application of the primal affine scaling method for 
solving this problem. The primal method was proposed by Dikin [6] in 1967, who 
subsequently proved its convergence under the primal non-degeneracy assumption 
(Dikin [7]). His proof also appears in Vanderbei and Lagarias [27]. This method was 
rediscovered by Barnes [3], who proved its convergence under the non-degeneracy 
assumption on both the primal and the dual linear programs. In addition, several 
of its variants like the dual (Adler et al. [1]) and the primal-dual (Monteiro et al. 
[14]) were generated in the process of implementing the projective transformation 
method of Karmarkar [12]. See also Adler and Monteiro [2] for an analysis of the 
limiting trajectories generated by these methods. 

The convergence behavior of the affine scaling method without the non- 
degeneracy assumption is now known. For example, Mascarenhas [13] has recently 
produced an example on which the method fails when a, the step size to the 
boundary in the affine scaling direction, is 0.999. Starting with the work of Tsuchiya 
[22], who introduced a local potential function to analyze the convergence of this 
method, significant developments have occurred. Dikin [8], using the local potential 
function, has shown the convergence of the primal sequence to the interior of the 
optimal primal face and the dual sequence to the analytic center of the optimal dual 
face for a <  1/2. Tsuchiya and Muramatsu [25] subsequently proved the same 
convergence behavior when a <  2/3.  Simpler proofs of this result have been 
developed by Monteiro et al. [15] and Saigal [17]. It is also known that the dual 
sequence may not converge when a > 2/3. Hall and Vanderbei [11] have produced 
an example where this happens. Saigal [17] and Gonzaga [10] have shown the 
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convergence to optimality of the limit of  the primal sequence and a cluster point 
of  the dual sequence for a slightly larger step size of a < 2q/(3q - 1), where q is 
the number of zero components in the limit of  primal sequence. It appears that this 
may be the largest step size for which convergence to optimality can be proved. 

Using the connection between the steps of Newton's method for computing 
an analytic center of  a certain polytope, and the affine scaling method interpreted 
on this polytope, Saigal [18] and Tsuchiya and Monteiro [24] have devised a 
variable step size selection strategy which produces super-linearly convergent 
sequences. This strategy makes the affine scaling method, asymptotically, behave 
like a predictor-corrector method. Reference [I8] shows that a two-step method, 
i.e., one corrector step taken between each pair of predictor steps, attains a con- 
vergence rate of 1.5 ([24] shows a rate of 1.3) and a three-step method, i.e., two 
corrector steps taken between each pair of predictor steps, converges quadratically. 
Using the measure of Ostrowski [16], it can be shown that the three-step method 
is more "efficient" than the two-step method. 

For each r > 0.5, we will consider in this paper the primal power affine 
scaling method based on the following approximating problem: 

minimize cTx 
A x = b ,  

I l X o r ( x  - x~ _< 1, 

(3) 

where x ~ > 0 is a given interior point of the linear program (1). Problem (3) is well 
defined for all r > 0. We note here that the sequences may not converge for values 
0 < r < 1/2, and thus these methods are not considered in this paper. When r = 1, 
the above approximating problem generates the primal affine scaling method, see 
for example, Barnes [3]. The method thus generated by choosing r > 0.5 is analogous 
to the power barrier method of primal-dual homotopy (barrier) method of den 
Hertog et al. [5] and Sheu and Fang [20]. Under the non-degeneracy assumption 
on the primal, we prove convergence of primal and dual sequences to respective 
optimal solutions for any step size a < 1. To prove convergence under degeneracy, 
we introduce the concept of a power center of  a polytope. We define two polytopes, 
with their power centers defined by maximization of concave functions. These 
functions are related to each other in the same manner as "dual norms" are. By 
using the connection of iterates of Newton's method applied to computing a power 
center of  polytope associated with the primal problem, we prove two results. In the 
first result, we consider the case of constant step size, and prove that if the step 
size a satisfies a / ( 1 -  a)2r< 2 / ( 2 r - 1 ) ,  the primal sequence converges to the 
relative interior of  the primal optimal face, and the dual sequence to the power 
center of  the optimal dual face. In the second result, which gives the same 
convergence behavior of sequences as the first, we consider the case of variable step 



378 R. Saigal, Primal power affine scaling method 

size, and implement step size ak at iteration k. We choose sequence {ak} such that 
it is, asymptotically, defined by ak / (1  -- Ok) < 2 / ( 2 r  - 1) with o~ k uniformly bounded 
away from 2 / ( 2 r  + 1), which is 2 /3  for r = 1. Our result can thus be considered a 
generalization of  the 2/3rd result of Tsuchiya and Muramatsu [25]. In both these 
cases, the proof is obtained by considering a merit function (which is the objective 
function of the center problem related to primal), which plays the same role as the 
local potential function used in analysis of affine scaling method [8,22,25]. 

By exploiting the relationship between Newton and affine scaling iterates, we 
present an accelerated version of  the method, which generalizes the accelerated 
version of  Saigal [ 18]. We prove its convergence, and show that the primal sequence 
converges to the relative interior of the optimal primal face, while the dual sequence 
converges to the power center of the optimal dual face. In addition, for each r > 1, 
we obtain the two-step superlinear convergence rate of 1 + r / ( r  + 1) and the three- 
step rate of  1 + 3 r / ( r  + 2). These rates are 1.5 and 2 when r = 1, and thus generalize 
the two-step convergence rate and the three-step quadratic convergence rate of  
Saigal [18]. Using the measure of  Ostrowski [16], we investigate the efficiency of  
each of  these methods, and note that for each r > 1, the three-step version is more 
efficient than the two-step version. 

Considering convergence and convergence rate results of  the methods for 
r ~: 1, we note that they specialize to the corresponding results for the affine scaling 
method when the value of one is substituted for r. But analysis for the the affine 
scaling method is different, and thus its results are not obtainable as a corollary, 
by setting r = 1 in results for the power primal affine scaling method. When r is 
set to one, the objective function of power center problems must be changed to one 
defining an analytic center, and the merit function must be changed to a local 
potential function (which is also the objective function of  analytic center problem). 
However, the power center approaches the analytic center as r approaches 1, even 
though the objective function of the power center problem does not approach the 
objective function of  the analytic center problem. In this sense, the power affine 
scaling method is a proper generalization of  the classical affine scaling method of 
Dikin [6]. 

In this paper, we restrict our attention to values of r > 1, and note that with 
minor modifications in several formulae as well as the objective functions of the 
power center problems, our analysis carries over to the values of 0.50 < r < 1 as 
well. In addition to the introduction, this paper has five other sections. In section 2, 
we present the primal power affine scaling method and obtain some properties of 
the sequences. In section 3, we prove convergence of the sequences to optimality 
with the primal non-degeneracy assumption, and in section 4, using a merit function, 
we prove convergence to optimality when the step size is a constant and when the 
step size is variable. In section 5, we present the accelerated primal affine scaling 
method, prove its convergence and derive its convergence rate. Finally, we end the 
paper with concluding remarks in section 6. 
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We now present the notation. Given a vector v, the largest component of  v 
is denoted by $(v), i.e., $(v) = maxivi and II vii represents its 2-norm. e is a vector 
of appropriate size with each component equal to 1. Given a matrix A and a subset 
N, we represent by 

1. ,o N the subvector of v composed of  components indexed in N. 

2. AN the submatrix of A with columns indexed in N. 

V represents the diagonal matrix generated by the corresponding components 
of v. k is the iteration counter, v k, k = 1, 2 .... , is a sequence of  vectors, which is 
also denoted by {vk}. K denotes a subsequence and is a subset of the positive 
integers. Thus, {Vk}k~K is the subsequence of {v k} generated by K. {Vk} is a 
sequence of matrices. If v* is the limit of  { vk}, V. represents the diagonal matrix 
generated by v*. Thus, v.P,N represents the diagonal matrix generated by v~r raised 
to the power p. 

2. The primal power affine scaling method 

We now present the primal power affine scaling method generated when 
r >  0.5. 

Step O. 

Step 1. 

Step 2. 

Let x ~ be an interior point solution, 0 < tz < 1, and let k = 0. 

Tentative solution to the dual: 

yk = ( A X 2 r  A T ) - I  A X  k2r c. 

Tentative dual slack: 
s k = c - A T y  k .  

If sk < 0 then STOE The solution is unbounded. 

Step 3. Min-ratio test: 
II ~ . 2 r - I  k ) 

A k S k 
Ok = m i n  , k-2r-1 k "sJ > 0  

I, X j  ) Sj  

IIX2r-lskll 
' 

where ~(t) = maxjtj. If Ok = 1, set a = 1. 

Step 4. Next interior point: 
2r _k 

X k ~ 
X k+l  = X k _ 0~0 k 

~ . 2 r - 1  k " II Xk s 
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Step 5. Iterative step: If x f§ = 0  for some j ,  then STOP. x k§ is an optimal 
solution. Otherwise set k = k + 1 and go to step 1. 

We now comment on our choice of r. The method presented above is also 
defined for 0 < r < 1/2. As can be seen from step 3, when the sequence {x k} 
converges to the boundary of  the primal polyhedron and the sequence {s k } to a non- 
negative vector (this will happen when convergence is to optimality), ~(X2r-ls k) 
----> ~ if there is at least one pair of variables satisfying the strict complementarity 
condition. This makes the analysis of  these methods different, and we do not 
consider them in this paper. 

We can prove the following theorem related to this algorithm: 

THEOREM 1 

{crx k} is strictly decreasing. Also, exactly one of  the following holds: 

1. The algorithm stops at step 2. Then the linear program has an unbounded 
solution, i.e., its dual is infeasible. 

2. The algorithm stops at step 5. Then x k§ is an optimal solution of the primal 
and yk is an optimal solution of the dual. 

3. The sequence {x k} is infinite and {crx k} is not bounded below. Then the 
linear program has an unbounded solution. 

4. The sequence {x k} is infinite and {crx k} is bounded below. Then {crx k} 
converges to, say, c*. 

Proof 
To see the first part, from step 4, we note that 

c T  X 2 r  S k 
c T x  k+ l  = c T x  It _ tZO k 2 r _ l s  k �9 

II xk II 

As can be readily established from the definitions, xk> 0 and O k > 1. Also, 

r  = c T x 2 r ( c -  a r y  k) 

crX~(l  r T 2r T - 1  r r 
= - X k A  (AX k A ) AXk)X~c 

II r 2 = P k X k c l l ,  

where Pk = I-X~4r(AX2rAT)-IAX~ is the projection matrix into the null space 
ff~/(AX~ of the matrix AXe. Now, by a simple calculation, we see that IIPkXs 
= IIXs and thus we have 
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II X~skll  2 (4) 
cT x k + l = cT  x k -- aOk Il Xk II 2 r _ l s  k �9 

From assumption 2, the subtracted term in the above formula is non-zero. 
To see part 1, we note that for s k < O, x k+l remains strictly positive for every 

a > 0 ,  and thus crx  k§ - - ~ - ~  as ct--~ ~.  
To see part 2, let x k§ = 0. Then, from step 4 we see that 

( x k ) 2 r  sk  
0 = X/k+l  = X k - - a  . . . .  2 r - 1  k 

~)I ,A k S ) 
and thus 

(X )2r-ls  
l = a  

~ - v - 2 r - 1  k " 
( X  k S ) 

k 2 r  I k 2 r  1 k > k >  So a = l  and ( x  t )  - s t = ~ ( X  k - s ) _ O. It t hen  f o l l o w s  that  s l _ 0 a n d ,  from 
step 3, that O k = 1. Thus, (x k )2r-1 s k = II x2r-~skll. Hence, for every j ~ l, (x k )2r-I s k 
= 0, and so s. k = 0 and x f+l  = x k > 0 Thus, s k > 0 and x k+l > 0 satisfy the conditions 

J " - -  - -  

of the complementary slackness theorem. 
Part 3 follows from the monotonicity of { c r x k } ,  and part 4 from the fact that 

every bounded monotone sequence converges. []  

We will henceforth make the following assumption: 

ASSUMPTION 4 

The sequence {x  k} is infinite and the sequence { c r x  k } is bounded below. 

Under assumption 4, we now establish some important properties of  the 
sequences {xk} ,  { y k } ,  {S k} and {Xks  k} and show that the first and the fourth 
converge. For this purpose, consider the approximating problem defined for k = 0 
by (3). Setting p = x k -  x ,  we obtain the equivalent problem: 

maximize c r p  

A p  = 0, (5) 

I1X k r p  II < 1. 

It is readily confirmed that the solution to problem (5) is 

. .2r  k 
/ 3k_  ~t k s (6) 

II Xs " 

The following result is stated without proof, which can be found in the cited 
reference. 
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THEOREM 2 

Let /)k solve the approximating problem (5). There is a p > 0 such that for 

each k = 1, 2 ..... 
cT~ ~ >__ pl[/3kl[. 

Proof 
See corollary 6 of Saigal [17]. 

We can now prove the convergence of  the primal sequence. 

[] 

COROLLARY 3 

Let assumption 4 hold. Then 

1. The sequence {x k} converges, say, to x*. 

2. There is a p >  0 such that for every k = 1, 2 .... 

c T  x k -- C* 
>p.  

I I x  k - x*ll 

Proof 
To see part 1, let /3 k be the solution to the approximating problem (5) given 

by (6). For each k, define ?'k> 0 such that x k+l - x k =  ~k ~k. From theorem 2, we 
obtain the relation 

-- -x ll 
k=l k=l k=l 

From the above relation, we see that the sequence {x k} is a Cauchy sequence, and 
thus converges to some vector x*. 

To see part 2, let k be arbitrary. The following relation is a consequence of 
theorem 2 and the triangular inequality: 

C TX k -- C* = ~ C T (X k + j -- X k + j +1) >__ p ~ II X ~ § j + l  _ x k + ill - p II x k - x*ll 

j=0 j=0 

and we are done. []  

Given that the sequence {x k} converges to x*, define 

B = {j " xj >0} ,  

�9 * = 0 } .  N = {j xj  

The next theorem relates to the dual sequences {yk} and {sk}, and is well known. 
We state it here without proof. 
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THEOREM 4 

The sequences {yk} and {s k} are bounded. 

Proof 
Follows from step 1 and theorem 4 of Saigal [17]. 

Now consider the sequence {Xksk}. We prove that it converges to zero. 

[] 

THEOREM 5 

Let assumption 4 hold, and r _> 1/2. Then Xksk---~ O. 

Proof 
From theorem 1, {crx k} converges, and thus from relation (4), we note that 

II Xs k II = 
=r- ~skll ~ 0, aOk II Xk 

where a >  0 and Ok > 1. Since {x k} converges and {yk} and {s k} are bounded when 
r > 1/2, the denominator of the above expression is bounded; thus 

Xf, s k ~ O. 

But this is only possible if XkSk--> O, and we are done. [] 

3. Optimality under non-degeneracy 

We now show that if the primal is non-degenerate, the dual sequences also 
converge, and the limit points are optimal for their respective problems. We do this 
in the next theorem. 

THEOREM 6 

Let the assumptions 1 - 4  hold, and let the primal be non-degenerate. Then 
there exist vectors x*, y* and s* such that 

1. X k ~ X*, 

2. yk ___> y., 

3. s k ---> s*, 

where x* is an optimal solution to the primal linear program, (y*, s*) is an optimal 
solution to the dual linear program. 
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Proof 
Using theorem 4, let (y*, s*) be a cluster point of the sequence {(yk, sk)}. 

From theorem 5, s~ = 0. Thus, 
A r y  * = cB. 

From the non-degeneracy assumption, A8 has full row rank m, and thus the above 
system has at most one solution. But each cluster point y* of {yk} solves this 
system, thus the sequence has only one cluster point y*, and so 

yk ~ y* 

and thus s k ---) s*. Now assume that for some j ~ N, s~ < 0. Then there is an L > 1 
such that for all k > L, sf  < 0. Thus, from step 4, 

k + l  k 
Xj  = Xj  -- a 

k , 2 r  k xj ) sj 

~)( x 2 r - l s  k ) 

k > X j  

k and thus xj ~ O, and we have a contradiction. Thus, s* > 0 and so (y*, s*) is dual 
feasible, and the theorem follows from the complementary slackness theorem. []  

4. Optimality without non-degeneracy 

In this section, we investigate the convergence to optimality without the non- 
degeneracy assumption. We will first develop some results on sequences, then 
introduce the power center of two polytopes and establish their relationship. We 
then establish a relationship between the Newton step for finding the power center 
and the affine scaling step, and then use this relationship to establish convergence 
to optimality. We use a merit function to establish this result. 

4.1. MORE ON SEQUENCES 

In this subsection, we will derive some important properties of sequences 
generated by the method. Consider the translated sequences: 

Dk - X k -- X* 

c T  x k  -- C* ' 

~l k -- X k  Sk 

c T  x k  -- C* ' 

U k = X ~  sk  

( c T  x k -- c* ) r ' 

p k  ~-2r k 
= A  k S . 
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The following are simple consequences of  the results already established. 

PROPOSITION 7 

The sequence {v k} is bounded. 

Proof 
Follows from corollary 3, part 2. 

PROPOSITION 8 

The sequence {u~} is bounded. 

Proof 

[] 

PROPOSITION 9 

For every k = 1, 2 . . . . .  Apk= O. 

Proof 
Readily follows by substitution of definitions. []  

Given B and N as defined by relations (7), we define the set of  all possible 
dual estimates that are complementary to x* as the polyhedron: 

FD = {(Y, s) �9 Ary + s = c, sB = 0}. 

We can then prove: 

PROPOSITION 10 

Fv~O. 

Proof 
From theorem 4, the sequences {yk} and {s k} are bounded; thus on some 

common subsequence K, yk_~y* and s k---~s*. Using theorem 5, it is readily 

established that (y*, s*) EFt9. []  

Consider (y, 7) ~ FD. We can show that: 

LEMMA 11 

For each k = 1, 2 .... �9 

(9) 

Follows from the definition of  u k, theorem 4 and corollary 3, part 2. []  
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1. c T  x k C* - T  k -- = S N X  N . 

2. There are constants p~ > 0 and r2 > 0 such that 

p I ( c T x  k -- C*) < Ilxkll _< p 2 ( c T x  k - c * ) .  

3. - r  k = l .  SNI) N 

Proo f  

Part 1 of the theorem follows from the following identity: 

c T x  k C* - s T ( x k  X*)  - T  k . . . .  SlvX N. (10) 

The upper bound of part 2 follows from corollary 3 part 2, and the lower bound 
from part 1. Part 3 readily follows from the identity (10). []  

As a consequence of  lemma 11, we can define the polyhedron 

q: = {v �9 ANVN + ABVB = O, gf:VN = 1, VN >-- O} (11) 

and we note that the sequence { v k } C "V. 
We are now ready to prove two important results. 

LEMMA 12 

There exist P3 > 0 and P4 > 0 such that for every k = 1, 2 . . . . .  

1. IlX~skll < p3C~(xk ) r. 

k r r k 2. Ilpkll < p4fP(XN) IIXk,NSNII. 

P r o o f  

Using the argument of the proof of theorem 1 and proposition 9, for 
(y, ~) ~ F~, we obtain: 

II X~skll 2 = cT p k 

= ( A r y  +-~ ) rpk  

- T  k 
= S N P  N 

r - T - r  k 
= ( X k , N S N )  ( X k , N P N )  

<ll~Nil~(xkyi i  r k Xk,NSNII 

and part 1 follows with P3 = II~NII. To see part 2, note that from theorem 2 for 

some P>O" IIP~II<IlpklI<- - 7' cr-kt' = -;~ -TsNpNk _< ~11 ~Ni l~(xky II Xk,NSNIIr k and the 

result follows from part 1 with P4 = 1 P l -  [ ]  
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LEMMA 13 

There are constants P5 > 0, P6 > 0 and L > 1 such that for all k > L, 

1. Ilu~ll < P s ( c r x  k - c* ) r l l uk l l .  

2. IIs~ll < p 6 ( c r x  k - c*) zr- 

r - 1  k 3. ~ O ( v ; - l t t  k )  = ~)(V;, N ttN). 

4. 

P r o o f  

where 

cTx  k+l -- C* 
c r  x k - c *  = l -- o t6(u  k ) >- O, 

Ilukll 2 
6 ( U ~ )  -- - . - - r - ,  k 

r Vk,N uN ) 

Since x k ---) x* and x~ > 0, there is a p > 0 and an L > 1 such that for all k >_ L, 
II Xk-rB[I <- p. Let k > L. Part 1 follows from corollary 3, part 2, lemma 12 and 

Ilu~ll-< 
To see part 2, note that 

r k II Xk,~sBII 
II s~ l l -  II Xk-rBl[ (C-iX--; ~ C--Z)~ 

II x[ , r  B II II pk II 
(cTx  k - -  c*)r 

( c T x  k -- C*) r = IIX[.BIIIlukll(cr x k -- c * y .  

Substituting part 1, part 2 follows from proposition 8. Part 3 follows from proposition 
7 and part 1. Part 4 follows readily by substitution, results of proposition 7 and 
part 1. []  

4.2. TWO POWER CENTERS AND THEIR RELATION 

In this subsection, we consider the situation when r > 1, and the polyhedrons 
q,' and F D N {s �9 SN > 0} defined by (11) and (9), respectively. We define the power 
center of  q,,' as the solution to the following concave maximization problem: 

maximize - ~ v~ 2(r-l> 
j eN  

ANI) N + ABu  B = O, 

-sT1) N = 1, 

"O N > O, 

where the K.K.T. conditions defining the center are: 

(12) 



388 R. Saigal,  Pr ima l  p o w e r  aff ine scal ing  m e t h o d  

2(r - 1)V~(2r-1) e - ATz  - OYlV = O, 

- A T z  = O, 

ANVN + ABvB = O, 

J v  N = 1. 

(13) 

(14) 

0 5 )  

(16) 

We also define the power center of FD 71 { s : sN > 0 } as the solution to the 
concave maximization problem: 

maximize ~ S 2 ( r -1 ) / ( 2 r -1 )  

j ~ N  

ATy  + sN = cN, (17) 

A~y  = cB, 

S N >0,  

where the K.K.T. conditions defining the center are: 

2(r - 1) S~l / (2r-Oe _ uN = 0, (18) 
2r  1 

ANuu + ABuB = 0, (19) 

A T (y - Y) + (sN - Y~v) = 0, (20) 

a T ( y  - y) = 0, (21) 

where (y, Y) is an arbitrary element of FD, with ~B = 0. 
By modifying the objective function of power center problem (17) to 

2r - 1 _2(r-1)/(2r-1) 
2(r 1) y~ sj 

j e N  

we note that equation (18) is modified to 

�9 S N 1 / ( Z r - 1 ) e  - u N = O. 

And, as r --> 1, this approaches the analogous equation for K.K.T. conditions defining 
the analytic center of FD N { s : s N >  0}, which uses ~ j~u  log(sj) as its objective 
function. Thus, the power center of  FD f3 {s : sN-> 0} approaches its analytic center 
as r approaches 1. This is curious, since the objective functions do not share this 
property. 

There is an intimate relationship between the two centers, and we explore this 
in the next theorem. 
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THEOREM 14 

(v*, z*, 0 ' )  is a center of  V if and only if (s*, u*, y*) is a center of FD 
fq {s "sN>0},  and 

2r - 1 v2r+l 
s~v = 0* *,u e. 

Proof 

that 
Let (v*, z*, 0") be the solution to system (13)-(16).  Then it can be verified 

2r  - 1 1 / - 2 r + l  
SN -- O* "*,N e,  

y - y -  ol, z *, 

2(r - 1) ( 2 r  - l ~ - l / ( 2 r - l )  �9 

u -  2r 1 ~ , - - - -~J  v 

will solve the system (18)-(21).  
Now let the center of F D f) {s �9 su>  0} exist and the system (18)-(21)  have 

the solution (s*, u*, y*). Then it can be verified that the transformation 

eT ,,2(r-1)/(2r-l) 
~t = ,.5 ,, N e, 

2 r -  1 
f l -  2 7 ( r - 1 ) '  

0 = 2 ( r -  1)~ 2r- l ,  

z=-O(y*-y), 
D : ~U* 

will solve the system (13)-(16).  Here we have used ~-~uN = S~UN, which is readily 
established using equations (19)-(21).  [] 

Please note that these power centers may not exist, since the concave functions 
involved are not bounded above, and we have not shown that the polyhedrons 
involved are bounded. 

4.3. N E W T O N ' S  METHOD AND POWER CENTER OF V 

In the previous subsection, we have seen that the power center of V is 
determined by solving the system of equations (13)-(16).  This is a nonlinear system 
of equations, to which we can apply Newton's method to find its zero. The purpose 
of this subsection is to investigate this application. 
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Given v, z, 0, with v ~ q,', the Newton direction Av, Az, A0 is given by: 

- 2(r - 1) (2r - 1)v~2rAv - A~Az - AOY N 

= - 2(r - 1)V~c2r+le + A~z + 030, (22) 

- A T A z =  ATz, (23) 

ANAvN + ABAVB = 0, (24) 

~ A v N  = 0. (25) 

Consider the change of variables: 

z + A z  
2(r - 1)' 

~_ o+zxo 
2(r - 1)' (26) 

Av~ = ( 2 r -  1)AvB, 

WN = (2r -- 1)VNrAVN. 

Substituting this change in the system (22)-(25) ,  we can derive the following 
equivalent system with AN = ANV[v and sN = V~vSN, 

w N + AT~ + gN ~ = VN(r-l)e, (27) 

- A ~  = 0, 

ANW N + ABAV ~ = O, 

g~WN = O. 

We can then prove the following result: 

(28) 

(29) 

(30) 

LEMMA 15 

Up to a choice of Av~, the solution to the system (27) - (30)  is unique. Also, 

1. eTVN(r-1)WN = WTwN . 

2. Ilwull 2 < eTVN2(r-1)e. 

Proof 

The uniqueness follows from the fact that when the columns of the matrix 
An are linearly independent, the system has a unique solution. Otherwise, it is 
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readily confirmed that a unique solution can be found by replacing As with a 
submatrix spanning the column space R(A~) of AB. This only changes the value of 
Ao~. 

Multiplying equation (27) by w~, we obtain 

T ^T^ WTNgN ~ ,A,Tv-(r-1)~ wTwN + WNANZ-t- = " N ' N  ~" 

The second and the third terms on the left-hand side of the above expression, from 
equations (28)-(30), are readily seen as zero, and we have part 1. To see part 2, 
consider the optimization problem: 

maximize 

whose solution is x = V~vCr-l)e. 

xTx  

xTx  = eTVN(r-I)x, 
[]  

For every v>  0, by an appropriate choice of a submatrix of AB, we can 
guarantee that the system (27)-(30) is defined by a non-singular matrix. By a simple 
argument, it can be shown that different submatrices of AB affect only the value of 
Av}. The following is a well-known result relating to the rate and the convergence 
of Newton's method, not involving Av~. We state this result without proof. 

Assume that the sequence { v k } in "V is converging to the power center v*. 
Then the following can be proved about the Newton steps taken at the iterates vk: 

THEOREM 16 

There is an L > 1 and constants Pl > 0, P2 > 0 such that for all k > L, 

1. I IAv~ll / l lv~ - v~r = 1 + r with I Ski-< pl l lv~ - v~ll. 

2. II v~ + a v ~  - v~vll-< p=llv~ - v~ll =. 

4.4. AFFINE SCALING AND NEWTON STEPS IN q/ 

In this subsection, we will investigate the relationship between the affine 
scaling step interpreted in the polyhedron V, and the Newton step for computing 
the power center of this polyhedron. We will show that there is a close connection 
between these steps, and this connection will be used in the sections that follow. 
We first investigate the affine scaling step. 

The affine scaling step is defined by solving the optimization problem (5). 
Using part 1 of lemma 11 we can restate the problem (5) as: 

minimize iTpN 

AlvPiv + ABPB = O, 
T ~,-2r _Tv-2r  

PNAk,N PN + PBAk,B PB < 1. 



392 R. Saigal, Primal power  affine scaling method 

The K.K.T. conditions for the above problem are 

-SN A T y  -2r  - - 20Xk,N PN = O, 

-- A T y  - 20Xk,2BrpB = O, 

A N p N  + ABPB = O, 

IIx~-~pll = 1. 

(31) 

(32) 

(33) 

(34) 

Using the definitions of u k and v k given in (8), and setting u = u k, v = v k and 

P 

pB = c r x  k II I1' ( - c * )  r u 

y = 
-- ( c T x  k -- C* )r yk  

e011ull (35) 

0 = ( c r x k  - c* ) r l l u l l  

20 

=1,  

we can rewrite the system (31)-(34)  as: 

UN ArNY _ gN ~ _ O ' (36) 
Ilull e Ilull 2 

-4  
- A r y -  ilul12, (37) 

AN UN t 
1 1 - ~  + A B p  B = O, (38) 

UN 
gN T ilull= - 1, (39) 

where ,~/v = AN V[~ and sN = V~C~N. 
The next proposition relates to the system that defines the affine scaling step. 

PROPOSITION 17 

Consider the systems represented by the equations (31)-(34)  and (36)-(39) .  

1. (31)-(34)  have a unique solution which generates a solution to (36)-(39) .  

2. The solution to (36)-(39)  is unique up to a choice ofp~,  and there is a value 
for p~ for which the resulting solution also solves (31)-(34).  

3. When AB has full column rank, the two systems of equations are equivalent. 
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Proof 
Since equations (31)-(34) represent the solution to a strictly convex problem, 

they have a unique solution. It is now readily confirmed, by simple algebra, that 
u, y, p and p~, defined by the change of variables (35), solve the system (36)-(39).  
Thus we have proved part 1. 

From part 1, it follows that (36)-(39) have a solution. Considering qN 
=uN/llull 2, ~ =P/llull 2, ~ and p~ as variables, this system is linear in these 
variables. If AB has full column rank, the solution to (36)-(39) is unique, and part 3 
follows. Otherwise, since (36)-(39) can have a solution only if s8 lies in the row 
space R(An r) of AB, the third condition must have redundant constraints readily 
identified by choosing any full column rank submatrix of AB. 

To see part 2, let AB = (Ac, Ao), where A c has full column rank and spans the 
range (or column space) R(As)  of AB. Thus, for some unique matrix A, Ao = AcA. 
Replacing equations (37) and (38) by 

- a ~  - - s w  

Ilull 2 
and 

UN 

(40) 

(41) 

respectively, we obtain a new system that has a unique solution. By setting 
P~ = (P~, Pz~), and letting pA --- 0, the solution to equation (41) generates a solution 
to (38). Now, let (qN, Y, P, P~) be any solution to (36)-(39). This then generates 
the unique solution (qN ,Y ,P ,P ' c -  A p b ) t o  (36) and (39)-(41). Since only the 
vector p~ is modified in any solution to (36)-(39), part 2 is established with the 
required p~ = p J ( c r x  k - c*)lt ul[. [] 

As a byproduct of the representation of the affine scaling step by the equations 
(36)-(39), we prove the following important property of the sequences. 

LEMMA 18 

There exist a p > 0 and an L > 1 such that for all k > L 

erF~ k = 1 + 6k, 

where I Ski -< p ( c ~ x  k - c*) 2r. 

Proof 
Multiplying equation (36) by eTv  -(r- l)  k,N , we obtain 

erFl~ eTVk,NATy eTVk, N-gN 
i lukll  2 i lukll  2 -- 0. 
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Substituting ANvN =--AB1)B, and equation (37), we obtain 

r k - 1 = 0 .  eT~t k + 1)BS B 

The theorem now follows from proposition 7 and lemma 13. []  

Now consider the system (27)-(30),  defining the Newton step in V. By 
making the change of variables 

, ( r  
W N = V ;  -1)e - -  W N ,  

h l )  B = 1) B -- AI)~B 

in the system (27)-(30) ,  we obtain the equivalent system: 

- - g N 0  = o, 

- A T ~  = O, 

^ i 

ANW N + ABAf) B = O, 

^ T  p 
S N W  N = 1. 

Comparing systems (42) - (45)  and (36)-(39) ,  

(42) 

(43) 

(44) 

(45) 

we note that if PN = uN/llull 2, 

and b = (O,- s~/llull2, 0, o) T, 

where 

M ( v )  = 

r l 

al = V~, N (WN -- PN) 

a2 = ~ - y ,  

a3 = ~ 1 
I l u l l  2 ' 

a 4 = A13 B - p~, 

M(v)a  = b, (46) 

- - 2 r  
V~,N - A t  SN 0 

0 -- A~ 0 0 

AN 0 0 A B 

~v 0 0 0 

We now prove an important result relating to the solutions of the two systems. 



R. Saigal, Primal power affine scaling method 395 

PROPOSITION 19 

There are an L > 1 and f l> 0 such that for all k >  L 

u k _ V;r _ w k + A k 
Ilukll 2 

with II Akll-</311s~ll/llull 2. 

Proof  

It is readily confirmed that system (46) represents the K.K.T. conditions of 
the following quadratic programming problem: 

minimize r r aff sk / l lu  al V~,Nal + II 2 

ANal + ABa4 = O, 

-gT a 1 = O, 

where we can assume, because of lemma 15 and proposition 17, that the columns 
of AB are linearly independent.  Thus, we can substitute 

a 4 = - ( A T A B ) - I A T B A N a  1 

in the above optimization problem to obtain the equivalent problem 

minimize r r T~k al V~,Nal -- a n SB 

ANal = O, 

-SNa 1 = O, 

where .4N ----- AN -- A B ( A T , A B )  - l  AT AN and gk = _ AT AB(AT AB)- I  sw 2 
The above problem is a quadratic programming problem, and thus, its K.K.T 

multipliers are bounded independent of the diagonal matrix Vk, N. Thus, 

II (a2, a3)ll -< q(A)II ~ II. 
Since 

by defining 

Vk,g Vk,N ~--  W k ilukll2 

A k r T = - V~,N(ANa,.: + -sNa3) 

we obtain our result. [] 
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We now investigate the Newton step and the affine scaling step in the 
projected polyhedron q"N = { vN : v ~ "V}. 

Consider the sequence {v k} ~ ' V  N generated by the affine scaling method. We 
now prove the following corollary to proposition 19 which establishes the connection 
between an affine scaling step and the Newton step. 

COROLLARY 20 

. 

. 

P r o o f  

Let u k ~ "V N. Then 

The affine scaling direction at v k is 

where 

k+l a~ / ~ k  r k) Vk,NUN 
ilukll 2 ' 

Ilukll 2 
t~ k = a  

r v[ -  luk ) " 
The Newton step at v k is 

( r k  I Vk,NUN g r A k 1 v k _ u - - - - - T - - - -  + 
Ark  - 2 r -  1 11 II 2 k,N �9 

To see the proof of part 1, by simple substitutions, we note that 

k + l  k 
k + l  - XN X~ 

I)N -- "ok = cTx k+l -- C* cTx k -- C* 

-V r k 1.)k t,t k,NUN 
r vj[ ~ k ) 

1 allukll2 
~(v~-lu k ) 

- v  k 

allukll a I r k  ) ~(v[ -lug) uk VLNUN 
1 allukll2 Iluk[I 2 " 

r v ( - lu  k ) 

Part 2 follows from the change of variables (26) and proposition 19. []  

4.5. CONVERGENCE TO OPTIMALITY 

We now investigate the convergence to optimality of primal and dual se- 
quences, without the non-degeneracy assumption. This proof closely relates to the 
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proof of the 2/3rd result for r = 1. In that case, a local potential function is analyzed 
to establish the convergence of the dual sequence. Here, we will instead use a merit 
function, which also defines the power center of "V. We will introduce this function 
after proving a technical lemma. 

L E M M A  21 

There are an L >_ 1, f l>  0, y>  0, 6 >  0 and SI > 0 such that for every k >_ L, 

1. [I u~ll >-- 61. 
2. 1 -IIw~ll - I  Ski -< 6(u~)_< 1 with I Ski -< NcTx k-  c*) 2~ where 

6(u k) = Ilukll 2 
r - I  k " 

O(Vk, N UN) 
3. S(U~) >-- r> 0. 
4. (crxk+ 1 _ c*) < ~(crx  k - c*) and thus Y~*~=o(CrX k - c*) < ~ .  

P r o o f  
�9 " �9 k r - l - k  L t From lemma 18 and defimnons, u N = Vs u uN,  and for some >_ 1 and all 

k >_ L ' ,  errt~v = 1 + ~k with Sk < p ( c r x  k - c*) 2r- ~'hus, there is an L >_ L '  such that for 

all k >__ L 
r  > !  

q - 2q" 

Now assume that, on some subsequence K, Ilu~]l ~ 0. Then, for k ~ K, 

Vkr-1~ k ,U N ~ 0  
o r  

v_~-~  -~ 0 for all j ~ N. 

Let ~k = q~(fik)> 1/(2q). Thus, on some subsequence K ' C  K, Ik= I. Now, for 
k E K ~, we note that fit k > 1/(2q). Thus, 

v~ ---~ 0. 

But # = ' 4 4  Thus, st =, a contradiction, as theorem 4 implies that the dual 
variables s are bounded, and part 1 follows�9 

To see part 2, from proposition 19, 

r - I  k [ '~,r-1 k ~ 
4~(V/,,N UN) _ ~l  Vk,U UN 

J 
= r  k) 

< 1 + I[ w~ll + ~k, (47) 
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where IlAkll = •k; and the lower bound follows from lemma 18 and part 1 for each 
real a > -1 ,  I /(1 + a) > 1 - a.. The upper bound follows from the fact that lemma 
13 part 4 holds for every tz < 1. Part 3 follows from part 1 and propositions 7 and 8. 
Part 4 follows from part 3 and lemma 13 part 4. []  

When r = 1, the convergence to optimality is proved by using a merit function, 
called a local potential function, which is shown to decrease locally. This merit 
function also defines the analytic center. Here, we will use 

FN(X) = Z(1 ) j )  -2(r-l) 
j~N 

as the merit function in our analysis, and it is the negative of the objective function 
of the power center problem on "V. 

We now prove a simple lemma related to this function: 

LEMMA 22 

by v. 

I. 

Let w and v > 0 be arbitrary p vectors with V the diagonal matrix generated 

Let ~b(-w) < 0. Then 

P (2r 1) vj ((1 + w j ) - 2 ( r - l )  _ 1) < - 2 ( r  - 1)(erVw - wrVw) .  
- 2 

j = l  

2. Let 1 > r  > 0. Then 

P ( 2 r  - 1 )  wTVw).  Z Vj((1 + wj) -2(r-l) - l )  <__ - 2 ( r  - 1)(eTVw - 2(1 - ~0(-W)) 2r # 

j = l  

Proof  

Part 1 follows from the following identity, obtained by using the mean value 
version of Taylor's formula and noting that wj > 0 Wj >-- O. This implies that the last 
term in the expression below is non-negative. 

(1 + wj)  -2(r-l) = 1 - 2(r - 1)wj + 2 ( r - 1 ) ( 2 r - 1 )  2 
2 wj 

2(r - 1)(2r - 1)2r 

3! 
(1 + ~ j ) - ( 2 r + l )  wj.3 

Part 2 follows from the following relations, obtained by again applying the 
mean value version of Taylor's formula, where ffj > - q ~ ( - w ) :  
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(1 + w j )  -2 ( r - l )  : 1 - 2 ( r  - 1)wj + 

and we have our  result. 

< l - 2 ( r - 1 ) w j  + 

2 ( r - 1 ) ( 2 r - 1 )  z 
2(1 + l~j )2r wj 

2( r  - 1 ) (2r  - 1) 2 wj 

[ ]  

We are now ready to prove  the main result related to the decrease  in the merit  

funct ion:  

PROPOSITION 23 

Let  
Ilukll = -I  k 

~, : OC ~(v;_luk ) and ~ = (2r  - 1)Vk,NAV N. 

Then,  there are an L >_ 1 and a 13 > 0 such that for  every  k >_ L 

FN(x k+l) -FN(x k) 2( r  - 1)~ 

1-  6c 
^k - T . . - 2 ( r - l )  ^k ((1 ~l----a--~- r ( 2 r - 1 ) ~ ) ( w N )  Vk, N W N 

where  I~kl ~ t~(--~)(--DkN))-(r-1)( cTXk -- C*) 2r .  

+ #k 

Proof 
F rom step 4 and proposi t ion 19, for  each j E N, 

k+l  xj ilukll2 (1)jk') r - 1  k Uj 
- 1 - 0 :  k xj r  k) Ilukll 2 

. k , r - I  k 
: l - -  a I, Dj )  Uj 

Ilukll 2 

^k ^k = 1 - ~(1 - wj + A j),  

where  ~k = V[a-N1Ak. From the above,  defini t ions and lemma 13 parts 3 and 4, we 

obtain 
k+l  k+l  

l)j Xj cT xk -- C* 
k k cTxk+I  * 1)j Xj -- C 

^k ^k = 1 + ~ - - - ~  (wj - A j )  

> 0 .  
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k k + 1 k (~k  -- Aj ), and note that - 1. First, Let Oj = vj / v j  - 1 = t~/(1 - t2) ^k 0j k > consider 
the case when 1 > ~( -O h) > 0. Then, from lemma 22 part 2, we obtain 

FN(xk+l) FN(xk) Z ' "  k + l ) - 2 ( r - 1 ) _ ( D j k ) - 2 ( r - l ) )  
_ -- tt/)j 

jeN 

2 1 ( r - 1 )  ( r , , -ZCr-1),^k /~k < _-~ ~e Vk, u (W N -- ) 

( 2 r -  1)t2 (~k  ^k r -2 ( r - l )  -- / 
- - a  ) vk, N s  2(1 - t~) (1 ~b(- O k ))2r j 

Using proposition 19 and lemma 13 part 3, we obtain 

s 1 - d p ( - o k ) = l  l_--t~(--~kN + ) 

1 - l ~ ( 1 - ~ r  +s 

r-1 k 1 1 1 - 6: q~(V~'N uN) 
- 1 - ~  

1 - a  
1 - 6 "  

Thus, from lemma 15, as 1 - t~ < 1, we obtain 

where 

FN(X k+l ) - FN(X k) 

-< 2 t 2 ( r - 1 ) ( (  l - l - t 2  

-< 2 t 2 ( r - 1 ) ( (  l l - t 2  

T,,-2(r-1)~k 
I.tk = e Vk. N 

(2r -2_0 -- a )  ~ - l ) t 2 ( 1  - ~ )2 r - I  ) (wkN )T Vk,Nll-2(r-1)'̂ "Nk 

(2r--1)~ l )rlz-2(r-1),2k 1 
2(1 - a )  2r (ffkN + flk Vk,N "N ' 

(2r - 1)t~(1 - (~)2r-1 

2(1 - a )  2 r  

r,t-(r-1)Ak (2r - 1)t~(1 - t~) 2r-I  
= e Vk, N '" -- 2(1-- a )  2r 

+Pk 

(48) 

(2( l~k)T r~ k,N ~ -- (s "k,NLZ-2(r-l)Ak~ ) 

(2(w )r Ak _ (Ak)r Ak ). 

Now consider the case when ~b(- O k) < O. Then lemma 22 part 1 must be used 
to calculate this change. By an identical analysis as above, in this case we obtain 
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FN(Xk+I)- FN(xk) <-- -l--6t I - -~ l - - -~  j~WN) Vk, N 

where 

# t  k = _T,t-(r-1) Ak (2r -- 1)t~ ( 2 ( w ~ ) r A  k _ (Ak)r Ak)" 

As a < 1, t~ < a ,  it is readily seen that the bound obtained by part 2 of lemma 22 
is larger. As - r  k. " k .ik = rmnj ~-N vj we see, using lemma 15 part 2 

leZV~,~r-1)Akl < q(v~, )-(r-1)]lAk[I, 

I ( w k ) r  Ag I _< ,J-~(vk k )-(r-1)ll Akll , 

and our result follows from proposition 19 and lemma 21 part 1. [] 

We are now ready to prove the main convergence theorem. 

T H E O R E M  2 4  

Let t z / ( 1 -  a)2r< 2 / ( 2 r - 1 ) ,  and assumptions 1 - 4  hold. Then there exist 
vectors x*, y* and s* such that 

1. X k --') X*, 

2. yk__y y*, 

3. s k ~ s*, 

where x* is an optimum solution of the primal, and (y*, s*) is an optimum solution 
of the dual. In addition, (y*, s*) is the power center of the optimal dual face, and 
thus strict complementarity holds between this pair of optimum solutions. 

Proof 
From lemma 21 part 3, we see that there is a y> 0 such that fik > ya .  Thus, 

2(r - 1)t~ k 2(r - b a y  
> - 0 1  > 0 ,  

1 - t~ k 1 - a 7 

and from lemma 21 upper bound in part 2, a > t~ k . Thus, 

1 -  ( 2 r - - 1 ) t ~ k  > 1 ( 2 r - 1 ) a  _ 0 2  > 0 .  
2(1 - o~) 2 r  2(1 - a )  2r 

Let v k. = minj v~, K be the subsequence such that for each k E K, v k. < 6 with 
Jk Jk --  

6>  0 and 1 - 2 M q 6 " - l >  0 when M >  0 is an upper bound on Ilu ll. Any cluster 
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point zr of the subsequence satisfies Ir < 6. From proposition 19, there is an L > 1 
such that for all k > L, 

w k. = 1 Jk 

U k k ) r - I  1 - 2 q M 6  r-1 
1~ (vJk >_ > O, 

Ilukll z 2 

^k \T  T , - 2 ( r - 1 )  ^k wN) vk,N wN > #2, 

where ]22 = 0.25(1 - 2 M q 6 r - l ) 2 ( 1 ) j k  k ) - 2 ( r - l ) .  Thus, from proposition 23, 

where 

FN(X k + l )  - FN(X  k)  < 01(02 "4- Ek)(~lkN) T ' ' - 2 ( r - 1 )  ^k  _ -- Vk, N WN,  

IEkl ---- ^k , T , , - 2 ( r - l )  ^k 
Wlv) Vk,N wN 

]22fl(Dk k ) r - l ( c T x k  -- C*)2r, 

and from proposition 7, ek ~ O. Thus there is an L > L such that for all k > L, 

V N ( x  k+l )  - F u ( x  k)  ~ - _ _  0102 , ^k \ T , , - 2 ( r - l )  ^k 
2 t w N  ) Vk'N WN" 

Now, from corollary 3 part 2, there is a p > 0 such that 

II~kll 2 (}}~)r , , -2( r -1)  :~ > 
Vk, N "v N - -  

( cr xk c, ] 2~r- 
>-ll, ll ) 

>__ p2(r-1)ll ~112  
Thus, for each k > L in K, 

F N ( x  k+l ) - F N ( x  k)  < - OlO____L p2(r-1)llFv~ll2 
2 " 

From the definition of K, for each k ~ K, 

v k > 6 .  
Jk 

Thus, from proposition 23 there is a fl' > 0 such that I#kl ~ f l (cTx k -  c*) 2r, where 
fl  = f l ' / 6  r-1 and 

FN(  x k + l  ) -- FN(  Xk ) <- --OI(p2(r-I)o2]I~VkNll2 + # k ) .  

Thus, for each k > L there is a trk> 0 such that 
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s (FN(Xk+I)- FN(xk)) <----O102p2(r-1)( Z �89162 2 + '~,llW~ll z - o ,  ~ ,uk 
k=L ~.k~K k~K k~K 

From lemma 21 part 4, 

- ~ ~kll~kNII = --01 2 ].,tk. 
k=L k~K 

k -< ~ [Uk[ -< ~ f l ( c T x  k - -c*)  2r 
k~K k~K 

< oo. 

From corollary 3 part 2, FN(x  k) is bounded below by zero on this sequence. Thus, 
II ~11 ~ 0. As ~ k  ( 2 r  -1  t = - 1 ) V k , N A v  N,  from proposition 7, 

and, from proposition 19, 
A v k  ~ 0 

Vkr-1 k 
,N UN 

---fie. 
Ilukll 2 

Since the only vector in "VN for which the Newton step AvN = 0 is its power center 
VN, we must  have 

- - ,  

Let K be such that for k E K (it exists since all these sequences are bounded) for 
some vectors x*, y* and s*, 

S k ~ S*, 
yk  __.) y* ,  

U k ~ U*, 
and so 

Vkr-lu k , , r - I  * 
,N N V*,N UN 

Ilukll 2 Ilu*ll 2 
- e.  ( 4 9 )  

Using theorem 14, it is readily seen that (y*, s*) is the power center of the optimal 
dual face; and our result follows from the complementary slackness theorem. [] 

We get the following sharp bound on the linear convergence rate of {crxk} .  

PROPOSITION 25 

Let a / (1  - ~)2r < 2 / ( 2 r -  1). Then 

c T x  k+l -- C* 
lim 

k--~. cT x k -- C* 
= l - i X .  
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Proof 
Follows readily from proposition 19, lemma 21 part 2 and equation (49). 

[] 

Theorem 24 proves the convergence to optimality for a constant step size 
a > 0 determined such that 

a 1 < - -  
( 1 -  a )  2r 2 r -  1 " 

For r = 1, this requires a < 1/2. To obtain a result analogous to the 2/3rd for the 
standard affine scaling method, we introduce a variable step strategy, i.e., we will 
allow the stepsize to vary, and in iteration k, we will choose the stepsize ak by rules 
described below. This increases the step size implemented, which will be shown, 
asymptotically to be given by the formula 

ak 2 
1 - ak 2r - 1 ' 

which for r = 1 gives the required 2/3rd. We obtain this increase by using the 
following estimate for t~(u k) (of lemma 21) 

II X~s k II = 
q~k = . . . . 2 r _ l s  k �9 (50 )  ~)()~k ) ( x k ) T  sk 

We now establish the goodness of the estimate (50). 

LEMMA 26 

Let "r k be defined by equation (50). There are an L > 1 and a fl > 0 such that 
for all k > L 

6 ( u ~ )  = ~k + 6k, 

where I~kl <[3(crxk-c *) and t~(u~) = II ukll 2/~(VZ, Nr-I UN).k 

Proof 
This result follows readily from lemmas 13 part 2, 18 and the upper bound 

of part 2 of  lemma 21. []  

Since "r k is, asymptotically, a very good estimate of t~(u~), in place of  using 
a / (1  - ix) 2r as an estimate of t~(1 - t'~)2r-I/(1 - ix) 2r in the relations (48), we will 
use the estimate Zka of t~ in the above formula. Also, from lemma 21 part 2, 
whenever IIw~ll ~ 0, ~(u~) ~ 1. Thus, in this case ~k ---> 1, and the new estimate 
approaches a / (1  - a).  We now present this step selection strategy. 
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Define a* such that 
tz* 2 < - -  

(1 - a * ) 2 r  2 r -  1" 

Let 0 > 0 be very small and at iteration k choose the step size a k by the following 
strategy: 

Step 1. Let a '  be such that 

"Cka'(1 - T k a ' )  2 r - 1  2 
- 0.  (51)  

( 1 -  a ' )  2r ( 2 r -  I) 

Step 2. Define 
a '  if a"  >_ a* ,  

ak = a* otherwise. 
(52) 

The above choice guarantees that the estimate is not smaller than one 
obtained from theorem 24. The next lemma establishes a relationship between the 
a '  computed in (51) and the related expression in system (48). Note that the non- 
linear system (51) has to be solved to obtain a ' .  

LEMMA 27 

Let a '  be computed by (51) and let ~ = S ( u ~ ) a ' .  Then, there are an L _> 1 
and a f l>  0 such that for all k_>L 

~(1 -- ~)2r-1 = ,Cka,(1 -- T k a , ) 2 r - I  + 6k ' 

where l akl --- k - c*) 

Proof  

Follows readily from lemma 26, and the fact that for small e > 0, (1 + e) 2r- 1 
< 1 +4re.  []  

We are now ready to prove the main theorem of this section. 

THEOREM 28 

For each k, let ct k be generated by the above rules and let the assumptions 
1 - 4  hold. Then, there exist vectors x*, y* and s* such that 

1. x k ---) x*, 

2. yk  __~ y*, 

3. s k --~ s*, 
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where x* is an optimum solution of the primal, and (y*, s*) is an optimum solution 
of the dual. In addition, (y*, s*) is the power center of the optimal dual face, and 
thus strict complementarity holds between this pair of  optimum solutions. 

Proof  

Assume that ak = a* for each k. Then this theorem follows from theorem 24. 
Otherwise, for each k for which ak = a '  > a*, using the same argument of theorem 
24, it is readily shown that for some fl > 0, 

FN( xk+l ) - FN( xk ) < -/ 11 w ll = 

where #k < ~ cTxk-  c*) 2r. The proof is completed in the same way as in theorem 24. 
[] 

We now obtain the asymptotic behavior of ak. 

COROLLARY 29 

~k --~ 6~, where 
r 2 

- -  0 ,  
1- r  2 r - 1  

Proof  

As a consequence of theorem 28, we obtain the fact that 71 w~[I -~ 0. From 
lemma 21, S(u~r ---> 1, from lemma 26, "c k --> 1, and we have our result. []  

5. Accelerated primal power affine scaling method 

We will now use the connection between the Newton and the Affine Scaling 
step, developed in section 4, to accelerate the convergence of the method. We first 
present the accelerated version of the method and then investigate its convergence 
and convergence rate. This accelerated primal power affine scaling method is 
generated by replacing steps 3 and 4 of the method described in section 2 by the 
following three steps, where 0 < •< 1 is a constant whose value will be specified 
later: 

Step 3.1. Min-ratio test: 

�9 rllx r-lskll k l 
O k = n u n  ~. k . 2 r - I  k " Sj  > 0 

J LtXj ) sj 

II ' ' 2 r - I  k x k s 

~ ( x 2 r - l s k )  " 

If O k= 1, set a k =  1 and go to step 5. 
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Step 3.2. Step size selection: If erXk sk > 1, set ak = a and go to step 4. Otherwise, 
define 

tz~ defined by (52), 

�9 k < ~ / ( x k ) r s  k }, N k = {j  Xj  

~k = eT  Xk,Nk s k  k , 

1 _fXk'Nk~/k ,.2r-lkllxs 2 ) Ak,Nk SN k 

- 2r-1  ' 

Sk = II h/~, II, 

= min ~3r + 2, log(ek)_; Pk 
L log(zk ) J" 

1. Predictor step: If Pk >- 1.5r, then 

ak = 1 - max {e~,~'f~ }. 

2. Corrector step: Otherwise, 

~Yk~)(Xk,N k SN k ) a k = rrfin a 'k 
2rll X ; ~ s k l l  2 ' " 

Step 4. Next interior point: 
x 2 r  k 

x k + l  = X k -- a k O k  k S 
l l . . 2 r _ l  k �9 A k S II 

Some comments  are in order here. This acceleration scheme is identical to 
the two-step acceleration scheme of Saigal [18]. h~v computed in step 4 is a very 
good estimate of the Newton step Av~, and its magnitude ek is used to estimate the 
distance to the power center V~v of ~V N A { VN" vN > 0}. Asymptotically, we apply 
a predictor step when the size ek of the Newton step is of the order O(crx k - c*) 2r, 
and the corrector step otherwise. As is well known about the Newton step, 1[ Avk[l 
is a very good estimate of II v~-vTvl l .  During the corrector step, tzk is chosen so 
that 

k + l  1) N -- 1) k = A1) k -b O( c T  x k -- C* ) 2r 

and thus the affine scaling step behaves, asymptotically, like a Newton step. We 
now establish three straightforward results and then prove the convergence of this 
accelerated method. 
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LEMMA 30 

Let N be defined by the system (7). There is an L > 1 such that for all 
k > L, Nk = N, where Nk is defined in step 3.2. 

Proof 
From lemmas 13 part 2 and 18, there are Pl > 0, n: 2 > 0 and L > 1 such that 

for all k > L w e h a v e  I I ~ l l  = IIXk, Bsw  k - c*) < p~(cr  x k - C*) 2r-I and eT~t k 
- -  ^ ^ N 

= 1 + 6k with I Ski -< p2(crx k - c '~2~. Thus, for some d; 3 > 0, L > L and all k _> L, we 
have 

er Xk sk = (cr x k - C*)(er~ k + er~ k )  

>__ 0.50(crx k - c*), 

e rx  k < p 3 ( c T x  k -- c*),  

xj g > er~-~k sk for all j ~ B ,  

xj g < e~-~k sk for all j E N, 

where the second inequality follows from lemma 11 part 2. The third inequality 
follows from the fact that x] > 0 for each j ~ B and the fourth from first and second 
inequalities. []  

And now a corollary to theorem 16. 

COROLLARY 31 

There is a 0 > 0 such that for all II vN - v~vll < 0, 

0.5011VN - v~vll-< IIAvNII-< 1.5011VN -- V~VII. 

Proof 

Follows from theorem 16, part 1. 

Another lemma follows: 

[] 

LEMMA 32 

Let L be generated by lemma 30, and M > 0 be large. There is an E > L, 
01 > 0 and 02 > 0 such that for all k > L, 

1. IIh k -  Avkl l  _< O(cTxk-c*) 2r. 

2. 0.50(crx k -- C*) <-- ~k ~ 1"50( cTXk -- C*). 
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3. Whenever II ~ k _  vTvll < ~ ( c ~ x  k * p _ - c  ) , w i t h M > f l > 0 a n d p > l . 5 r ,  then 

IIw~ll-< O ( c r  x k - c * ) P .  

P r o o f  

We note that by substitution of the results of lemma 18 and corollary 20 
part 2, and definitions, we get 

1 ( v  k 

h~ - 2 r - 1  e r ~  

r k 
1 v k  V~,IVUlV 

2r - 1 II ukll 2 

Ilukll 2 ) 

V r A k 
+ k,N 

1 ( V  r Ak 
2 r - l [  k,N + -  

= AVkN -- t k" 

l + t ~  k V 

As vk is bounded by proposition 7, part 1 follows. Part 2 readily follows from 
lemma 18. To see part 3, since v~ > 0, there is an L > L such that for all k > L, 

mini  1)~ )l,5r a -  >_ M ( c r  x k - c* . 
2 

Thus, under the hypothesis of the lemma, 

k >1)j --I1)j k l > a  1)j _ - -  1 ) j  _ 

a n d  our result now follows by observing from the change of variables (26), that 
k)-rllAv~l[ and the result of corollary 31. [] II w~ll -< (2r  - 1) (mini vj  

We now use the connection of the power affine scaling method to Newton's 
method computing the power center v~v of "V N and establish convergence and 
convergence rate of the accelerated algorithm. We will give a choice of the constant 
6 > 0 for both the two-step and the three-step cases, and obtain a rate which is a 
function of r. This rate approaches two-step quadratic as r approaches infinity. We 
now investigate the predictor and the corrector steps under the assumption that 
power center V~v of "Vjv exists. This will be implicit in the hypothesis of the 
propositions. 

We are now ready to investigate the predictor step. 

PROPOSITION 33 

Let E be as in lemma 32. Assume that 0 < 6<  1, k>  L, M > / 3 >  0, 1 . 5 r < p  

and II v ~ -  v~,ll --- ~ ( c ~ x  ~ - c*)" .  Then 
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1. There are 0 < 01 < 02 such that 

O I ( c T x  k -- C*) l+6pk <-- ( c T x  k+l -- C*) <-- 0 2 ( c T x  k -- C*) p~. 

2. There is a 03 > 0 such that 

II v k+ l _ v~vll -< 03 ( c T  x k + 1 _ c* )P'~/<I + 6pk ), 

where Pk = 1 + min{p, tSpk} and Pk = min{2p,(1 - S ) p k } .  

P r o o f  

From corollary 31, Ilmvkll ~ 1 . 5 f l ( c r x  k - c*)  p. Also, by lemma 32, 

II h~ll---II Ava i l  + IIh k - AVkNII-< 1 .5 f l ( cTx  k - c*)  p 

"b O(cT x k -- C*)2r ~ ~ ( c r  x k _ c*)P.  

We note the following sequence of inequalities which follow from lemmas 13, 21, 
32 part 2, 32 part 3 and some 0 > 0: 

(0.50)6Pk ( c r  x k _ c*)a,k <_ ~,~k pk 

_ < l - a  k 

_ < l - a  k 
Ilukll 2 

O ( v [ - l ~  k) 

( r  - -  C * )  

( r  -- r  

- max  e~,yak pk w~tl Ski) <1 (1  { -I 

< m a x { e 6 k , Y ~ k P k } + l [ w k l l + l ~ k l  

<_ O(cT  x k - c*)min{p,6Pk}, 

and we have part 1. From corollary 20 parts 1 and 2, and some simple algebra, we 
obtain 

where 

tk = 2rCtk~(U k )  -- 1 

1 - a k 6 ( u ~ )  

k+l 1) N -- '0 k = AI)kN + t k, 

1 ( h k +  1 ~k 1 1 v r A k  
2 r - 1  2r2-1 l+c~ k vk 2 r - 1  k,N �9 
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Using the facts that 6(u k) < 1, ak < 1 -- ek ~, we obtain, for some 0 > O, 

Iltkll < O(crx  k _ c*)O-,~)pk 

Now for appropriate positive constants, from theorem 16 we see that 

k+l  A v ~  - vTvll + II tkll uu -u~vll<-Ilu k +  

< pallu~v - v~vll 2 + O(cTx k - c*)O-~)P~ 

<_ p ~ ( c T x k  -- C*) 2p -b o ( c T x  k -- C*) r 

and part 2 follows from the lower bound of part 1. 

We are now ready to investigate the corrector step of the algorithm. 

[ ]  

PROPOSITION 34 

Let E be as in lemma 32. Assume that for some k > E and fl > 0, II u~  - v~ll  
< f l(crx k -  c*) p. In the case 

1. 1 .5r /2  < p < r, one corrector step will be taken, after which, for some 0t > 0, 

I lu~  § - u~ll  -< 01( crx k § l - c*) 2p. 

2. 1 .5 r /4  < p < r /2 ,  at least one corrector step will be taken, and after at most 
two steps, for some 02 > 0, 

II v ~  § - vTvll -< Ol(cTx k§ - c*) 4p. 

P r o o f  

Let 2r-  
7k~(Xk, N Isk  ) 

lZk= 2rllX~skll = 

From lemmas 18 and 21 part 2, 2r#  k > eY~k = 1 + 6k. From equation (47), 

2r/.tk < (1 + t~k) (1 + IIw~ll  + II Akll) .  Thus, 

1 l a ~ l < / . t k <  1 +[P~I 
2 - - ~ r  ' 

where, using lemma 32 part 3, we note that 16~1-< O*(crx ~ -  c*) 2r and Ip~.l-< 
O'(crx k - c*) p. From corollary 29, as a~ approaches 2 / (2r  + 1) - e for some small 
e > 0 , for all sufficiently large k, at step 3.2, 

a k =  2rllX~skll 2 
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Thus, from lemma 13 part 1, corollary 20 parts 1, 2, and simple algebra, we see 
that 

k+l 1 "k (~k (VkN __ V r u k  
v N - v ~  - 2r:S]Z~k ~ k,N ilukll 2 

where 
= AVkN - t k, 

tk  = - -  2 ( r - 1 ) S k  +S~ ( v ~  - V~: N u ~  l 1 v r  A k 
(2r-h~(T;r-1--~k) [, Ilukll 2) 2 r - 1  k.N �9 

Using propositions 7, 8 and lemma 21 part 2, we can show that 

IIt~ll _< f l ' ( c r x  k _ c * )  2r " 

Thus, after one step with ak, we see that (using theorem 16), 

IIvNk+1 _ vtvll --< IIv~ + ZXV~ -- Vtvll + Iltkll 

<-- P ' I I v ~  -- v~vll 2 + f l ' (CrX k - c * )  2r 

< fl* ( c r x  k - c*)2P. 
From, lemma 13 part 4, 

c T x  k+l -- C* 

cT x k -- C* 
= 1 - a k e ~ ( u ~ )  

(53)  

e r ~  
--1 

2r  ' 

and using lemma 18, we see that for all sufficiently large k, 

cT x k + l * 0.5 1 -  1._55 < - c  < 1 - - - -  (54) 
2 r  - c r  x ~ - c* 2 r  " 

Substituting the above inequality, we obtain part 1 of the theorem for 01 = 
(1 - 1 . 5 / 2 r ) 2 p f l  *. 

To see part 2, we note that after one corrector step, either 2p becomes greater 
than 1.5r and we stop the corrector iterates and go to the predictor step; or, after 
one more corrector step, the desired result is obtained. [] 

We are now ready to prove the main convergence theorem. 

THEOREM 35 

Let the sequences {xk}, { y k }  and {s ~} be generated by the accelerated method 
with r > 1, and let assumptions 1 - 4  hold. Then, there exist vectors x*, y* and s* 
such that 
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1. X k ~ X * ,  

2. yk ~ y.,  

3. sk---~ s *, 

where x* lies in the relative interior of the optimal face of the primal, and (y*, s*) 
is the power center of  the optimal face of the dual. In addition, asymptotically, the 
sequence {crx k -  crx *} converges to zero as follows: 

1. For ~=  1 / 2 ( r +  1), the convergence is two-step superlinear at the rate 
1 + r / ( r  + 1). 

2. For S = 3 / 2 ( r +  1), the convergence is three-step superlinear at the rate 
1 + 3r/(r  + 2). 

Proof 

We now show that asymptotically a predictor step must be taken. Assume that 
there is an L > 1 such that for every k > L, a corrector step is taken. Then ak is 
selected by the variable step selection strategy, from theorem 28, { v~v} converges 
to the power center VN. 

As in the proof of proposition 34, from equations (53) and (54) we obtain 

iIvNk+l _ v~vll -< p l l v ~  - v~ll 2 + [~(crx k+l - r  

k+l v vll < p ' (cTx  k+l -- c*)Pfor Thus, after several such corrector iterations, II o N  - - 
p > 1.5r and l > 1. From corollary 31 and lemma 32, Pk+t > 1.5r and a predictor step 
must be taken, and we have a contradiction. We note that the constant p ' >  0 is 
independent of k, and is the required M in proposition 33. 

Let k be an index, sufficiently large, at which a predictor step is performed. 
To investigate the convergence rate of the two-step method, assume pk > 1.5r, and 
let ~ = ( p k - - r ) / ( p k ( r + l ) ) .  By the choice of Pk, at step 3.2, for p > l . 5 r ,  
p~ = min{2p, (1 - 6)pk} = (1 -- 6)pk after one corrector step, from propositions 33 
and 34, we obtain 

k + 2  * _ C * ) 2 ( 1 - - t S ) p k / ( l + 6 p k )  I lv u - VNI [ < 03(cTx k+2 

where 2(1 - 8)pk/(1 + 8Pk) = 2r. Thus, part 1 follows as 

1 
6 -  2 ( r - l )  when Pk = 2 r ,  

and the convergence rate obtained is 

p* = l + m i n { 2 r , ~ p k }  = l + Spk = 1 +  r 
r + l "  
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steps 

For  the three-step method,  let 8 =  ( 2 p k -  r ) / ( p k ( r  + 2)). After  two cor rec tor  

[11) Nk+3 _ 1)~/ll _< O4(r _ r 

where 4(1 - S)pk / (1  + Spk ) -- 2r. Part 2 now follows since S =  3 / ( 2 ( r  + 2)) i fpk  = 2 r  
and the convergence  rate 1 + ~Pk = 1 + 3 r / ( r  + 2). [ ]  

We now investigate the efficiency of  the asymptotic convergence rates obtained, 
and thus get some measure of  the relat ive effect iveness  o f  the accelerat ion.  For  this 
purpose,  we will use the measure int roduced by Ostrowski  [16, section 6.11] to 

compare  algori thms achieving different  asymptot ic  rates of  convergence ,  and requir- 
ing different  amounts  of  work per i teration. He suggested the fo l lowing measure:  

log(p)  

W 

where  p is the asymptot ic  convergence  rate of  the accelerat ion,  and w is a measure  

o f  the work per iteration. The larger this measure,  the more  eff ic ient  the accelerat ion.  
This measure  has been used by Brent  [4], who invest igated the hybrids of  Newton ' s  
method  proposed  by Shamanskii ,  and by Saigal and Todd [19], who invest igated the 
hybrids  o f  f ixed point  comput ing  methods  with variants o f  Newton ' s  method.  

The  asymptot ic  convergence  rate of  the accelerated power  primal  aff ine 
scaling method depends on the choice  of  r and the two-step or three-s tep method.  
Table 1 shows these calculat ions for  several  choices.  

Table 1 

Two-step Three-step 

rate efficiency rate efficiency 

r = 1.0 1.5 l) 0.2027 2.02) 0.2310 
W W 

r = 1.5 1.6 0.2350 2.2857 0.2756 
W W 

r = 2.0 1.67 0.2564 2.50 0.3054 
W W 

r = 4.0 1.80 0.2939 3.03) 0.3662 
I r  W 

1) Tsuchiya and Monteiro [24] obtain a rate of 1.3. 
This can be established by the method of Saigal [ 18]. 

2) This is obtained in Saigal [18]. 
3) The efficiency of the three-step cubic is greater than 

the two-step quadratic, which is 0.3466/w. 
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6. Concluding remarks 

In this paper, we have shown that for every r > 0.50, there is a variant of the 
affine scaling method, which we call the primal power affine scaling method. The 
usual method is generated when r = 1. We have analyzed the convergence of these 
methods for r > 1. The analysis for 0.50 < r < 1 is analogous, with a few changes 
in the formulae to account for the sign changes and the objective functions of the 
power center problems. 

Under the assumption of non-degeneracy, convergence to optimality of the 
primal sequence is shown for any step size less than 1. To investigate the con- 
vergence without the non-degeneracy assumption, the concept of a power center is 
introduced. The power center associated with the optimal primal face and the power 
center of the optimal dual face are related in an intimate way, and the objective 
functions defining these centers are related in the same sense as the "dual norms" 
are. In this case, it is shown that if the step size ct is chosen such that a / ( 1  - a)  2r 
< 2 / ( 2 r  - 1), for r > 1, the primal sequence converges to the relative interior of the 
optimal primal face and the dual sequence converges to the power center of the 
optimal dual face. Also, a variable step selection strategy is presented where the 
sequence {ak}  of step sizes, asymptotically is selected by a k / ( 1  -- Ctk) < 2 / (2 r - -  1). 
This sequence is required to stay uniformly away from from 2 / ( 2 r - 1 ) .  Thus, 
ak < 2 / ( 2 r  + 1), and hence this result is a generalization of  the 2/3rd result of 
Tsuchiya and Muramatsu [25] for r = 1. 

An accelerated primal power affine scaling method is also presented. This 
method achieves superlinear convergence, and the rate is higher for larger values 
of  r > 1. This generalizes the work of Saigal [18] and Tsuchiya and Monteiro [24]. 

This work opens up the study of hybrid variants of  the power affine scaling 
method in which different values of r are implemented at different stages of the 
method. From lemmas 11 and 13, it is evident that the rate of convergence of [[ xk[t 
is O ( c r x  k - c*), while that of Ils~ll is O ( c r x  k - c*) 2r. Implementing 0.50 < r < 1 in 
the early iterates will reduce this disparity between the accuracy of the primal and 
the dual sequence, and thus make the method behave more like the primal-dual 
methods where the accuracy of the two sequences is similar. In the later iterations 
(when ~k < 1), a value of r > 1 (say r = 1.5 or 2.0) can be implemented to get a 
higher rate of convergence. These hybrids have not been studied yet, and we expect 
to report computational experience on them at a later date. 
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