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Abstract. The WALRAS algorithm calculates competitive equilibria via a distributed tatonnement-
like process, in which agents submit single-good demand functions to market-clearing auctions. The
algorithm is asynchronous and decentralized with respect to both agents and markets, making it
suitable for distributed implementation. We present a formal description of this algorithm, and prove
that it converges under the standard assumption of gross substitutability. We relate our results to the
literature on general equilibrium stability and some more recent work on decentralized algorithms.
We present some experimental results as well, particularly for cases where the assumptions required
to guarantee convergence do not hold. Finally, we consider some extensions and generalizations to
the WALRAS algorithm.
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1. Distributed Implementation of General Equilibria

1.1. TATONNEMENT

When a collection of interconnected markets achieves a perfect balance of supply
and demand with respect to the maximizing behaviors of self-interested economic
agents, we say that the economy is ingeneral equilibrium. This idea of a general
price equilibrium was originally articulated by Léon Walras (1954), who proposed
that such equilibria could be realized through a price-adjustment process he called
tatonnement(sometimes translated as ‘groping’, or ‘tentative proceedings’), in
which agents (that is, consumers and producers) respond to price signals for the
individual goods. The agents’ interactions are coordinated by a central ‘auctioneer’
who adjusts the general price levels toward a general balance, announcing interim
prices to elicit responses from the agents.

More specifically, Walras envisioned the market clearing process working as
follows.z Starting with a set of prices arbitrarily given, the excess demand in each
market may be positive, zero, or negative. For an arbitrary ordering of these markets,
take the first and adjust the price so that supply and demand are equal, given all
other prices. Of course, the change in the first price will normally change excess
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demand in all other markets. Next consider the second market and likewise adjust
its price to clear; then repeat the process for all remaining markets. At the end of
each round, only the last market is guaranteed to be in equilibrium, since a change
of price in some later markets will normally destroy the equilibria established in
previous markets. But Walras argued that the change in a good’s own price will have
a more significant impact on its excess demand than the change in other goods’
prices. The own price adjustment goes directly to zero excess demand, whereas the
indirect influences of other price changes may increase or decrease demand for the
good, and may even cancel each other out. Hence, Walras argued, it is probable
that after each round, the prices are closer to equilibrium than before. Eventually,
in this story, all markets will clear.

Walras’s intuition is correct only in particular circumstances, as a series of
studies in the century following his original speculation have told us. In an
early investigation of the problem, Hicks (1948) observed that the tendency toward
equilibrium depends on the shapes of demand functions near the equilibrium point.
Samuelson (1947) provided the first comprehensive mathematical formulation of
the price-adjustment process and associated notion of equilibriumstability. How-
ever, this formulation differs from Walras’s original vision in several respects. In
Samuelson’s now-standard version of tatonnement, competitive agents receive a
price signal, and report their excess demands at these prices to the central auc-
tioneer. The auctioneer then adjusts the pricesincrementallyin proportion to the
magnitude of excess demands, and announces the new incrementally adjusted price
level. In each round, agents recalculate their excess demands upon receiving the
newly adjusted price signal, and report these to the central auctioneer. The process
continues until the prices finally converge to an equilibrium. (Often this process
is formalized as a continuous rather than a discrete adjustment, so that it can be
described by differential equations and Lyapunov methods applied to prove stability
results.)

This particular formulation of tatonnement, along with some minor variants,
was extensively studied in the 1950s and 1960s (Arrow and Hahn, 1971). The
results most relevant in our computational context are those on global stability. Of
particular importance is the demonstration by Arrow et al. (1959) thatgross substi-
tutability (GS) is sufficient for a tatonnement process to be globally stable. Gross
substitutability holds when the aggregate demand for each good is nondecreasing
in the prices of other goods. Under this condition, the equilibrium is also unique.? A
somewhat more general sufficient condition for global stability is that the aggregate
excess demand functions satisfy theweak axiom of revealed preference(WARP)
(see the aforementioned textbooks, or Takayama (1985), for example).

? For a broader discussion of existence, uniqueness, and stability of competitive equilibria, consult
a good microeconomic theory textbook (Malinvaud 1985; Varian 1992; Mas-Colell, Whinston &
Green, 1995).
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1.2. NON-TATONNEMENT PROCESSES

Many economists (Rust (1996) is a recent example) criticize the tatonnement
explanation of how to reach general equilibrium because it does not allow agents to
trade until an equilibrium has been reached. In an alternate approach, the so-called
non-tatonnement process, agents are allowed to trade before the economy has
reached equilibrium (although irreversible consumption and production of goods
are typically prohibited). Fisher (1983) provides an extensive discussion of non-
tatonnement processes. Takayama (1985) presents Edgeworth and Hahn processes
as two examples of non-tatonnement approaches.

The obvious rationale for allowing agents to trade out of equilibrium is simply
that waiting an indefinite time to reach equilibrium is unreasonable, and that even
within definite intervals, the world changesand thus the time delay is consequential.
In the non-tatonnement case, an agent’s excess demand function is typically a func-
tion of time, and the final price that clears all markets is generally path dependent.
Therefore, the correspondence from initial endowments to final allocation is not as
strong as that in the tatonnement process. One nice feature of the non-tatonnement
processes is that they are usually more stable than the tatonnement processes, in
part due to the fact that intermediate trading never decreases agents’ utilities.

In defining non-tatonnement processes, it is important to specify the rules that
allow the disequilibrium trading to occur. For the Edgeworth process, agents are
simply assumed to trade whenever it is possible to improve their utilities. For the
Hahn process, the short side of the market always gets satisfied: if there is excess
demand of a certain good, then all sellers can sell but not all buyers can buy.
Many other protocols are possible, as realized, for example, in particular artificial
economies (Clearwater, 1995; Epstein and Axtell, 1996; Yamaki, Wellman and
Ishida, 1996), or general dynamic exchangemechanisms such as continuous double
auctions (Friedman and Rust, 1993).

If one is interested in general equilibrium for purposes ofimplementingdecen-
tralized resource allocation, then the objection that tatonnement is not an accurate
description of observed price-formation processes is not crucial. Nevertheless, an
ability to transact out of equilibrium can be advantageous if the time required to
reach equilibrium is prohibitive. However, these advantages come with some draw-
backs. Non-tatonnement processes may be subject to more strategic interactions,
as transient prices become consequential to participating agents. This may reduce
the modularity of the system, but the promise of more robust stability might prove
to be a worthwhile tradeoff. Another serious concern is that irreversible decisions
(particularly in production) before prices are in equilibrium may lead to ineffi-
cient resource allocations. Thetentativequality of tatonnement makes it a more
conservative, if somewhat less dynamic, approach.

1.3. DISTRIBUTED IMPLEMENTATION

One important property common to both tatonnement and non-tatonnement process-
es is that they are amenable to straightforward distributed implementation. Although
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the traditional tatonnement process is often described as if there were a central auc-
tioneer, the price update is typically separable across goods, and therefore nothing
is lost by decentralizing the auctioneering process to this extent.

This is in contrast to other prevalent methods for computing competitive equi-
libria, namely fixed-point (Scarf, 1973; Shoven, Whalley and Wiegard, 1992) and
mathematical programming approaches (e.g., (Zhao and Dafermos, 1991)), which
generally require direct examination of the joint price space. Centralization is not
necessarily a drawback for the problems to which these algorithms are usually
applied: solution of a general-equilibrium model to examine issues such as tax
or trade policy (Shoven and Whalley, 1992). In most applied general equilibrium
modeling, the system being modeled is distributed, but the analysis itself need not
be.

For other applications, however, distribution of the computation is important.
Such is the case when modeling the actual price-formation process of an economy,
or (as in our case), when the purpose is to solve resource-allocation problems
within a distributed computational environment. For these purposes, two levels of
decentralization are important. First, at theauction level(or more generally, the
institutionlevel), we would like to decompose the market across commodities. For
tatonnement and non-tatonnement processes, this means operating separate markets
for each good. Decomposition obviously reduces dimensionality and simplifies
each auction’s task.

Second, at theagent level, we would like to bound the information scope of each
agent to its own preferences or technology, and the decision scope of each agent
to its own consumption or production. In the framework ofmechanism design,
decentralization constraints of this sort are typically formalized in terms of privacy
preservation and informational efficiency (Campbell, 1987; Hurwicz, 1977), and
the competitive mechanism is characterized as a maximally distributed mechanism
in these terms. Agent-level decentralization generally enhances modularity of the
overall system, and is often necessary to reflect an existing authority or information
structure.

We might also consider a third level of decentralization–distribution of the
auction process for each good. Such distribution might be appropriate when com-
munication costs depend on locality, in which case multiple auctions might mediate
exchange in various neighborhoods. If it is possible to arbitrage between the local
auctions, then such configurations would have the same equilibria as a single-
auction-per-good setup. If the markets are not so closely coupled, then the result
may be multiple prices for the same good. An extreme version of this isbilateral
exchange, where agents engage exclusively in pairwise trades with their neighbors.
This approach has been explored extensively in theSugarscapemodel (Epstein
and Axtell, 1996), revealing systematic divergence from competitive equilibrium
results.?

? Bilateral exchange in Sugarscape is characterized as anunmediatedmechanism, where no
auctioneer per se is involved in the exchange process. We regard the role of the auction to be
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In the next section, we describe an approach to distributed resource allocation
based on general equilibrium. We have embodied this approach in a system, called
WALRAS, that is designed to facilitate the construction and implementation of
computational economies based on the competitive mechanism. Our focus in this
article is on the underlying algorithm that WALRAS employs to derive general
equilibria.

2. The WALRAS Algorithm

The WALRAS system is designed to provide a computational environment based
on the basic concepts of general equilibrium theory. The system supports the two
standard types of agents, consumers and producers. Consumers are defined by their
preferences and endowments, and producers by their technology. Both types are
assumed to be rational, competitive agents, maximizing utility or profits subject to
feasibility at the given price level.

The system supports these agent types by providing computational building
blocks for programming agent behaviors, based on maximization with respect
to specified preferences or technologies. At its core the system also provides
a distributed bidding protocol and price adjustment procedure, which together
comprise the WALRASalgorithm. In this section we describe this algorithm in
detail, and its connection to some related work.

2.1. OVERVIEW

In the WALRAS system the actions taken by consumers and producers are coor-
dinated by auctioneers whose jobs are to clear their respective markets. There is a
one-to-one correspondence between auctions and goods.

Upon receiving a randomly chosen initial price vector, each agent computes the
demand function for each of its goods of interest. Consumers are interested in any
good mentioned in their utility functions (including any with nonzero endowments),
and producers are interested in any good mentioned in their technologies. Each
demand function specifies the net quantity demanded of a good (which for a net
supply is negative) as a function of its price, assuming that the prices for the
remaining goods are constant. The agents then send these single-good demand
functions – thebids– to the respective auctioneers for each good.

Each auction, upon receiving the bids from all agents, computes the clearing
price, which is the point at which the aggregate excess demand is zero. The auctions
then notify the bidders of the new price. Upon seeing new prices, the consumers
and producers compute revised demand functions as necessary based on these new
prices, and send these updated bids to the auctions.

that of enforcing the information revelation and allocation properties of the exchange protocol.
Implementation of any protocol requires this function, whether or not it is realized in a mediating
institution.
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This process continues until the prices no longer change (or the changes are
within a pre-specified threshold). Then the process terminates, and WALRAS
reports the final state of the price vector as the equilibrium.

2.2. THE ASYNCHRONOUSBIDDING PROTOCOL

An important feature of the WALRAS bidding process is that it isasynchronous.
That is, at any particular time, agents are not necessarily bidding on the same goods
or computing their demands based on the same state of price information. Rather,
each agent maintains its own queue of goods for which to compute revised bids,
and processes new price information as it is received from the auctions.

In a distributed computing environment, the asynchrony of agents’ bidding
behavior is completely unconstrained. In our implementation of WALRAS on a
single computational process,? we realize a more restricted form of asynchrony by
introducing randomness into the bidding process. Because it takes time to compute
and transmit a bid, simultaneous transmission of all bids by all agents would not be
an accurate model. Therefore, in our simulated system we poll the agents, allowing
each to submit a random number of bids on each iteration.

Formally, let there bek goods andn agents. At any particular timet, agenti
submits some number of bids for a subset of the goods. We assume that the number
of new bids in any period is determined by a random draw.?? There is a distinct
draw for each agent at each time period. The draws are independent across time
and across agents. When an agent does not submit a bid for a good, its demand is
simply carried over by the auction from the last period.

If it has a chance to submit, the bid agenti submits to auctionj at time t is
x
j
i (pj ; p

t�1
�j ), a function ofpj , the price of goodj, parametrized bypt�1

�j , the price
of the other goods according to information available to the agent at timet� 1.

If agenti has not submitted a new bid to auctionj for sji (t) periods prior to
the current timet, we denote theeffective bidfor this agent, good, and time as

x
j
i (pj ; p

t�s
j
i
(t)

�j ). For the general case where the agent might or might not submit a
new bid, we can express this effective bid as

x
j
i (pj ; p

t�s
j
i
(t)

�j )

� x
j
i (pj; p

t�1
�j ) + b

j
i (t)[x

j
i (pj ; p

t�1�sj
i
(t�1)

�j )� x
j
i (pj ; p

t�1
�j )]:

In this expression, the coefficientbji (t) is an indicator that takes the value 0 ifi
submits a new bid for goodj at t, and 1 otherwise. The first term in the square

? We have implemented both distributed and single-machine versions of the system. Although our
target applications generally run in distributed environments, we maintain the single-machine version
to facilitate experimentation with the system and the algorithm.
?? The current implementation of WALRAS chooses with equal probability from the setf0; 1; 2g.

Note that with this setting, each agent submits an average of one bid per cycle. As we see below, the
particular distribution is inessential to our analysis.
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Figure 1. Convergence of the WALRAS algorithm on one hundred randomly generated
exchange economies. Note that with seven goods, it takes seven cycles on average for each
agent to complete an entire round of bidding.

bracket is the bid that agenti would submit to auctionj based on the information
s
j
i (t � 1) + 1 periods beforet (or sji (t� 1) periods beforet� 1). This is the old

bid retained by the auction if no update is called for by the system.
Another way to write this is

x
j
i (pj ; b

j
i (t)p

t�1�sji (t�1)
�j + [1� b

j
i (t)]p

t�1
�j );

or simplyxji (pj; p
t�s

j
i (t)

�j ), where

s
j
i (t) = b

j
i (t)(s

j
i (t� 1) + 1) + (1� b

j
i (t)):

Note that throughout we take one period as the minimum possible delay.
One virtue of introducing asynchrony into the price adjustment process is that it

tends to reduce price oscillations caused by simultaneous reactions by agents to the
same delayed information (Wellman, 1993). By randomizing the bidding, different
agents tend to bid on different goods in a given period. That is, we typically have
b
j
i 6= b

j
i0 for i 6= i0, and consequently different delays,s

j
i (t) 6= s

j
i0(t).

Asynchronyamong auctionsis a feature that is buried in the continuous version
of the tatonnement process. Although it is usually not stressed, in the translation
from a difference-equation formalization of tatonnement to a differential formal-
ization, the simultaneity (among auctions) is lost (see Huberman and Glance (1993)
for a discussion).

2.3. EXPERIMENTAL RESULTS

We have implemented this algorithm in the WALRAS system and have run it on
numerous computational economies. Figure 1 presents some representative exper-
imental results. We ran one hundred randomly generated exchange economies,
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each with seven goods and seven consumers. The consumers were given randomly
generated endowments and preferences represented by the CES (constant elasticity
of substitution) utility function,

u(x) =

0
@ kX
j=1

�j

�
xj
��1A

1
�

: (1)

For these experiments we set� = 0:5 and randomly generated the�j coefficients
from a uniform distribution. Note that these settings ensure that the gross substitutes
assumption is satisfied for this example.

Figure 1 plots the median total excess demand, as a function oft, the bidding
cycle index. Our measure of total excess demand is the sum of absolute excess
demand for each good. (For comparison, note that the economies averaged approx-
imately 220 units of endowed goods.) As we can see from the figure, the excess
demand drops precipitously in the first few cycles, as the agents submit their initial
bids. Convergence continues rapidly in the early iterations (a constant slope on the
log-scale plot), beginning to level off at around 150 cycles.

We have also examined scalability of the algorithm with respect to the numbers
of goods and agents (Wellman, 1995). The main experimental evidence seems to
suggest that the number of iterations required to reach equilibrium does not rise
with the number of agents in the economy. We have also observed manageable
increases in convergence time with up to a dozen goods (see Wellman, 1995a;
Figure 2).

To calculate the clearing price for any particular market, we have generally
used binary search over the aggregate demand function. As pointed out by Ygge
and Akkermans (1996), Newton methods could be employed to speed up this
computation, by exploiting derivatives of the aggregate demand.

2.4. RELATION TO TATONNEMENT AND OTHER ALGORITHMS

The process generated by WALRAS is similar to the tatonnement process, and
particularly resemblant of Walras’s original vision. In WALRAS, there is one
auctioneer for each good’s market. Each auctioneer receives information from con-
sumers and producers on one good, and it adjusts the price only for that particular
good to reduce the excess demand for it. No auctioneer has to worry about inter-
actions among different markets, such as how the changes in the price of one good
will affect the excess demand of another good. It is in this sense that WALRAS
is decentralized at the good or auction level. It is of course also decentralized at
the agent level, as agents are concerned exclusively with their own consumption or
production. Both forms of decentralization are useful (often essential) in practice,
providing the two sources of distributivity and modularity in the system (Wellman,
1995).
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As we have previously (Wellman, 1993) pointed out, WALRAS differs from the
traditional tatonnement procedure in two basic ways:

(1) agents send excess demandfunctionsrather than single quantity points at a
particular price, and

(2) the auction adjusts individual prices to clear each market, rather than just
adjusting the whole price vector incrementally.

In practice, sending a whole curve is not much more complicated than send-
ing just a point, since a curve can be effectively approximated by a number of
points. And, as we discuss in Section 5, we can also accommodate hybrid meth-
ods, where curves are built up incrementally from a sequence of point bids. The
analysis in terms of entire demand functions which we pursue below avoids some
complications that occur when dealing with points accumulated from different time
periods.

The market-by-market approach employed by WALRAS is calledprogressive
equilibrationby Dafermos and Nagurney (1989), in which it was applied to a trans-
portation network equilibrium problem. This method was also used in Eydeland and
Nagurney (1989), where a collection of non-interacting markets with linear demand
and cost structures were studied. These are essentially partial equilibrium models
which could be reformulated as quadratic programming problems, as pointed out
by the authors. WALRAS uses this method to approach a collection of markets
which are inherently interdependent. The progressive equilibration approach also
bears some similarity to Hicks’s notion of perfect stability (Hicks, 1948), which
itself is patterned more after Walras’s tatonnement concept than are more modern
formalizations.

Reiter and Simon (1992) studied a decentralized approach for the case where
the equations that describe the equilibrium are linear. For this special case, their
method requires a particularly small message space.

Murphy and Mudrageda (1994) investigated the problem of decomposing large-
scale equilibrium models composed of linear-program submodels. Their work
focuses on issues arising from models made up of heterogeneous components.
In subsequent work (Murphy and Mudrageda, 1995), they describe a method of
constructing a series of approximate supply curves that, when combined with exact
demand models determines a sequence of points that converge to the equilibrium.

Bertsekas and Tsitsiklis (1989) have studied asynchronous dynamic program-
ming and optimization in a more general setting. Using a model of asynchrony
based on parallel processors subject to random delays, the authors have identified
conditions under which convergence of an asynchronous algorithm can be derived
as a consequence of the convergence of the synchronous version of the same
algorithm. They have applied such results to problems in dynamic programming,
network flow, and constrained optimization.

Some other related work is described in previous writings (Wellman, 1993).
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3. Convergence of the WALRAS Algorithm

In this section, we show that the price adjustment process generated by WALRAS
converges to the unique competitive equilibrium, under conditions of an exchange
economy with strictly convex preferences and gross substitutability (GS) between
goods. The result here also extends to productive economies. The GS assumption
is essential for the proof, although we have found experimentally that convergence
is often obtained even when it is violated.

3.1. BASIC SETTING

Our argument is based on the adaptive-learning framework of Milgrom and Roberts
(1991). We start by formulating the price-adjustment process as a game, with
auctions as players and agents mechanically following the rules of competitive
behavior.

Let thek auctions play a game where each sets the price of its own good, that
is, auctionj setspj . Let p be thek-vector of prices, where each componentpj is
restricted (without loss of generality) to the interval[0;1]. Let Qj(p) be the true
aggregate excess demand function for goodj, that is, the total demand summed
over alln agents. As mentioned above, we assume strictly convex preferences and
GS.

We define the payoff function,�j, for auctionj as follows:

�j � �jQj(pj; p�j)j:

We assumeQj(pj ;0) < 0 for pj > 0, andQj(0; p�j) > 0 for p�j > 0.
With this payoff function, a competitive equilibrium of then agents is also an

equilibrium for this game among thek auctions. By our assumption that all agents’
preferences are strictly convex, such a competitive equilibrium exists. Under this
same assumption, any equilibrium for the game must have zero excess demand for
each good, and so the game equilibria and competitive equilibria of the economy
coincide exactly.

Note that the consumers do not enter this game explicitly; they simply behave
as price takers and submit their bids accordingly. There is no strategic interaction
between these consumer agents and auctions in our game here. The interesting
interaction arises in how auctions formulate theirexpectationsabout other auctions’
strategies. Our goal is to prove that if auctions behave exactly according to the rules
in WALRAS, their interaction will yield a convergent price adjustment process
leading to an equilibrium for the game, and hence a competitive equilibrium for
the economy.
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3.2. ADAPTIVE LEARNING

To proceed with the argument, we must first introduce and discuss several use-
ful concepts from Milgrom and Roberts (1991). The following terminology and
notation is drawn from that work.

Let Sj be the set of pure strategies of playerj, and let�(Sj) denote the set of
mixed strategies overSj. The joint strategy space,S, is the cross product of the
player strategy spaces,

Q
jSj .

DEFINITION 1. For� > 0, a strategy�j 2 Sj is �-dominatedby another strategy
�0j 2 �(Sj), if for all �00

�j 2 S�j; �j(�j ; �
00

�j) + � < �j(�
0

j; �
00

�j).

DEFINITION 2. GivenT � S, let Tj denote the projection ofT onto Sj, and
let T�j =

Q
l 6=jTl. The setU �

j (T ) is the set of pure strategies inSj that arenot
�-dominated when the other players are limited to pure or mixed strategies over
T�j. U �(T ) =

Q
jU

�
j (T ).

DEFINITION 3.U �m(S) is themth iterate ofU �(S), that is,

U �m(S) =

(
U �(S) m = 0

U �(U �(m�1)(S)) m � 1:

DEFINITION 4. U01(S) �
T
1

m=1U
0m(S) is theserially undominated strategy

set.

DEFINITION 5. A sequence ofstrategy profiles�(t) is consistent with adaptive
learningif and only if (iff) the following property holds for all playersj = 1; : : : ; k:

8� > 0; 8t̂; 9�t; 8t � �t; �j(t) 2 U �
j (f�(s) : t̂ � s � tg)

where

f�(s) : t̂ � s � tg �

kY
j=1

f�j(s) : t̂ � s � tg

This definition roughly means that a sequence�(t) is consistent with adaptive
learning if each player caneventuallyjustify its choice in terms of other players’
pastplay. Milgrom and Roberts (1991) point out that this definition ofadaptive
learning is very inclusive. It includes best-response dynamics, fictitious play, and
many other policies.

Now let us take a closer look at auctionj’s payoff at timet:

�j(t) = �

���Qj(p
t
j ; p

t
�j)
���

= �

�����
nX
i=1

x
j
i (p

t
j; p

t
�j)

����� :
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12 JOHN Q. CHENG AND MICHAEL P. WELLMAN

From the simultaneous-play nature of our game, auctionj does not knowpt
�j

at timet. Since it does knowpt�1
�j , one natural way for auctionj to play is to use

x
j
i (p

t
j ; p

t�1
�j ) to forecastxji (p

t
j ; p

t
�j). However, since in the WALRAS algorithm

agents do not submit new bids every iteration, auctionj does not have all the
demand informationxji (p

t
j ; p

t�1
�j ) either.

Alternately, we could assume that WALRAS auctionsknowthe functional forms
x
j
i (pj ; p�j), that is, the agents’ true demand functions, but not the price vector

(pj; p�j). Then the task for the auctions is to forecast the price vectorpt at time
t, and determine their optimal response. (This price vectorpt will be common
knowledge only at timet+ 1 or later.)

Before considering the fully asynchronous WALRAS algorithm, let us enumer-
ate some simpler cases:

– Auctionj believes that other auctions will play at any timet the vector price
p
t�s0
�j , wheres0 is a constant.

– Auctionj believes that other auctions will play at any timet the vector price
p
t�sj
�j , wheresj is a constant forj andsj < t.

– Auctionj at any timet uses a stationary probabilistic forecast, for example,
at any timet, auctionj believes that with probability�jh, other auctions will

playp
t�s

j

h
�j , where

Pk
h=1�

j
h = 1, andsjh < t for all h.

These forecasting methods can be shown to induce strategies consistent with
adaptive learning. One common feature across all of these algorithms is that
although different auctions may use different information,there is no informa-
tional discrepancy among the agents communicating demands to the auctions.
That is, the same� enters each termxji (pj ; p

�
�j) for all i. This condition is violated

by the WALRAS algorithm, which is asynchronous at the agent level.

3.3. ASYNCHRONY: A LIMITED CASE

A very important feature of the WALRAS algorithm is that within each auction,
the demand functions collected from different agents might be based on price
information from different periods of time. Because the agents do not typically
have the opportunity to send their most up-to-date bids to all the auctions, some of
the bids that the auctions receive are not based on the updated information. More
importantly, bids from different agents do not typically reflect thesameamount
of delay. Put another way, agents behave as if they have discrepancies in price
information.

In WALRAS, auctionj setsptj, so that

nX
i=1

x
j
i (p

t
j ; p

t�s
j
i
(t)

�j ) = 0:
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WALRAS ALGORITHM 13

It is easy to see that different agents (indexed byi) will, in general, have different
perceptions ofp�j .

The processes generated by WALRAS are indeed consistent with adaptive learn-
ing, as we show in Section 3.5. But before considering the full-blown algorithm,
we consider a simpler case with only two agents. This allows us to focus on the
basic issue of asynchrony, without bringing in all of the details required for the
general situation.

Consider a simple economy withk goods, but only two agents. Let theperceived
excess demandfunctionZj be defined by

Zj(pj ; t) � x
j
1(pj; p

t�1
�j ) + x

j
2(pj ; p

t�2
�j ):

Here we allow agents to have different perceptions ofp�j . Agent 1’s information
has a time lag of one, agent 2’s a time lag of two. (Neither the number of agents
nor these arbitrarily chosen time lags are crucial to our result.)

We would like to show that if each auction sets prices such that perceived excess
demandZj(pj ; t) is zero, the sequence of vector pricesfptg will converge to the
unique equilibrium price vector. The first step, which we accomplish in this section,
is to show that the bounds of such a sequence are consistent with adaptive learning.

At time t, auctionj selectŝpj(t) such that

x
j
1(p̂j(t); p

t�1
�j ) + x

j
2(p̂j(t); p

t�2
�j ) = 0:

DEFINITION 6. If y andz are twok-dimensional vectors, then

y _ z � hmax(y1; z1);max(y2; z2); : : : ;max(yk; zk)i;

y ^ z � hmin(y1; z1);min(y2; z2); : : : ;min(yk; zk)i:

We can now specify two additional sequences,fa(t)g andfb(t)g, defined for
t > 1.? Fort = 1 andt = 2, and for allj, letaj(t) = ptj_p

t�1
j andbj(t) = ptj^p

t�1
j .

For t > 2 and allj, we defineaj(t) andbj(t) recursively:

x
j
1(aj(t); a

H
�j(t� 1)) + x

j
2(aj(t); a

H
�j(t� 1)) = 0; (2)

x
j
1(bj(t); b

L
�j(t� 1)) + x

j
2(bj(t); b

L
�j(t� 1)) = 0; (3)

where

aH
�j(t� 1) � a�j(t� 1) _ a�j(t� 2);

bL
�j(t� 1) � b�j(t� 1) ^ b�j(t� 2):

? We assume thatt = 0 is the starting point for seriesfp̂(t)g.
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14 JOHN Q. CHENG AND MICHAEL P. WELLMAN

Note thataj(t) is a best response toaH
�j(t� 1), andbj(t) is a best response to

bL
�j(t � 1). Let us consider the sequencefaj(t)g. AlthoughaH

�j(t � 1) does not
represent the collective actions taken by the other auctions at any time in the past,
each component ofaH

�j(t � 1) is an actual past play by one of the auctions other
thanj at a particular time in the past. Therefore, the components ofaH

�j(t� 1) are
within thepast plays setdefined by

fa(s) : s < tg �

kY
j=1

faj(s) : s < tg;

which is the cartesian product of all players’ actual past plays sets. It must be the
case that

aj(t) 2 U �
j (fa(s) : s < tg);

since otherwiseaj(t)would be an�-dominated strategy, but an�-dominated strategy
cannot be a best response to any strategy profile of other players. Therefore we
conclude thatfaj(t)gas a price-setting strategy sequence is consistent with adaptive
learning.

More rigorously,faj(t)g is consistent with adaptive learning iff

8� > 0; 8t̂; 9�t; 8t > �t; aj(t) 2 U �
j (fa(s) : t̂ 6 s 6 tg):

We verify thatfaj(t)g indeed satisfies this definition. Fix any� > 0, for any t̂,
let �t = t̂ + 2. By definition (2)aj(t) is a best response toaH

�j(t � 1), which is
constructed from components ofa�j(t� 1) anda�j(t� 2). Hence

8t > �t = t̂+ 2; aj(t) 2 U �
j (fa(s) : t� 2 6 s 6 tg) � U �

j (fa(s) : t̂ 6 s 6 tg):

The last inclusion comes from the fact thatt� 2 > �t� 2 = t̂. Thus by definition,
faj(t)g is consistent with adaptive learning. A similar argument establishes that
fbj(t)g is consistent with adaptive learning as well.

Finally, we show that these two price sequencesbound the actual price sequence,
fp̂j(t)g. The argument is by induction.

— For t = 1 andt = 2; bj(t) 6 p̂j(t) 6 aj(t) directly follows their definitions.
— Suppose fort 6 t0, we havebj(t) 6 p̂j(t) 6 aj(t). We need to show that

bj(t
0 + 1) 6 p̂j(t

0 + 1) 6 aj(t
0 + 1) follows.

— Since

aH
�j(t

0) � a�j(t
0) _ a�j(t

0
� 1) > pt

0

�j _ pt
0
�1

�j > pt
0

�j;

aH
�j(t

0
� 1) � a�j(t

0
� 1) _ a�j(t

0
� 2) > pt

0
�1

�j _ pt
0
�2

�j > pt
0
�1

�j ;

and from the definition of̂pj(t0 + 1),
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WALRAS ALGORITHM 15

x
j
1(p̂j(t

0 + 1); pt
0

�j) + x
j
2(p̂j(t

0 + 1); pt
0
�1

�j ) = 0;

by gross substitutability, we have

x
j
1(p̂j(t

0 + 1); aH
�j(t

0)) + x
j
2(p̂j(t

0 + 1); aH
�j(t

0
� 1)) > 0:

Sinceaj(t0 + 1) satisfies

x
j
1(aj(t

0 + 1); aH
�j(t

0)) + x
j
2(aj(t

0 + 1); aH
�j(t

0
� 1)) = 0;

gross substitutability again implies

p̂j(t
0 + 1) 6 aj(t

0 + 1):

— By a strictly similar argument we obtain

p̂j(t
0 + 1) > bj(t

0 + 1):

— Therefore for allt andj,

bj(t) 6 p̂j(t) 6 aj(t): (4)

3.4. STRATEGIC COMPLEMENTARITY

The assumption of gross substitutability serves three purposes in our argument.
First, it guarantees the uniqueness of competitive equilibrium (Varian, 1992). Sec-
ond, it ensures that the price sequencesfaj(t)g andfbj(t)g are consistent with
adaptive learning. Third, it establishes that the price-setting game exhibitsstrategic
complementarity(Milgrom and Shannon, 1994).

DEFINITION 7. A game exhibitsstrategic complementarityiff for every playerj,

(1) the strategy spaceSj is a compact lattice,
(2) the payoff function�j(pj ; p�j) is upper semi-continuous inpj and continuous

in p�j, and
(3) �j(pj ; p�j) is quasi-supermodular inpj and satisfies thesingle crossing prop-

erty in (pj ; p�j).

For our game, the strategy space for each player is the unit interval, and hence the
first condition is easily satisfied. The second condition follows from the continuity
of the excess demand functions given strictly convex preferences.

The third condition relies on two concepts – quasi-supermodularity and the
single crossing property – defined by Milgrom and Shannon (1994). In our case
these properties hold by virtue of the total ordered strategy space for each player
and GS.? The technical details are omitted for brevity.

? GS is actually a stronger condition than the single crossing property. Both are assumptions on
global behavior. However, it can be shown that the single crossing property implies that if there is
a competitive equilibrium, then in at least a small region near the equilibrium, all goods are gross
substitutes.
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16 JOHN Q. CHENG AND MICHAEL P. WELLMAN

The following two theorems are from Milgrom and Roberts (1991).

THEOREM 8 (Milgrom and Roberts Theorem 11).Consider a game with strategic
complementarities. LetPNEdenote the set of pure Nash equilibrium profiles. Then,

[U01(S)] = [PNE];

where

[T ] � f� 2 Sj inf(T ) � � � sup(T )g:

THEOREM 9 (Milgrom and Roberts Theorem 7).SupposeU01(S) = f��g. Then
k �(t)� �� k! 0 iff f�(t)g is consistent with adaptive learning.

First, our game is one with strategic complementarities, and it has a unique Nash
equilibrium, which is also the unique competitive equilibrium of our exchange
economy, due to the GS assumption. By Theorem 8, the serially undominated set
is a singleton that contains only the unique Nash equilibrium.

Second, Theorem 9 states that if the serially undominated set is a singleton,
then any adaptive learning process will eventually converge to the element in that
singleton. Since bothfaj(t)g andfbj(t)g are consistent with adaptive learning for
any j, fa(t)g andfb(t)g are also consistent with adaptive learning, henceboth
converge to the unique equilibrium price vector.

Sincefp̂(t)g is bounded byfa(t)g andfb(t)g(4); fp̂(t)g must therefore con-
verge to the unique equilibrium price vector as well.

3.5. THE WALRAS ALGORITHM

Finally, we consider the full WALRAS algorithm. Define

Zj(pj ; t) �
nX
i=1

x
j
i (pj ; p

t�s
j
i
(t)

�j );

wheresji (t) � 0 is the delay of information for agenti in marketj at timet. If
agenti’s most recent update for itsjth bid is based on the information it has at time
t� s, then the delay is simplys. Let

r
j
i (t) � t� s

j
i (t):

We can then write

Zj(pj ; t) =
nX
i=1

x
j
i (pj ; p

r
j
i
(t)

�j ):
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WALRAS ALGORITHM 17

Note that

r
j
i (t) � t� 1;

since the smallest possible delay is 1.
At time t, auctionj selectŝpj(t) such that,

nX
i=1

x
j
i (p̂j(t); p

r
j
i
(t)

�j ) = 0:

Let aj(t) andbj(t) be defined as in Section 3.3 as a best response toaH
�j(t�1)

andbL
�j(t� 1), where

aH
�j(t� 1) �

n_
i=1

a�j(r
j
i (t));

bL
�j(t� 1) �

n̂

i=1

b�j(r
j
i (t)):

PROPOSITION 10.8t̂;8i;9 _ti; r
j
i ( _ti) > t̂.

Proof.Fix i. Pick anyt̂, let ~t = t̂ + 2. At ~t, there are two possibilities. One is
r
j
i (~t) = ~t� 1 = t̂+ 1. In this case, our proposition is true immediately.

The second situation isrji (~t) < ~t�1. In this case, the bid to auctionj by agenti
has not been updated. Suppose that this bid is in the queue withm steps left before
it will be called. At each timev WALRAS draws a numberdv randomly from
f0;1;2g. The position of our bid in the queue will move forwarddv steps. Since
m is a finite positive integer, it is conceivable that eventually the bid’s position in
the queue will be zero and then it will be updated, unless WALRAS draws 0 every
time, which is an event with probability zero. When our bid is updated aftert0
periods – that is, at time~t + t0 – we haverji (~t + t0) = ~t + t0 � 1 > ~t � 1 > t̂.
Again, our proposition holds with probability one.

In fact, if WALRAS draws from a set such asf1;2;3g instead off0;1;2g, we
can say that this proposition is truefor sure.

Let us check thatfaj(t)g is consistent with adaptive learning. Lett̂ = maxift̂ig.
Now,8� > 0;8t̂, there exists a�t, such that8t > �t, 8i, we haverji (t) > t̂. Hence all
components ofaH

�j(t� 1)(whent > �t) occurred between timêt andt. Therefore,
sinceaj(t) is a best response toaH

�j(t�1), it belongs to the setfa(s) : t̂ � s � tg.
This is the same as saying

8� > 0; 8t̂; 9�t; 8t > �t; aj(t) 2 U �
j (fa(s) : t̂ � s � tg);
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18 JOHN Q. CHENG AND MICHAEL P. WELLMAN

so faj(t)g is consistent with adaptive learning. A similar argument holds for
fbj(t)g.

Thus, bothfaj(t)g andfbj(t)g are consistent with adaptive learning for all
j = 1; : : : ; k. Again by the theorems in the last subsection,fa(t)g and fb(t)g
both converge to the unique equilibrium price with probability one. Sincebj(t) 6
p̂j(t) 6 aj(t) for all j andt, fp̂(t)g also converges to the unique equilibrium price
with probability one. Thus practically every actual price adjustment process run by
WALRAS converges to the unique equilibrium price.

4. Relaxing Gross Substitutability

4.1. GROSSSUBSTITUTABILITY

As we have shown above, when commodities are gross substitutes, the processes
generated by WALRAS converges to a competitive equilibrium. However, the GS
requirement is quite restrictive. We would like to be able to establish more relaxed
conditions under which the algorithm converges.

First, let us consider a very simple special case. Suppose we havek goods and
n consumers in an exchange economy, all of them with thesameCES preferences.
For simplicity, we accord all the goods equal weight, setting the�j coefficients
from (1) to unity,

u(x) =

0
@ kX
j=1

�
xj
��1A

1
�

:

We restrict the range of� to the interval(�1;1), to ensure convexity of preferences.
The budget constraint that consumeri faces is

kX
j=1

pjx
j
i =

kX
j=1

pje
j
i ;

wherepj is the price of goodj, andeji is agenti’s endowment of goodj. The
solution to the consumer’s maximization problem is the demand function

x
j
i (p; e) =

�Pk
m=1 pme

m
i

�
pr�1
jPk

m=1 p
r
m

; wherer =
�

�� 1
:

Note that herexji is a function of price and endowment vectors.
The cross-price derivative of this demand function, forj 6= l, is

@x
j
i

@pl
=

pr�1
j

h
eli
Pk

m=1 p
r
m � r

�
pr�1
l

�Pk
m=1 pme

m
i

i
�Pk

m=1 p
r
m

�2 : (5)
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If @x
j
i

@pl
> 0, then goodj is a gross substitute for goodl. From (5), it is clear that

this relationship holds given the following:

eli

kX
m=1

prm � r
�
pr�1
l

� kX
m=1

pme
m
i > 0: (6)

If r < 0, then (6) holds, provided that all prices are positive, and each consumer
starts with strictly positive endowment in at least one good. Sincer = �

��1; r < 0
is equivalent to 0< � < 1, given that� 2 (�1;1). Thus,r < 0 (or � > 0) gives
us a sufficient condition for gross substitutability for CES agents. However, even
if r > 0 (or� < 0), it is still possible that the first term in (6) dominates the second
term, especially whenjrj is small, which implies that� is negative but close to
zero.

Another possibility is that condition (6) be violated for some consumers, but
still hold in the aggregate. This aggregate substitutability condition is what we
really need for the algorithm’s convergence.

LetEj =
Pn

i=1 e
j
i be the aggregate endowment level in goodj. We then have,

for j 6= l,

nX
i=1

@x
j
i

@pl
=

pr�1
j

Pn
i=1

h
eli
Pk

m=1 p
r
m � r

�
pr�1
l

�Pk
m=1 pme

m
i

i
�Pk

m=1 p
r
m

�2

=
pr�1
j

h
El
Pk

m=1 p
r
m � r

�
pr�1
l

�Pk
m=1 pmE

m
i

�Pk
m=1 p

r
m

�2

=
pr�1
j

h
plE

l
Pk

m=1 p
r
m � r

�
prl
�Pk

m=1 pmE
m
i

pl

�Pk
m=1 p

r
m

�2 :

Now it is clear that
nX
i=1

@x
j
i

@pl
> 0

if the following is true:

plE
l
kX

j=1

prj � rprl

kX
j=1

pjE
j > 0: (7)

Again, we can see thatr < 0 guarantees this inequality. Whenr > 0 but jrj is
small, (7) is still likely to hold. The inequality (7) is equivalent to

plE
lPk

j=1 pjE
j
>

prl rPk
j=1 p

r
j

: (8)
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Figure 2. Equilibrium as a function of degree of complementarity; all economies have five
goods.

The first term is the value of goodl divided by the value of all goods; the second
term does not appear to have such a simple interpretation. It is interesting to note
that if we sum the above inequality acrossall goods, we getr < 1, which is implied
by � 2 (�1;1). So theaggregationof (8) across all goods must be true, even
though it might not hold for individual goods.

4.2. MOREEXPERIMENTAL EVIDENCE

The experimental results presented in Section 2.3 were based on CES consumers
with a fixed substitution coefficient� = 0:5. From the CES utility function (Equa-
tion (1)), we know that when 0< � < 1, both the individual and the market demand
functions exhibit gross substitutability. Therefore, WALRAS always converges for
these examples.

In order to explore situations where convergence is not guaranteed, we randomly
generated a range of CES exchange economies with negative� values. Specifically,
we varied� from +0:5 to �10, with a step size of 0:25. For each� value, we
randomly generated two five-good economies, one with five consumers and the
other with seven. The�j coefficients and consumer endowments were randomly
generated from uniform distributions.

Figure 2 presents our results. The vertical axis indicates the number of bidding
cycles for each economy to converge. The horizontal axis indicates the values of�.
There were nine economies that did not converge at all after 5000 cycles (not shown
in the figure). All of these were seven-consumer economies with� � �2. In the
figure, black dots indicate that the experimental run converged to the equilibrium
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for the economy, and white dots indicate that the run converged, but to anon-
equilibriumstate.

The experiment suggests that for small negative values of�, the randomly
generated CES exchange economies are very likely to converge to an equilibrium.
In fact, all economies with a� > �2 converge to an equilibrium in our experiments.
For large negative values of�, however, few of the economies converge to equilibria.

These results suggest possible convergence when� is negative but with a small
absolute value. Our theoretical investigation in Section 4.1 also suggests this pos-
sibility, as the inequality (6) is more easily satisfied for smaller degrees of comple-
mentarity.

4.3. NOTES ONAGGREGATEDEMAND FUNCTIONS

While the experimental results are certainly encouraging, formal results establish-
ing convergence under a class of utility functions wider than GS is still out of reach
at this time. That this is difficult is perhaps not surprising. The Sonnenschein-
Mantel-Debreu (SMD) theorem (Shafer and Sonnenschein 1982) tells us that util-
ity maximization by each individual agent does not impose any restriction on the
aggregate demand function. Even if restrictions stronger than utility maximization
are imposed on agents – such as homothetic preferences – there are typically still
no restrictions on market demand functions.

The SMD theorem suggests that if the market demand functions are to exhibit
particular properties, we are likely to need restrictions on how individuals’ pref-
erences are relatedto each other. For example, one property of interest isexact
aggregation, where the market demand function behaves as if it were generated
by some utility maximization individual. For discussions, see Muellbauer (1976),
Chipman (1974), Hildenbrand (1983), and Kirman (1992). The typical conditions
either call for all agents to have proportional incomes or require all agents to have
identical preferences.

5. Incremental Bidding

Recall that bids in the WALRAS algorithm consist of single-good demand func-
tions, specifying the quantity demanded as the own price changes, keeping the
remaining prices fixed. This notion of bid differs from that often employed else-
where, where agents announce only a particular demand quantity at a particular
point price. Some may be concerned that the WALRAS algorithm therefore places
an undue burden on the agents, who are required to compute a one-dimensional
curve rather than a zero-dimensional point.

If calculating demand curves is a serious burden, agents may in fact participate in
the protocol by calculating and submitting approximate demand functions, perhaps
based on fitting a small number of points. We have explored a particular version
of this, calledincremental bidding. In incremental bidding, agents are allowed to
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22 JOHN Q. CHENG AND MICHAEL P. WELLMAN

update only one point on their bid curve at a time, rather than revising their whole
demand function all at once.

The details of the scheme are as follows. A demand schedule is denoted by an
ordered set of price-quantity pairs, with linear interpolation between the specified
prices. At each bidding opportunityt for goodj, agenti selects a price�pj to bid on,
and adds the pointh�pj ; x

j
i (�pj; p̂

t�1
�j )i to its demand schedule, wherep̂t is the price

announced by auctions at timet. Note that at any time, the demand curve contains
points based on different information about the other goods’ prices. On adding a
new point, we delete any previous points that are inconsistent with the new point
and an assumption of downward-sloping demand.

If the bid prices�pj are chosen systematically, agents will eventually update
all the relevant information under this incremental bidding scheme. In our exper-
iments with incremental bidding, we chose�pj = p̂t�1

j + �, where� is a random
variable with a mean value of zero. On one hundred randomly generated exchange
economies with five goods and five CES consumers (with� = 0:5), all converged
to equilibrium.?

Since one bid in the incremental bidding protocol adds considerably less infor-
mation than a usual WALRAS bid (i.e., an entire demand function), it is not
surprising that it takes WALRAS longer to converge under incremental bidding.
Specifically, the incremental bidding scheme took on average about 70 times more
cycles than the regular scheme to reach a total excess demand below a particular
threshold.??

6. Conclusion

In describing and analyzing the WALRAS algorithm, we have extended the stan-
dard tatonnement convergence results to a setting that admits asynchrony and
facilitates distributed implementation. Although the rigorous convergence guaran-
tees are limited to the classical conditions with gross substitutability, we have found
empirically that the method often works when GS is violated to some degree.

By employing the general machinery of Milgrom and Roberts (1991) in our
proofs, we also suggest how a variety of related asynchronous price-adjustment
algorithms can be shown to converge. In continuing work we intend to explore some
of the more interesting variants in bidding protocols (e.g., incremental bidding,
discussed above), as well as other generalizations of the WALRAS algorithm.

? Without the random perturbation� (i.e., �pj = p̂
t�1
j ), the process typically gets stuck in a

non-equilibrium state.
?? As mentioned in Section 2.3, our measure of total excess demand is the sum of absolute excess

demand for each good. The threshold we used was 0.1 units, which is approximately 1/1000 of the
total endowed quantity.
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