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Abstract. In this paper we review some applications of the path integral methodology of quantum
mechanics to financial modeling and options pricing. A path integral is defined as a limit of the
sequence of finite-dimensional integrals, in a much the same way as the Riemannian integral is
defined as a limit of the sequence of finite sums. The risk-neutral valuation formula for path-dependent
options contingent upon multiple underlying assets admits an elegant representation in terms of path
integrals (Feynman—Kac formula). The path integral representation of transition probability density
(Green'’s function) explicitly satisfies the diffusion PDE. Gaussian path integrals admit a closed-form
solution given by the Van Vleck formula. Analytical approximations are obtained by means of the
semiclassical (moments) expansion. Difficult path integrals are computed by numerical procedures,
such as Monte Carlo simulation or deterministic discretization schemes. Several examples of path-
dependent options are treated to illustrate the theory (weighted Asian options, floating barrier options,
and barrier options with ladder-like barriers).
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1. Introduction

In this paper we consider some applications of the path integral formalism of quan-
tum mechanics to financial modeling. Path integrals constitute one of the basic tool
of modern quantum physics. They were introduced in physics by Richard Feyn-
man in 1942 in his Ph.D. thesis on path integral formulation of quantum mechanics
(Feynman, 1942, 1948; Feynman and Hibbs, 1965; Kac, 1949, 1951, 1980; Frad-
kin, 1965; Simon, 1979; Schulman, 1981; Glimm and Jaffe, 1981; Freidlin, 1985;
Dittrich and Reuter, 1994). In classical deterministic physics, time evolution of
dynamical systems is governed by theast Action PrincipleClassical equations

of motion, such as Newton’s equations, can be viewed as the Euler-Lagrange equa-
tions for a minimum of a certaiaction functionala time integral of the Lagrangian
function defining the dynamical system. Their deterministic solutions, trajectories
of the classical dynamical system, minimize the action functional (the least action
principle). In quantum, i.e. probabilistic, physics, one talks about probabilities of
different paths a quantum (stochastic) dynamical system can take. One defines a
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measure on the set of all possible paths from the initial state the final state: ¢

of the quantum (stochastic) dynamical system, and expectation values (averages) of
various quantities dependent on paths are givepaily integralsover all possible

paths fromz; to z, (path integrals are also callstims over historiesas well as
functional integralsas the integration is performed over a set of continuous func-
tions of time (paths)). The classical action functional is evaluated to a real number
on each path, and the exponential of the negative of this number gives a weight
of the path in the path integral. According to Feynmamath integral is defined

as a limit of the sequence of finite-dimensional multiple integial&t much the

same way as the Riemannian integral is defined as a limit of the sequence of finite
sums. The path integral representation of averages can also be obtained directly as
the Feynman—Kac solution to the partial differential equatiescribing the time
evolution of the quantum (stochastic) dynamical system (Schrodinger equation in
guantum mechanics or diffusion (Kolmogorov) equation in the theory of stochastic
processes).

In finance, the fundamental principle is the absence of arbitrage (Ross, 1976;
Coxand Ross, 1976; Harrison and Kreps, 1979; Harrison and Pliska, 1981; Merton,
1990; Duffie, 1996). In finance it plays a role similar to the least action principle and
the energy conservation law in natural sciences. Accordingly, similar to physical
dynamical systems, one can introduce Lagrangian functions and action functionals
for financial models. Since financial models are stochastic, expectations of var-
ious quantities contingent upon price patfisgncial derivativesare given by
path integrals, where the action functional for the underlying risk-neutral price
process defines a risk-neutral measure on the set of all paths. Averages satisfy the
Black—Scholes partial differential equation, which is a finance counterpart of the
Schrodinger equation of quantum mechanics, and the risk-neutral valuation formu-
lais interpreted as the Feynman—Kac representation of the PDE solution. Thus, the
path-integral formalism provides a natural bridge between the risk-neutral martin-
gale pricing and the arbitrage-free PDE-based pricing.

To the best of our knowledge, applications of path integrals and related tech-
nigues from quantum physics to finance were first systematically developed in the
eighties by Jan Dash (see Dash, 1988, 1989 and 1993). His work influenced the
author of the present paper as well. See also Esmailzadeh (1995) for applications
to path-dependent options and Eydeland (1994) for applications to fixed-income
derivatives and interesting numerical algorithms to compute path integrals. This
approach is also very close to the semigroup pricing developed by Garman (1985),
as path integrals provide a natural representatiorpfing semigroup kernels
as well as to the Green’s functions approach to the term structure modeling of
Beaglehole and Tenney (1991) and Jamshidian (1991). See also Chapters 5-7 and
11 in the monograph Duffie (1996) for the Feynman—Kac approach in finance and
references therein.

Itis the purpose of this paper to give an introductory overview of the path integral
approach to financial modeling and options pricing and demonstrate that path
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integrals and Green'’s functions constitute both a natural theoretical concept and a
practical computational tool in finance, especiallypath-dependent derivatives

The rest of this paper is organized as follows. In Section 2, we give an overview
of the general framework gbath-integral options pricingWe start by consid-
ering a single-asset Black—Scholes model as an example. Then, we develop the
path integral formalism for a multi-asset economy with asset- and time-dependent
volatilities and correlations. The central result here is a geipathl integral rep-
resentation (Feynman—Kac formula) for a path-dependent ogtioringent upon
a finite number of underlying asset prices. The path integration measure is giv-
en by an exponential of the negative of the action functional for the risk-neutral
price process. This formula constitutes a basis for practical calculations of path-
dependentoptions. In Section 3, we give a brief overview of the main techniques to
evaluate path integrals. Gaussian path integrals are calculated analytically by means
of the Van Vleck formula. Certain initially non-Gaussian integrals may be reduced
to Gaussians by changes of variables, time re-parametrizations and projections.
Finally, essentially non-Gaussian path integrals must be evaluated either numer-
ically by Monte Carlo simulation or a deterministic discretization scheme, such
as binomial or trinomial trees, or by analytical approximations such as the semi-
classical or WKB approximation. In Section 4, three examples of path-dependent
options are given to illustrate the theory (weighted Asian options, floating barrier
options and barrier options with ladder-like barriers).

2. Risk-Neutral Valuation and Wiener—Feynman Path Integrals
2.1. B ACK—SCHOLESEXAMPLE

We begin by reviewing the Black—Scholes model (Black and Scholes (1973) and
Merton (1973); see also Hull (1996) and Duffie (1996)path-independemmption
is defined by its payoff at expiration at tinfie

Or(Sr,T) = F(St), (2.1)

whereF is a given function of the terminal asset prigg. We assume we live in
the Black—Scholes world with continuously compounded risk-free interest rate
and a single risky asset following a standard geometric Brownian motion

ds

?:mdt—i—o dz (2.2)

with constant drift raten and volatilityo (for simplicity we assume no dividends).
Then the standard absence of arbitrage argument leads us to constructing a repli-
cating portfolio consisting of the underlying asset and the risk-free bond and to
the Black—Scholes PDE for the present value of the option at tipreceeding
expiration

o? 00F 00F

o® 20 Or +rS —rOp = ——E (2.3)
27 5S2 28 F= "5 '




132 VADIM LINETSKY

with initial condition (2.1) (more precisely, terminal condition since we solve
backwards in time). This is the backward Kolmogorov equation for the risk-neutral
diffusion process (2.2) with drift rate equal to the risk-free raténtroducing a
new variabler = In S which follows a standard arithmetic Brownian motion

o2
dz = m= = dt + o dz, (2.4)
Equations (2.1), (2.3) reduce to
a2 0?0 00r 00
202 TP TP T (2.52)
2
g
_.,._o 2.
p=r——, (2.5b)
Or(€°T,T) = F(€°T). (2.5¢)

A unigue solution to the Cauchy problem (2.5) is given by the Feynman—Kac
formula (see, e.g., Duffie, 1996; see also Ito and McKean, 1974; Durrett, 1984;
Freidlin, 1985; Karatzas and Shreve, 1992)

Or(S,t) = e’”E(t,S) [F(ST)] , 7=T—1, (2.6)

whereFE; s[.] denotes averaging over the risk-neutral measure conditional on the
initial price S at timet. This average can be represented as an integral over the
set of all paths originating frorfx, S), path integral It is defined as &imit of the
sequence of finite-dimensional multiple integratsa much the same way as the
standard Riemannian integral is defined as a limit of the sequence of finite sums
(Feynman, 1942 and 1948; Feynman and Hibbs, 1965). We will first present the
final result and then give its derivation. In Feynman’s notation, the average in (2.6)
is represented as follows & In S, zr = In St):

Op(S,t) = € " Es) [F(e")]
00 x(T):xT A ’
—e [T ([T pene et Oine) ) dir (27)
—00 x(t):x

A key object appearing in this formula is the Black—Scholes action functional
Apgs[z(t')] defined on path$z(t'),t < ' < T} as a time integral of the Black—
Scholes Lagrangian function

(2.8)
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This action functional defines the path integration measure.

The path integral in (2.7) is defined as follows. First, paths are discretized.
Time to expirationr is discretized intaV equal time stepA¢ bounded byV + 1
equally spaced time points = ¢ + iAt, i = 0,1,...,N, At = (T —t)/N.
Discrete prices at these time points are denoted by S(t;) (z; = =(t;) for
the logarithms). The discretized action functional becomes a functios ef 1
variablese; (zo = =, zn = x7)

peT 1 & 2
Aps(zi) = o= — S(vr — o > (w1 — 1) 2.9
BS (xl) 20_2 0_2 (.’,UT x) + 20'2At pard (xl-i'l ml) ( )

This is obtained directly from the Definition (2.8) by first noting that

E_i]?z H :uz

= it - L+ 2, (2.10a)
prT
Apslz(t')] = 252 ?(HUT —z) + Ao[z(t)], (2.10Db)
T
Aoz ()] = / Lo dt', (2.10¢)
t

whereLy is the Lagrangian for a zero-drift process ¢ o dz (martingale)

1.

Eozﬁdf,

(2.11)

and then substituting

r ;= Titl — Ti
e dt — 5 AL r— —.
/t e At

Now, the path integral over all paths from the initial stafe) to the final state:,
is defined as a limit of the sequence of finite-dimensional multiple integrals:

/I(T)zT F(err) e~ 4oslOlpg(t))
z(t)=x

. 0 0 . . dl"]_ d:l?N,]_

= lim / / F(e’T) e ABs(®i) . 2.12

N—oo )0 -0 (&) V2ro2At V2ro2At ( )
—_——

N-1

This definition of path integrals is used in physics to describe quantum (probabilis-
tic) phenomena. It can be shown (see, e.g., Kac, 1951; Kac, 1980; Glimm and Jaffe,
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1981; Simon, 1979; Freidlin, 1985) that this definition is completely rigorous and
the limit does converge. In this paper, however, we will follow a heuristic approach
to path integrals leaving out the technical details.

Since the payoff in Equation (2.7) depends only on the terminal stat¢he
payoff functionF’ can be moved outside of the path integral, and it can be re-written
as follows:

OF (Sa t)
_ e / Y p(err) e =)~/ (g Tlat) e, (2.13)

whereC(z7, T'|z, t) is the transition probability density for zero-drift Brownian
motion dz = o dz (probability density for the terminal staig- at timeT' condi-
tional on the initial state: at timet), or Green'’s function (also callgatopagator
in quantum physics) (see, e.g., Schulman (1981)):

z(T)=z ,
K(wp, T|z,t) = / " e Al pg (¢
z(t)=x
|' . . 1 N1 ,
= Nl‘rpoo/—oo“./—oo eXp(——zngt iz_%(ﬁﬁiﬂ—ﬁci) >
| S —— =
N-1

dzq dry_1

« . . 2.14
V2ro? At V2rolAt ( )

The multiple integral here is Gaussian and is calculated using the following identity

[ee]
—a(o—22 by g, — [T awn]_ 90 2]
[m e dz a—l—beXp{ a—{—b(x y)°| . (2.15)

This is proved by completing the squares in the exponential. Using (2.15) consider
the integral onzq in (2.14)

1 oo 1 ) ,
27r02At/ eXp{_ngAt (22 = 22)? + (21— w0) )] drz;  (2.169)

—0o0

which equals

(22 — 0)?
2n02(2AAt) P [_ 202(2A1) ] ' (2160)

Thus the effect of the:; integration is to changét to 2A¢ (both in the square
root and in the exponential) and to repldee — x1)2 + (1 — x0)? by (22 — z0)>.
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The integral overr, changes At to 3At (both in the square root and in the
exponential) and yields the terfms — x0). This procedure is continued for all
N — 1 integrals. Finally,At becomesNAt, which is justr, and (zr — x0)?
appears in the exponential. Since there is no longer any dependencelalimit
operation is trivial and we finally obtain the result

exp (—M> , (2.17)

which is, as expected, the normal density. This is the fundamental solution of the
zero-drift diffusion equation

K(zp,T | z,t) =

a2 02K oK
with initial condition att = T
K(zp,T | z,T) = 6(zr — x), (2.18b)

whered(z) is the Dirac delta function. Certainly, in this simple case one can also
solve the diffusion equation directly. First, a formal solution to the Cauchy problem
(2.18) can be written as

282

K(zp,T | z,t) = exp (70

3@> S(ar — ). (2.19)

If we now represent the delta function as a Fourier integral, we obtain
2 92
o 0 e dp
K(zr, T | z,t) = exp| 7= = / gplor—) =2
(27, | 2,t) p<rz axz) N -

dp

= / eXp(—%TUZ})Z + ip(xp — x)) o

—0o0

B 1 (xp — w)z
= exp( 52s , (2.20)

where we have used the standard Gaussian integral

i/ooex (—92+b>d _ L (P 2.21)
271_ oo p Zy y y_ /zﬂ_a p 20, . .

This proves that the path integral (2.14) indeed represents the fundamental solution
of diffusion Equation (2.18).
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Itis useful to note that the Green'’s function for diffusion with constant drift rate
1 is obtained by multiplying the zero-drift Green’s function by the drift-dependent
factor (see (2.13)):

Kt (ap,T | o,1) = &W/r)@r=a=0er/20 (4 T | 4, 1)

B 1 (x7 — x — pr)?
= Jaon exp <_T . (2.22a)

Itis easy to check directly th#t* is the fundamental solution of diffusion equation
with drift

G2 ORKCE OKE oKk
202 Mo T o (2.22b)

The transition probability density satisfies the fundame@telpman—Kolmogorov
semigroup propertycontinuous-time Markov property) (see Garman, 1985, for
semigroups in finance)

o0
K(z3,t3 | z1,t1) = / K(z3,t3 | T2, t2)K(x2,t2 | 1,t1) dxo. (2.23)
— 00

Now one can see that the definition of the path integral (2.14) can be obtained by
repeated use of the Chapman-Kolmogorov equation:

K:(.%‘T,T|:E t |Im / / IC:ET,T|$N 1, tN— 1)

--IC(xl,tl | :E,t) dzq---dzy_1. (2.24)

Finally, substitutingC into Equation (2.13) one obtains the Black—Scholes formula
for path-independent options

(zr —x

. 1 — p1)?
Op(S,1) = / F(e) o exp| T ) der (2.25)

For a call option with the payoff Max{eé — K, 0) one obtains after performing the
integration

C(S,t) = SN(dp) — e ""KN(dy), (2.26)

In(£) + pur
dy = in (i) +or . dp=di+ayT. (2.27)
oV/T
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In the Black—Scholes example of diffusion with constant coefficients and path-
independent payoffs there exists a closed-form solution for the transition probabil-
ity density as a hormal density, and one certainly does not need the path-integrals
machinery in this simple case. However, the path integral point of view becomes
very useful for more complex models, especially for path-dependent options, gener-
al volatilities and drifts and derivatives contingent upon several underlying assets.
American options are valued in this framework by the procedure of Geske and
Johnson (1984) (see Dash (1988)).

2.2. THE FEYNMAN—KAC APPROACH TOPRICING PATH-DEPENDENTOPTIONS
Consider now gath-dependerdption defined by its payoff at expiration
Or(T) = FIS(t")], (2.28)

whereF[S(t')] is a giverfunctionalon price path§ S ('), ¢ < ¢’ < T'}, rather than
a function dependent just on the terminal asset price. We assume the risk-neutral
price process

d?S:rdt—{—crdz, z=1InS,
5 (2.29)
dr = p dt + o dz, ,u:r—%.

Then the present value of this path-dependent option at the inception of the contract
t is given by the Feynman—Kac formula

OFr(S,t) = € " Eg) [FIS(t)]]
00 z(T)=z7 , ,
ey ( [ pler)] g nsta nm(t')> dor, (2.30)
—00 z(t)=x

where the average is over the risk-neutral process. Sinceftie#/')] depends on
theentire path it cannot be simply moved outside of the path integral as we did in
the previous section in the Black—Scholes case.

Let us first consider a special case. Suppose the payoff functfomrain be
represented in the form

F = f(Sr) e 150, (2.31)

wheref (S7) depends only on the terminal asset pt#e and! is a functional on
price paths fron{t, S) to (T, St) that can be represented as a time integral

T
T[S(#)] = /t Vi), ') dt’, (2.32)
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of somepotential V(z,t')(z = InS). Then the Feynman—Kac formula (2.30)
reduces to

OF(Sat)
0

—e [ plerm) el e U Ky (0, T ) dor, (2:39)
—00

where Ky, is the Green’s function (transition probability density) for zero-drift
Brownian motion with killing at ratd/(z,t') (see, e.g., Ito and McKean, 1974;
Karlin and Taylor, 1981; Durrett, 1984):

z(T)=z7

Ky (zp,T | 2,1) :/

z(t)=x

T
exp (—/t (Lo+V) dt’) Dz(t). (2.34)

This is the Feynman—Kac representation of the fundamental solution of zero-drift
diffusion PDE with potential”

o2 0?Ky 0Ky

and initial condition
Ky (zr,T | z,T) = d(zr — ). (2.35b)

It is easy to see that the option price (2.33) satisfies the Black—Scholes PDE with
potential

02 920 00f

20,
2 02 P o -

— (T+V($,t))0p = W

(2.36)

and the terminal conditior(St,T) = f(Sr). It can be interpreted as the
Black—Scholes equation with an effective risk-free rateV (z, ¢) and continuous
dividend yieldV (x, t). Now consider a more general path-dependent payoff that
can be represented as a function of the terminal asset price as well as a set of
some sense ‘elementary’ functiondl$S(¢')] on price paths

F[e:c(t’)] _ F(emT,Ii), Ii _ Ii[efﬂ(t')]_ (237)

Some examples of such functionals and corresponding path-dependent options are:
weighted average price (weighted Asian options), maximum or minimum prices
(lookback and barrier options) and occupation times (range notes, step options and
more general occupation time derivatives, see Linetsky, 1996). We can employ the
following trick to move the functionF’ outside of the path integral in Equation
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(2.30) (Dash, 1993). First, introduce auxiliary variablésy inserting the Dirac
delta function as follows

F(er Iy = [ "\ — I)F(e°T, \))d" ),
R™ (2.38)
"N =T =6\ —TY) ..o\ — ™).
Next, the delta function is represented as a Fourier integral

F(e™,I') = | F(eT,\)Fy lexp(—zszll>]d”>\

R™ =1

- Gy /n/nexp< sz ) F(eT, \)d"pd" . (2.39)

Finally, substituting this back into Equation (2.30) we arrive at the pricing formula
for path-dependent options

Or(S,t) = e / T [ R(er Ny o) ar =)= (/2
—00 RTL

XP(xr, A, T | z,t) d"\ dzp, (2.40)

whereP is the joint probability density for the terminal statg- and terminal
values)\® of the Brownian functional$® at expirationI” conditional on the initial
statex at inceptiort. It is given by the inverse Fourier transform

Plzr, NI, T | z,t) = .7-"/\_1 (K1 p(zr,T | z,t)]

— (27];)71 /R” exp( sz >/C1p (xp, T | z,t)d"p, (2.41)

of the Green’s function

z(T)=z7

Kip(or,T | 2,t) = /
z(t

exp (—Ao —i Xn: pifi> Dx(t') (2.42)
=1

with respect to the parametess If the elementary functionals can be represented
as time integrals

)=z

. T |
I :/t vl (z(#), 1) dt (2.43)

of some potentials’(z, '), then the path integral (2.42) takes the standard form
(2.34) with potential

V(I,t,pi) :inivi(xat)' (244)
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If the potentialsy® are non-negative functions, then Laplace transform can be used
in place of the Fourier transform. Consider a path-dependent payeff, I),
wherel = ftTU(x(t'),t') dt' andv(z,t') is non-negative. Then

F(e', 1) = /OOO SO\ — D)F(€°T, \) d) = /OOOF(eTT,A)L‘Al ] dx

oo re+ioco
_ 1 / / &= p(err, 3) ds dh. (2.45)
2mi Jo £—100

Here the auxiliary variable. takes only non-negative values, and we represent
the Dirac delta function as an inverse Laplace transform. Then the path-dependent
pricing formula takes the form:

Or(S;t) = e / - / OOF(e”,A) o1/0?) @y —x)~ (4?r 202)
—o0 /0

XP(zp,\,T | z,t) dX dz, (2.46)

whereP is the joint probability density for the final statg: and the terminal value
A of the Brownian functional conditional on the initial state at timet. It is given
by the inverse Laplace transform

Plar, T | z,t) = LY [Ky (27, T | 2,1)] (2.47)

of the Green’s function for zero-drift Brownian motion with killing at r&téz, t) =
swv(x,t) given by the path integral (2.34). It is the Feynman—Kac representation of
the fundamental solution of zero-drift diffusion PDE with potentidl, ¢) (2.35).

It is easy to see that the density (2.47) satisfies a three-dimensional PDE:

2 Ox2 ToN ot
In summary, to price a path-dependent claim with the payoff contingent both on the

terminal asset price and the terminal valuef some functional on price paths
that can be represented as a time integral of non-negative potegntia):

(2.48)

(1) find the Green'’s function of Brownian motion with killing at rafe= s v(z, t)
by solving the PDE (2.35) or calculating the path integral (2.34);

(2) invert the Laplace transform with respectstto find the joint density forr
and\ (2.47); and

(3) calculate the discounted expectation (2.46).

Equations (2.46, 2.47) together with (2.34, 2.35) constitute the traditional form of
the Feynman—Kac approach. It allows one to compute joint probability densities
of Brownian functionals and the terminal state given the initial state.

So far we considered pricingewly-writtenpath-dependent options at the incep-
tion of the contract. Now consider sseasone@ption at some time* during
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the life of the contractt < t* < T, with the terminal payoffF'(S,I), where

I= ftTv(a:(t'),t') dt’, andv(z,t') is non-negative. The functiondlis additive

and can be represented as a dum I + I,,, wherel; is the value of the functional

on already fixed price observations on the time interval from the contract incep-
tion ¢ to datet*, Iy = ftt* v(z(t"),t') dt, and, is the functional on yet unknown
segment of the price path from tinté to expirationT’, I, = ft:f v(z(t'),t") dt’.
Then the seasoned option price at titfi@s a function of the current asset price
S* = S(t*), the valuel; of the functional/ accumulated to dat&, and current
time ¢*:

OF(S*,If,t*) — e_TT*/ / F(eTT,If—i_)‘) e(u/o'z)(xT—x*)—(uzT*/Zo'z)
—o0 J0

XP(xp, A\, T | z*,t*) d\ dzp, (2.49)

wherer™ = T — t* andz* = In §*. It is easy to see that, under suitable technical
conditions, from (2.48) it follows that the seasoned option price (2.49) satisfies the
following three-dimensional PDE in variables, I, andt* (Wilmott, Dewyne and
Howison, 1993):

02 920 00f

90r  90p
2 Ox*2 T oz* B

_7"(’)p+v(x,t)a—lf— pYo

(2.50)

2.3. VALUATION OF MULTI-ASSETDERIVATIVES WITH GENERAL PARAMETERS

Consider a generdb-dimensional diffusion process’, n =1,2,...,D,
D
dzt = ot dt + Z ok dz?, (2.51)
a=1
at = a"(x,t), ol = ol (X,1),
where d®, a = 1,2,..., D, are standard uncorrelated Wiener processes

E [dz“ dzb] — 5o gt (2.52)

(6% is the Kroeneker symbob® = 1 if « = b and zero otherwise). Suppose the
risk-free rate is-(x, t) and Equation (2.51) describe®adimensional risk-neutral
price process with the risk-neutral drift (boldface letterdenoteD-dimensional
vectors — prices of D traded assets in our economy)

at(x,t) = r(X,t)z* — D*(X,t) (2.53)
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(D* are dividends). Consider a path-dependent option with the payoff at expiration
Or(T) = F[x(t)]. (2.54)

Then the present valuBr(x, t) at the inception of the contractts given by the
Feynman—Kac formula

x(T)=x ,
Or(x,1) = / / " Ex()] e XOIDx () ) dP . (2.55)
RP \ Jx(t)=x

Here A is the action functional
T
A :/ L (2.56)
t

with the Lagrangian functior for the process (2.51) given by (see, e.g., Lan-
gouche, Roekaerts and Tirapegui, 1980 and 1982; Freidlin, 1985)
D
L= 23 gl ) () — a (6 1) () — o' (%, 1)) + (1), (257)
p,rv=1
whereg,,, = g,,, is an inverse of the variance-covariance magtx = ¢g**

D D
Zgupgp” =0, gt = Z okal. (2.58)
p=1 a=1

Readers familiar with the Riemannian geometry will recognjze as the Rie-
mannian metric and;; as components of the local frame (vielbein).

The general multi-asset path-integral (2.55) is defined as a limit of the sequence
of finite-dimensional multiple integrals similar to the one-dimensional example. A
discretized action functional is given by

1 2 Azl AzY
A(x;) = > S guw(Xists) ( At — a"(Xi, t;) Atz —a”’(x;,t;) | At

=0 p,v=1
N-1
+ Z (X, t;) At, Azl = $ét+1 — (2.59)
=0
and
X(T)=x
/ " Pl e A px(r)
x(t)=x
= dim [ [ PO ex—A(x)
—_———
N-1
N-1 Dy .
X d7Xi . (2.60)

z’:l_Il V/(2m)P detgh (x;, 1)) At
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The determinant dé§*” (x;,t;)) of the variance-covariance matrip¢*” (x;, t;)
appearing in the square roots defines the integration measure over intermediate
pointsx;. This discretization scheme is callpde-point discretizatiorand is con-
sistent with the Ito’s calculus. One could choose a different discretization, such as
mid-point or symmetric discretization. The mid-point discretization is consistent
with the Stratanovich calculus rather than Ito’s. Theoretically, different discretiza-
tion schemes are equivalent (see Langouche, Roekaerts and Tirapegui, 1980 and
1982, for detailed discussions). However, in practice different discretizations have
different numerical convergence properties and it may be advantageous to use one
scheme over the other for a particular calculation (see also Karlin and Taylor, 1981,
for a discussion of Ito’s vs. Stratanovich calculus).

For path-independent options, when the payoff depends only on terminal states
xr, Op (X7, T) = F(xr), the option value satisfies the backward PDE

00F
HOp = T (2.61)

where# is a second order differential operator (generator of the diffusion process
(2.51) with the killing termr(x, ¢))

e (x 02 m 0
Zg 8“8”+Za Xtﬂ—r(x,t). (2.62)

u,v 1

The proof that the path integral (2.55) for path-independent options indeed solves
the PDE (2.61) is as follows. Consider the fundamental solutipf-, T | X, t) of
the PDE (2.61) with initial condition

K(xp,T | X, T) = 6P (xg — X). (2.63)

For a short time interval\t = ¢, — ¢4, it can be represented up to the second
orderO(At?) similar to the Black—Scholes case (2.20) (in contrast to the case with
constant parameters, it is only valid up to the second ordéxtimm the general
case):

K(x2,t2 | X1,t1) = (14 AtH 4+ O(A+2))6P (x2 — x1)
~ expAtH) o (x2 — xq). (2.64)

Again introducing the Fourier integral representation of the delta function, we have

D D
. d”p
K(X2,t2 | X1, t1) = exp(AtH) /R N exp{zﬂElpﬂ(w‘é —x‘f)} (2m)D

:/R exp{—— Z 9" (X1, t1)pupy

pr=1
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D
+i Y (ah — i — at(x1,t1) At) py
n=1
dPp
_ AtS — 2
T(Xla tl) t} (27T)D
1

\/(2rAt)P detgh (xq, 1))

1 xh — ot
Xexp{__ Z gull Xlatl)( 2At 1 —CLM(Xl,tl))

pr=1

X (l"zA—tﬂfl — al’(Xlatl)> At — r(Xl,tl)At} . (2.65)

To obtain this result we have used the following standard multi-dimensional
Gaussian integral

ﬁ/ XIO(—— > Ar yuyu+ZB”yu>d Y

wr=1 u=1

1 1 2
= —= A™Y ., B*BY | . 2.66
Ji2n)? detam) exp( 2,2, ) .

Having at our disposal the short-time transition probability density, we can obtain
the density for a finite time interval = T — ¢ in the continuous time limit by
successively applying the Chapman—Kolmogorov semigroup property

IC(XT,T | X, t lim / IC XT,T | XN-1,tN— 1)
N—o00
K (Xq, b1 | X, 8)dPxq - - dPxpy_1. (2.67)

Substituting the expression (2.65) for the short-time densities and recognizing that
the individual exponentials of short-time densities combine to form the expression
(2.59) for the discretized action, we finally obtain

KXr, T | x,t) = lim /RD /RDexp( A(X;))

N—oo
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N-1 dDXZ'

= V(2m)P det(gi (x;, t:) At

D) '
= e Dx(t). (2.68)
x(t)=x

Thus, we have proved that the path integral (2.68) indeed represents the fundamen-
tal solution of diffusion PDE (2.61). Then Equation (2.55) for path-independent
options is simply

Op(x,t) = /R F(p)K(xr, T | %, 1)dPxz. (2.69)

This concludes the proof that (2.55) indeed solves the Cauchy problem (2.61).
For path-dependent payoffs one must employ the procedure outlined in the
previous section to move the functiondloutside of the path integral. This will
result in the appearance of a non-trivial potentiék:, ) in the exponential in path
integral (2.68) and in the PDE (2.61) for transition probability density:
oKy

3. Evaluation of Path Integrals

The Feynman—Kac formula (2.55) is a powerful and versatile tool for obtain-
ing both closed-form and approximate solutions to financial derivatives valuation
problems. A number of techniques are available to evaluate path integrals (2.60),
(2.68). They fall into three broad categories: exact analytical solutions, analytical
approximations, and numerical approximations.

Analytical solutions are available for Gaussian path integrals and those that can
be reduced to Gaussians by changes of variables, re-parametrizations of time and
projections. Suppose the Lagrangian functiof2.57) is at most quadratic inand
X. Then the closed-form solution for the Gaussian path integral (2.68) is given by
theVan Vleck formula

(t2)=
/ TR e axlpyp)
X(t]_):X]_

B 1 92Aci (X2, X1)
= \ldet <_ZW exp{—ACl(xz,xl)} . (3.2)

Here Aq; (X2, X1) is the action functional (2.56) evaluated along a classical solution
of the Euler—Lagrange equations
sA _oc _dor

Soi  Oph  dtoar (32)
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with the boundary conditions
zl, (t1) = 2, zl, (t2) = . (3.3)

The determinant appearing in (3.1) is calan Vleck determinantNote that,
in general, the explicit evaluation of;(x2,X1) may be quite complex due to
complicated classical solutiomsg; (¢) of the Euler—Lagrange Equations (3.2).

Models admitting closed-form solutions due to the Van Vleck formula include
Gaussian models and models that can be reduced to Gaussians by changes of
variables, re-parametrizations of time and projections. Examples of the former
category include the Black—Scholes model and mean reversion models (Ornstein—
Uhlenbeck, or harmonic oscillator, processes). The later category includes the
Cox-Ingersoll-Ross model (Bessel process which is the radial part of the multi-
dimensional Brownian motion (projection)).

To illustrate the use of the Van Vleck formula, let us again consider the Black—
Scholes example. The Euler—Lagrange Equation (3.2) for the Black—Scholes action

Ag= = / Ui (3.4)
20’2 t

simply states that acceleration vanishes in the absence of external forces (Newton'’s
law)

#=0. (3.5)

The solution with boundary conditions (3.3) is a classical trajectory figrno
x — a straight line connecting the two points:

R (3.6)

The action functional evaluates on this trajectory to

1 (T (zp—21)?% ,, (z2—21)2
e e (37)

Substituting this resultinto the Van Vleck formula (3.1) we again obtain the normal
density

1 (x2 — xl)z
2ro2r exp (_ 202t ’ (3.8)

Furthermore, the Van Vleck formula serves as a starting poinsdamiclassical
(general moments) expansidine first term in the semiclassical expansionis called
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WKB (or semiclassical) approximatiott approximates the non-Gaussian model
by a suitable Gaussian.

Finally, more complex path integrals can only be evaluated numerically. Monte
Carlo simulation has long been one of the favorite techniques for computing path
integrals numerically (see, e.g., Metropolis et al. (1953), Creutz et al. (1983)).
Monte Carlo simulation simply approximates the path integral by a sum over afinite
number of sample paths. Deterministic low-discrepancy algorithms (quasi Monte
Carlo) may be especially appropriate for simulations in finance, as they sample
paths more efficiently than unstructured pseudo Monte Carlo (Birge, 1995; Joy,
Boyle and Tan, 1995; Paskov and Traub, 1995). Finally, different finite-difference
techniques for solving the backward PDE can also be alternatively viewed as
discretization schemes for path integrals. For interesting numerical algorithms for
computing path integrals in finance see Eydeland (1994).

4. Examples
4.1. WEIGHTED ASIAN OPTIONS

Asian options are options with the payoff dependent on the average price of the
underlying asset over a specified period of time. The average price over a time
period preceeding expiration, rather than just a terminal price, has two main advan-
tages. First, it smooths the option’s payoff and prevents it from being determined
by the underlying price at a single instant in time. A given terminal asset price may
be unnaturally biased or manipulated. The later has been a concern in certain com-
modity markets dominated by large institutions whose actions might temporarily
distort prices.

Another need of using the average price often arises in corporate hedging
situations. For example, many corporations exchange foreign currency for domestic
currency at regular intervals over a period of time. Asian-style derivatives provide
a cheaper alternative to hedging each individual transaction. They hedge only
the average exchange rate over a period of time, thus significantly reducing the
hedge costs. Moreover, if individual transaction dates are unknown in advance, it
is impossible to hedge each individual transfer precisely, but it is still possible to
hedge the average exchange rate overtime. See, e.g., Kemna and Vorst, 1990; Levy
and Turnbull, 1992; Turnbull and Wakeman, 1991; Chance and Rich, 1995 and
references therein for details on usage and pricing of Asian options.

To accommodate hedging of cash flows that may not be equal in amount, but
rather follow a specific schedulaeighted or flexible Asian optiorfg/AOs) have
been recently introduced (Dash, 1993; Zhang, 1994 and 1995a). Specific weighted
averaging schemes are used in these options. WAOs became quite popular in foreign
exchange and energy markets in particular.
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In case when the weighted averaging is geometric, since the geometric average of
alognormal variate is itself lognormally distributed, a closed-form pricing formula
can be easily obtained. Consider a WAO with the payoff at expiration

Or(T) = F(St,1I), (4.1.2)
whereS7 is the terminal asset pricé,is a weighted average of the logarithm of

the asset pricey = In S, over a specified time periog < ¢’ < T preceeding
expiration

- /Tw(t')x(t') d’, (4.1.2)

lo

w(t") is a given weight function specified in the contract and normalized so that

T
/ w(t) = 1, (4.1.3)
lo

andF' is a given function ofSr and . The weighted geometric average is given
by the exponential of. Some examples of the possible choices for the weight
function are:
Standard option with payoff dependent®n only

w(t') =§(T - t'); (4.1.4a)
Standard (equally weighted) Asian option, continuous averaging

w(t') = T%to; (4.1.4b)

Standard (equally weighted) Asian option, discrete averaging

N+125 (t' —t;); (4.1.4c)
Discrete weighted averaging
N N
= Zwié(t, - ti), Zwi = 1, (4.1.4d)
i=0 i=0

wherew; are specified weights angd= t + ih, h = (T — to)/N, i =0,..., N
Here N + 1 is the total number of price observations to construct the weighted
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average price specified in the contract anid the time interval between two obser-
vations. By using Dirac’s delta functions both continuous and discrete sampling
can be treated uniformly.

Some examples of the payoff functidhare:

Weighted average price call

F(I) = Max(e! — K,0); (4.1.5a)
Weighted average strike call

F(St,I) = Max(St — ¢!, 0); (4.1.5b)
Digital weighted average price call

F(I)=Do(e' — K), (4.1.5¢)

wheref is the Heavyside step functiofi(¢) = 1 (0) for x > 0(z < 0)) andD is
a fixed payoff amount if the average price is above stfikat expiration. Asian
puts are defined similarly.

In discrete case (4.1.4d), a geometric weighted average grisagiven by

el =] Stt)™. (4.1.6)
If the current timet when we price the option is inside the averaging interval,
to < t < T (seasoned Asian option), then

I=1;+1,, (4.1.7a)

wherel is the weighted average of already fixed price observatiops=(In Sy)

t
Ip= | w(t')z(t) dt', (4.1.7b)

to

and[, is the average of yet uncertain prices
T
I, — / w(t)a () d. (4.1.7¢)
t

If t < to (forward-starting Asian option), then it is convenient to extend the
definition of the weight function to the entire intervak ¢’ < T by setting

w(t')=0 for t <t <t (4.1.8)
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Then Equation (4.1.7a) is always trug & 0 if £ < tg).
The present value at timeof a weighted Asian option with the paydff(Sy, I)
is given by the average:

Or(S,t) = € ""E.g) [F(Sr, I; + L)) - (4.1.9)

According to the methodology developed in Section 2.2, this average reduces to
(note that since € R, the linear potentiad(z, t') = w(t')x is unbounded, and we
use the Fourier transform rather than the Laplace, and integrate-franto oo):

OF(Sat)
:e_”/ / F(e"T, A+ I) P (27, AT | 2,t) d\ dep,  (4.1.10)

whereP* is the joint probability density for the logarithm of the terminal state
z7 and the weighted average of the logarithm of the asset phasexpiration

T conditional on the initial state at timet. It is given by the inverse Fourier
transform

PM($T, >‘7T | I,t)

= glu/oD)@r—o)=(u*1/20%) FoL () (g, T | 2, 1)]

00 ) d
= glu/o*)(@r —2) (W7 /20%) / &P Ky (27, T | 2, t)z—p. (4.1.11)
0 ™
HereCy is the Green’s function for zero-drift Brownian motion with potential
V(z,t') =ipw(t) =z (4.1.2)

given by the path integral (2.34). Since the potential is lineat, the path integral
is Gaussian and thus can be evaluated in closed form:

’CV(QST?T | ‘Tat)
_ 1 (z7 — 55)2 . 2.2
= Vonots eXp{_W —ip(mixr + ) — X0 P b, (4.1.13)
where
= T
L= =, T2 =1-1, T = / w(t)(t' —t) dt’, (4.1.14a)
T t

=2 [" [ wtwen - ey -1 o ar, (@.1.140)
T t t
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It is a classic result (see, e.g., Feynman and Hibbs, 1965; Schulman, 1981). In
physics, this Green’s function describes a quantum particle in an external time-
dependent electric fielgw(t').

Now the integral ovep in (4.1.11) is Gaussian and the inverse Fourier transform
can be evaluated in closed form yielding the result for the density:

PH(QST, >‘7T | Qf,t)

1
= — e —
2wo2T\/2x Xp{ 202t dyolr

(xp —x — /1,7')2 (A —7mzp — sz)z} ) (4.1.15)

This is a bivariate normal density for two random variablesand )\ (weighted
average of the logarithm of the asset price) at tiheonditional on the state at
time¢. It can be re-written in the standard form

1
Pz, N\ T | z,t) =
(or |2,%) 21000/ 1 — p?
1 (@7 = pag)® | (A= p2)?
% eXp{_Z(l - p?) ( 02, + o?

OxrOA

 20(@r — prag) (A — m))} . (4.1.16)

with the means

Pap = T + U, Hx =T + uT, (4.1.17a)
standard deviations

Oy = OV/T, ox = o\ YT, (4.1.17b)

and the correlation coefficient

71

p:\/aa

Y = 2x + 7. (4.1.17d)

(4.1.17c)

Hereo+/%) is the volatility of the weighted average apdbs the correlation coeffi-
cient between the weighted average afd

Formulas (4.1.10), (4.1.16) allow one to price any geometric weighted Asian
options with payoffs dependent both on the terminal asset price and the geometric
average.
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Let us consider a particular case when the payoff function is independepnt of
Then we can perform the Gaussian integration avein (4.1.10), (4.1.15) and
arrive at

OF(S,t)

P 1 _()\—:E—,LH_')Z
=e [MF(A + If)i\/m exp{ T — } d\. (4.1.18)

This coincides with the Black—Scholes formula (2.25) wighscaled volatility
o — o/ anddrift rate 4 — p7y. All the information about the weight function
w is encoded in the volatility and drift rate multipliegsandr.

In particular, for payoffs (4.1.5a) and (4.1.5c) we have:

Digital weighted average price call

Cn(S,t) = _M} d\

0 1
De'T /m o, TET exp{ 500
= D e ""N(dj), (4.1.19a)

where
In () + I +n7
o\ T ’

Weighted average price call

dy = (4.1.19b)

C(S,t)

AT o0 +Ir 1 _(A_x_ﬁ”_—)z
= fe, K)Wexp{ 2porr | P

= e "I SN(dp) — e ""KN(dy), (4.1.20a)

whered; is given above and

o2 Yo?
dp = dy + o\/yr, q:TTQ—F?(Tl—l/)) =ropT s (4.1.20b)
At the start of the averaging period;( = 0), this formula for the weighted
geometric average price call coincides with the Black—Scholes formula with re-
scaled volatilityov/2) and continuous dividend yielg
The average strike options are a particular case of options to exchange one asset
for another; the terminal price and the weighted geometric average with volatility
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and correlation given by Equations (4.1.17) are the two underlying variables in this
case.

Now let us consider different choices for the weight function. For (4.1.4a) we
have

T = T, X = 0’ ’(/) = 1, (4121)

and Equation (4.1.20) becomes the standard Black—Scholes formula.

Consider the case of standard (equally weighted) continuously averaged geo-
metric Asian options (4.1.4b). K = to, i.e., the pricing time coincides with the
start of the averaging period, we have

T 1

T = > X = 32 Y= (4.1.22)

Wl

Thus, volatility of the equally weighted geometric averags/ig’3 (the well-known
V/3-rule).

Now consider the case of discrete weighted averaging (4.1.4d) and=s&i.
The coefficients; andy (4.1.14) reduce to

1 N
=3 > kg, (4.1.23)
1 N 1 N k-1
X =55 2 k(N —kuwi + =3 >IN = k)wyuw. (4.1.24)
2N k=1 N k=21=1

Substituting this into Equation (4.1.17d), we arrive at the discretized expression
for the volatility multiplier

2Nk:l

Z kwi + 5 > D Lwgwr. (4.1.25)

N =i
In the case of arithmetic averaging, the second state variable is a weighted average
price

T
I— / w(t') &) d. (4.1.26)
t

The potentiab(z,t') = w(t')e” is non-negative and the joint density fef and
I at timeT conditional on the state at timet is given by the inverse Laplace
transform

P (ap, N T | z,t) = e/ =0)=021/20%) poL 1K (50, T | 2,1)]  (4.1.27)
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of the Green’s function for Brownian motion with killing at rate
V(z,t') = sw(t') € (4.1.28)

satisfying the PDE (2.35a) with potentidland initial condition (2.35b) (the inverse
Laplace transform is taken with respect to the variapl€his PDE cannot be solved

in closed form for arbitraryv(¢'), and one must resort to one of the approximation
procedures. However, in the special case of equally weighted continuous averaging,
an analytical solution does exist. Wherit') is independent of timé, potential
(4.1.28) defines the so-callddouville modelknown in quantum physics. The
corresponding closed-form expression for arithmetic Asian options involves Bessel
functions (see Geman and Yor (1993) and Geman and Eydeland (1995)).

4.2. HOATING BARRIER OPTIONS

Our second example are floating barrier options. This is an interesting example
of a two-asset path-dependent option. Barrier options have increasingly gained
popularity over the recent years. A wide variety of barrier options are currently
traded over the counter. Closed-form pricing formulas for barrier options can
be readily derived by employing the method of images. In addition to the original
eighttypes of barrier options priced by Rubinstein and Reiner, 1991, double-barrier
(Kunitomo and lkeda, 1992), partial barrier (Heynen and Kat, 1994a; Zhang, 1995a)
and outside barrier options (Heynen and Kat, 1994b; Rich, 1996; Zhang, 1995hb)
were studied recently.

A key observation is that due to the reflection principle the zero-drift transition
probability density for down-and-out options with barriBr (Brownian motion
with absorbing barrier at the levél) is given by the difference of two normal
densities (Merton, 1973; Rubinstein and Reiner, 19813(In B):

Kp(zr,T | z,t)

- 7 (oo - - enl -2} wan

Floating barrier optiongFBOSs) are options on the underlyipgyoff assewith the
barrier proportional to the price of the secdmatrier asset To illustrate, consider

a call on the underlying. In a standard down-and-out call, the barrier is set at
some constant pre-specified price lelsgfout-strike) at the contractinception. The
option is extinguished (knocked out) as soon as the barrier is hit. For a floating
down-and-out call, the barrié? is set to bgroportional to the price of the second
assetS,, B = AS», whereA is a specified constant. Thus, a floating knock-out
contract is in effect as long as the price of the underlying payoff asset stays above
the price of the barrier asset tim&sS; > AS», and is extinguished as soon$s

hits the floating barrieA S5.
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Just as standard barrier options, FBOs can be used to reduce premium payments
and as building blocks in more complex transactions. For example, suppose a
US-based investor wishes to purchase a call on a foreign curtensay Swiss
Franc. Furthermore, suppose he holds a view that another foreign cursency
which is correlated witht, with the correlation coefficient, say Deutsche Mark,
is going to stay below$ /A during the option’s lifetime, wher# is a given fixed
threshold cross-currency exchange rate. Then he may elect to add a floating knock-
out provision,S1 > AS,, to the call to reduce his premium payment. Similafly,
andsS> can be two correlated equity indexes or a short and long interest rate. In the
later case, the option can be structured so that it will knock out if the yield curve
inverts and short rate exceeds the long rate during the option’s life.

The pricing of FBOs is somewhat similar to quanto options (Babel and Eisen-
berg, 1993; Derman, Karasinski and Wecker, 1990; Reiner, 1991). We assume
we live in the Black—Scholes world with two risky assets. The risk-neutral price
processes for these two assets are

% =my dt + o1 dzq, % = my dt + o dzy, (4.2.2)
S]_ 82

with constant risk-neutral drifts and volatilities. The,cand &, are two standard

Wiener processes correlated with the correlation coeffigieifits; andS, are two

foreign currencies, then the risk-neutral drifts atg = r» — r1, my = r — 77,

wherer, 1 andr, are domestic and two foreign risk-free rates, respectively.
A floating barrier call is defined by its payoff at expiration

Lisyty>as(t) p<t <1} Max(Sir — K, 0), (4.2.3)
where 1¢s, v)sas,(¢),.<vr<7} 1S the indicator functional on price pats(t'),
Sa(t'), t <t < T} thatis equal to one ify(¢') is greater tham\ S (¢'), S1(t') >
AS,(t'), at all timest’ during the option’s life, and zero otherwise.

To price these options, first introduce new variahlgs= In S1 andz, = In Sy:
dr1 = p1 dt + o1 dzq, 1 = mq — %U%, (4.2.4a)
dzo = pp dt + o dzq, 2 = mo — %U%. (4.2.4b)

Now let us introduce a cross-currency exchange rate
S3 = 51/5>. (4.2.5)

Its logarithmzs = In S3, 23 = 21 — o, follows a process

dz3 = p3 dt + o3 dzs, (4.2.6)
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with drift rate and volatility

p3 = pi1— piz, 03 = \/0% + 0% — 2p0102, (4.2.7)

and &3 is a standard Wiener process correlated with the processvith the
correlation coefficienp’

o= e (4.2.8)
\/ 0% + 03 — 2p0107

In the variabless; andS3, the problem reduces to pricing aatside barrier option
with the payoff asseb; and the barrier asséi with the constant fixed barrier
level A and the payoff

1{5’3(t’)>A,t§t’§T} Max(SlT - K, 0) (429)
Outside barrier options were studied by Heynen and Kat (1994), Zhang (1995b)

and Rich (1996).
A two-asset Lagrangian for the two-dimensional process is given by

o 2(1Ep’2) [(il;lﬂl)z

i3 —p3\?  2p/(d1— pa)(ds — pa)
n ( ) _ ] . (4.2.10)

03 0103

If £1 andx3 were uncorrelated, the Lagrangian would reduce to the sum of two
independent Lagrangiads andL,. The correlation term makes the problem more
interesting. The action functional can be re-written in the form

T
A= / Ldt = Ag+ ar — /31($1T — :El) — ﬁg(ng — .%‘3), (4.2.11)
t
where
T 1 7 @3 20 @143
A:/Ldt’, Lo= > |24+ 23— . (4.2.12
0=/ Lo e [0% 02 " o103 ( )

and

2 2 !
O ; [ﬂ LM% “”‘3] , (4.2.13a)

2(1—p?) |02 o3 0103
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Gy = 1 _ P'Ulﬂs}
A "M e
o=y s — 22 (42.130)
03(1 - p?) o1

Now the present value of a floating barrier a@j (.51, S2, t) is given by
e T /Oo Oo(erlzr —K) t(@ir—x1)+B3(zar —x3)—ar
InK JinA
X’CA(xlTng,T | xlxg,t) dzzr dzir. (4.2.14)
A transition probability densityC, is given by the two-asset path integral of the
type (2.68) over all pathisey ('), z3(t'),t <t < T} suchthafzs(t') > InA, t <

t' < T}. The path integration measure is defined by the action functional (4.2.12).
It is calculated by introducing new uncorrelated variables

!/
Y1 =171 — m, Y2 = T3, (4.2.15)
03
so that the Lagrangiaf reduces to the sum of two independent terms

-2 "2

Y1 Y2
Lo=s57" +55- 4.2.16
0 202(1 - p?) * 203 ( )

Now, the path integral factorizes into a product of two independent factors which
yield a normal density for the variablg and a down-and-out density of the form
(4.2.1) for the barrier variablg:

Ka(zirzsr, T | 123, t)
= K(yrr, T | y1, t)Ca(yor, T | y2,t)

1 exp{— (o3(w1r — 1) — plor(zar — x3))? }

- 201037/ 1 — p'? 20205(1— p?)T
— x3)? —2InA)?
« [ exp —M —exp —($3T+m32 T 4217)
2057 2057

Substituting this density back into Equation (4.2.14) and simplifying the integrals,
we arrive at the pricing formula for the floating barrier call (recall thiat= S1/.S2,
andus, oz andp’ are given by Equations (4.2.7-8)):

—T1T / ASZ ” /
CA(S]_, Sz, t) = e ""s; <N[d2, da; p] — <S—1> N[dﬁ, dg; p ])

AS,

—-e""K <N[d1, ds; p,] — < 3

>71N[d5,d7;p']>, (4.2.18)
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where we have introduced the following notations

In + pat
dlzL, dp = dy + 01T,
1T (4.2.193)
In (AS—S}) + pi3T
dg=—2%0 77 0 g =ds+ g
3 P ) 4 3+ p'o1VT,
20" In %
d5:d1+%, de = ds + 01V/T,
4.2.19b
2in (%) a1
d7 =d3z + ———=+ oo/ dg = d7 + p'o1y/T,
2 200
"= /~423’ ve=m+ T (4.2.19¢)
03 03

andN|a, b; p] is the standard bivariate cumulative normal distribution function

Nla, b; p]

- m / / exp{ ﬁ(wz—Fyz—pry)}dy dz. (4.2.20)

4.3. LADDER-LIKE BARRIERS

Our next example illustrates the use of the Chapman—Kolmogorov semigroup
property. Consider a down-and-out call with a time-dependent ladder-like barrier
B(t"),t <t < T, defined by

By ift<t <t
B(t') = (4.3.1)

By, ift*<#<T’

and we assume th@t; < B». A knock-out provision of this type can be included
into a long-term option or warrant if the underlying is expected to rise during the
life of the contract. The present value of this path-dependent option atltilee
given by

CBLBZ(S’ t)

— T (e°T — K) e(M/Uz)(CUT—Z')_(HZT/ZO'Z)]CBl,BZ(xT’T | z,t) dzp.(4.3.2)
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The density g, B, is obtained from the Chapman-Kolmogorov semigroup prop-
erty (2.23) by convolution of two standard down-and-out densffigsandCz, of

the form (2.4.1) for two time intervals< ' < t* andt* < ¢’ < T (the integration

onz* is fromb, to oo sincel’p, is equal to zero fox < b, —the contract s already
extinguished)

o0
Kpy,,(xr, T | z,t) = /b Kp,(z7,T | 2*,t*)Cp, (2, t* | z,t) dz*, (4.3.3)
2

where we introduced the following notations
1=t —1t, =T —1t", b1 = In By, bo = In By. (4.3.4)
Substituting this back into Equation (4.3.2),

CB17B2(57 t)

8T 7 gy [T der (e — K) el er—=(r/20)
2r02\ /1112 JnK b

B (xr — x*)? B (z* — x)?
% (eXp{ 2027 2027

B exp{— (zp —2%)% (¥ +2— 2b2)2}

20211 20219

B exp{— (z7 + 2% — 2b1)? (@ - x)z}

2027 2021
(xp + 2% — 2b1)% (2% + z — 2bp)?
+exp { — 2071, — 2071 . (4.3.5)

Simplifying the integrals, we arrive at the pricing formula for the down-and-out
call with ladder-like barrier (4.3.1):

B> y+2
Chop(Sit) = 8 N[dzad4?/0]—<§> N[de, dg; p

B v+42
- <§1> Nld1o, —dg; —p]

B v+2
T (g) N{dsz, —da; —p])
2
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—rT . B\ .
—€ ""K | N[d1,ds;p] — | o | Nlds,dz7; p]

S
B1\"”
—(2) Nide,—d7;—
() Nldo, i~
B Y
+(32) Nl —dsi 1) (4.3.6)
2
where we have introduced the following notations
T2 2u 2
_ /12 e e — 4.3.7a
P = T=2=2"1 ( )
In(2) + pr
dlZ%, dp = d1+ o/,
O/ T
(4.3.7b)
y In (Big) + WT2 J J
3= U—\/T—Z, 4= d3+ o\/T2,
In (%) + pur
ds = ——F———, de = ds + o/,
o7 (4.3.7¢)
In (%) + ut2
dy= ————— dg = d
7 o/ ; 8 7+ 0\/T2,
In <%> + pur
dg = O'—\/F’ d10:d9+0'\/;7
(4.3.7d)
B2S
In <B§K> + pt

dy1 = di2 = diz+ o/T,

o\/T ’
If we setB; = 0, this formula reduces to the pricing formula for partial barrier
options of Heynen and Kat (1994). Settify = By, it collapses to the standard
formula for the down-and-out call. Using the same procedure one can obtain
pricing formulas for ladder-like barriers with any finite number of steps through
multi-variate normal probabilities.

5. Conclusion

In this paper we presented a brief overview of the path integral approach to options
pricing. The path integral formalism constitutes a convenient and intuitive language
for stochastic modeling in finance. It naturally brings together probability-based
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and PDE-based methodologies and is especially useful for obtaining closed-form
solutions (when available) and analytical approximations for path-dependent prob-
lems. It also offers an interesting numerical framework that may yield some com-
putational advantages for multi-dimensional models with general parameters, such
as multi-factor term structure models, as well as path-dependent problems. In par-
ticular, in Linetsky (1996) we apply the methodology developed here to derived
closed-form pricing formulas for a class of path-dependent derivatives contingent
on occupation times.

To conclude, let us quote Barry Simon (1979 part, the point of functional
integration is a less cumbersome notation, but there is a larger point: like any
successful language, its existence tends to lead us to different and very special
ways of thinkingd.
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