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Abstract. In this paper, I analyze the organization of tasks or activities by a collection of agents.
I begin by formally defining organized collections and robustly organized collections of agents in
the context of a simple model. Within this framework, I demonstrate that organized collections and
robustly organized collections exist and equilibria need not be organized. I then test whether adaptive
agents can self-organize in this environment. I find that simple behavioral rules can lead to nearly
organized, fairly robust collections of agents.
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Tens of millions of people making billions of
decisions every week about what to buy and what
to sell and where to work and how much to save
and how much to borrow and what orders to fill
and what stocks to accumulate and where to move
and what schools to go to and what jobs to take
and where to build supermarkets and movie
theaters and electric power stations, when to
invest in buildings above ground and mine shafts
underground and fleets of trucks and ships and
aircraft – if you are in a mood to be amazed, it
can amaze you that the system works at all.

Thomas Schelling
Micromotives and Macrobehavior (p. 21)

1. Introduction

While long thought to require planning, order can also arise spontaneously. Birds
form flocks, water particles swirl in eddies, and pedestrians in crowded train sta-
tions form rivers of traffic. This phenomenon is often referred to as ‘order from
the bottom-up’. Recently, scientists have attempted to explain this emergence of
self-organized behavior using agent based models. Given the importance (and pre-
valence) of order in the economy, explaining it geographically (Krugman, 1996)
and temporally have grown as research topics within economics (Kirman, 1997;
Arthur and Durlauf, 1997).
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To date, researchers have succeeded in explaining the emergence of order in
specific environments. Mitchell, Hraber, and Crutchfield (1993) demonstrated that
locally informed one dimensional cellular automata can evolve identical local rules
that collectively perform global calculations. And, Arthur (1994) in popularizing
and recasting Schelling’s (1978) beach problem as ‘The Bar Problem’, found it
to be less of a problem than Schelling thought. Arthur reveals how an elaborate
behavioral dance of adaptive actors can create collective predictability.

In this paper, I construct a minimalist multi-agent model of temporal task se-
lection to see whether a collection of agents can self-organize in time and space
without a central planner. The model can be interpreted as a multiple bar problem,
or as a shopping problem where every agent must visit each of several establish-
ments, but I prefer to think of it as an abstraction of more general coordination
problems that occur within an economy. At the most basic level, language and
technology must be coordinated in order for an economy to function (Durlauf,
1996). Property rights must not only be defined but be accepted. Norms of behavior
and, more generally, culture also must be agreed upon to avoid crises and chaos
(Axelrod, 1997).

The models created to study these situations typically include only two or
three possible equilibria (Young, 1998). Some of these models rely on optimizing
agents, but most use evolutionary arguments, assuming that reproduction favors
actions generating higher payoffs (Kandori, Mailath, and Rob, 1993). These mod-
els demonstrate that evolution need not favor Pareto-dominant outcomes. In fact,
the introduction of noise tends to lead the system toward risk dominant actions
(Young, 1998). Among the other questions that have been asked and answered are
how much time is spent in the bad equilibria (Blume, 1993) and how the topology
of interactions influences the time spent in each equilibrium (Ellison, 1993).

The type of coordination that I model here differs. In some of the environments
I consider, agents choose from among billions of strategies, so they cannot ne-
cessarily ponder all options instantaneously. In an economy, agents choose from
a similarly large set (Matsuyama, 1992). Consider the definition of an Arrow–
Debreu commodity. It has physical characteristics, a location, and a time stamp.
Economic coordination must occur along all of these dimensions. For example, a
rancher selling cattle prefers to show up at the auction house when other sellers
have stayed home. In addition, the set of commodities itself may be the result of a
massive coordination problem with multiple equilibria, a point also made by Mat-
suyama (1992). As Schelling observes, the economy demonstrates ‘amazing’ levels
of coordination given the dimensionality of the space of strategies. Some of this can
be explained by the central limit theorem. To the extent that individual decisions
depend upon additive random effects, there should be normal distributions in the
aggregates, but not the small variances, i.e., the organization, commented upon by
Schelling.

The model that I construct lends itself to both mathematical and computational
techniques. In the model, agents choose routes among a finite set of locations, or



SELF ORGANIZATION AND COORDINATION 27

alternatively sequences for performing a set of activities. Agents want to minimize
the total attendance at the locations they visit – to avoid crowds. Organization
requires all locations to have identical attendance levels in each time period. Such
collections of routes exist and can be constructed easily, but the existence of or-
ganized collections of routes does not imply that decentralized agents responding
to local information will necessarily form them. If they do, then, in the language
of complex systems, the agents will have self-organized. In computational experi-
ments, I find that artificial agents relying on simple rules can often self-organize. I
also derive mathematical results that support these computational findings.

In studying whether decentralized agents self-organize, I also analyze the types
of collections of routes they form. The collections depend upon the agents’ beha-
vioral rules and the starting population, but for the most part agents tend to find
complicated collections of routes. In many cases, no two agents take the same
route. This tremendous diversity might appear to be costly but in fact, it has an
unintended benefit. Diverse collections prove robust to dropping individual loca-
tions. Comparing robustness for self-organized collections to minimal organized
collections – the type of collections a central planner might choose – the former
are far more robust. This occurs even though the agents do not take robustness
into account when choosing their routes; this finding echoes the work of Norman
Johnson (1998) who uncovers a relationship between individual level diversity and
system level robustness in a graph traversing model.

I have organized the remainder of this paper into three sections. In the next
section, I describe the basic model and present some mathematical results. In the
middle section, I analyze self-organization both mathematically and computation-
ally. In the computational model, I construct two types of agents that I call SIS
agents and BRO agents. The former type rely on gradient based search, while the
latter type rely on reproduction of the fittest. In the final section, I comment upon
the larger research agenda to which this paper belongs.

2. The Basic Model

There are M agents who must visit each of L locations in L time periods. I assume
that an agent can visit only one location each period, so an agent’s route, r, is an
ordering of the L locations. Agents want to minimize the total attendance at the loc-
ations they visit. A route can be considered as an element of P(L), the permutation
group on L objects. A collection of routes for each agent r = {r1, r2, . . . , rM} is
organized if the same number of agents are at each location in every period. With
one hundred agents and five locations, an organized collection of routes would
require exactly twenty agents at each location in every period. Twenty agents visit
location A in period 1, twenty agents visit location E in period 3, and so on.
Throughout the paper, I will let letters denote locations and numbers denote periods
where possible.1
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Table I. A cyclic MICOR.

Agent Route

1 A B C D E F G H

2 B C D E F G H A

3 C D E F G H A B

4 D E F G H A B C

5 E F G H A B C D

6 F G H A B C D E

7 G H A B C D E F

7 H A B C D E F G

Table II. A ‘paired’ MICOR.

Agent Route

1 AB CD EF GH

2 BA DC FE HG

3 CD AB GH EF

4 DC BA HG FE

5 EF GH AB CD

6 FE HG BA DC

7 GH EF CD AB

8 HG FE DC BA

2.1. ORGANIZED COLLECTIONS

Constructing organized collections of routes is not difficult. The simplest require
only L different routes among the M agents. I call these minimal collections of
organized routes (MICORs). There are many types of MICORs as I now show for
the case L = 8. The most obvious MICORs are cyclic. Imagine placing the eight
locations in a circle and assigning one agent to each location. In each time period
move each agent one location in a clockwise direction. This creates a MICOR as
shown in Table I.

But, MICORs can also be created by forming pairs of locations and implement-
ing inter- and intra-pair switches as shown in Table II.

These two examples misleadingly suggest that MICORS must have a simple
underlying organization. But, in fact, a MICOR can be a mangle of distinct routes
as shown in Table III.

This third collection is harder to describe than the first two. So, as measured by
minimal description length, the third collection is more complex.
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Table III. A baroque MICOR.

Agent Route

1 A B C D E F G H

2 B C A E F D H G

3 C A B F G H D E

4 G H D A B C E F

5 E G H B C A F D

6 H F E G D B C A

7 D E F C H G A B

8 F D G H A E B C

Table IV.

Agent Route

1 A B C D

2 B D A C

3 B C D A

4 C D B A

5 C A D B

6 D C A B

7 D A B C

8 A B C D

MICORs can be replicated or combined to form larger organized collections
of routes, but MICORs cannot be thought of as the building blocks of organized
collections of routes. As Example 1 shows, it is possible to construct an organized
collection or routes that cannot be decomposed into MICORs. So, while some or-
ganized collections will contain MICORs or be multiple copies of a single MICOR,
in general, MICORS are not a basis for organization.

EXAMPLE 1. The organized collection of routes as shown in Table IV cannot be
decomposed into a disjoint set of MICORs.

In Table IV, there are eight routes and four locations, so exactly two agents will
be at each location in every period. These eight routes cannot be broken into two
sub collections of four routes in such a way that both groups will have exactly one
agent at each location in each period. If it were possible to do so, one group would
contain agent 1, and the other would contain agent 8, since the two agents take the
same route. One sub collection must contain agent 3 with route BCDA. This group
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must also contain one of the agents (4 or 5) whose routes begin with location C.
But, both of these agents go to the same location at the same time as agent 3, so
the sub collection cannot be organized.

2.2. DIVERSITY

For a collection of routes to be organized, it must contain different routes. The
least organized collections or routes contain agents all choosing the same route.
Throughout this paper, I use a rather crude measure of diversity: the number of
distinct routes selected by agents. This measure does not take into account the
number of agents choosing each route. Consider the following collections of routes.

Collection 1: 97 agents take route ABCD, one takes route BADC, one takes CDAB,
and one takes DCBA.

Collection 2: 25 agents take route ABCD, 25 take route BADC, 25 take CDAB, and
25 take DCBA.

Notice that the second collection has an even distribution across the four routes,
while the first has only one agent taking each of three routes. Counting the number
of distinct routes will not capture this spread. However, knowing whether the col-
lection of routes is organized gives a signal as to the evenness of the spread. The
second collection is organized whereas the first is not.

2.3. ROBUSTNESS

In addition to being organized, a collection of routes may be robust or it may
be ‘brittle’ to dropping locations and time periods. By the latter, I mean that a
collection may become highly disorganized after a location and time period are
dropped. Intuitively, the robustness of a collection or routes should be related to the
level of diversity. More diverse collections should be more robust. Some examples
help to clarify this intuition. Consider the following three tables with organized
collections of twenty four agents vising four locations. The first collection consists
of six copies of each element of the permutation group on four objects.

Table V. Collection 1.

Agents Routes

1–6 ABCD ABDC ACBD ACDB ADBC ADCB

7–12 BACD BADC BCAD BCDA BDAC BDCA

13–18 CABD CADB CBAD CBDA CDAB CDBA

21–24 DABC DACB DBAC DBCA DCAB DCBA
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The second collection consists of three copies of Example 1.

Table VI. Collection 2.

Agents Routes

1–8 ABCD BDCA BCDA CDBA CADB DCAB DABC ABCD

9–16 ABCD BDCA BCDA CDBA CADB DCAB DABC ABCD

17–24 ABCD BDCA BCDA CDBA CADB DCAB DABC ABCD

The third collection consists of six copies of a simple cycle on four objects.

Table VII. Collection 3.

Agents Routes

1–4 ABCD BCDA CDAB DABC

5–8 ABCD BCDA CDAB DABC

9–12 ABCD BCDA CDAB DABC

13–16 ABCD BCDA CDAB DABC

17–20 ABCD BCDA CDAB DABC

21–24 ABCD BCDA CDAB DABC

Now, suppose that location D closes and that the number of time periods reduces
by one as well. Assume that the order in which an agent visits the remaining loca-
tions is the same as when the location D was included. For example, if the original
route was ABCDEFG and location D is dropped, the route becomes ABCEFG.
Given that convention, the collections can be rewritten as follows:

Table VIII. Collection 1.

Agents Routes

1–6 ABC ABC ACB ACB ABC ACB

7–12 BAC BAC BCA BCA BAC BCA

13–18 CAB CAB CBA CBA CAB CBA

21–24 ABC ACB BAC BCA CAB CBA
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Table IX. Collection 2.

Agents Routes

1–8 ABC BCA BCA CBA CAB CAB ABC ABC

9–16 ABC BCA BCA CBA CAB CAB ABC ABC

17–24 ABC BCA BCA CBA CAB CAB ABC ABC

Table X. Collection 3.

Agents Routes

1–4 ABC BCA CAB ABC

5–8 ABC BCA CAB ABC

9–12 ABC BCA CAB ABC

13–16 ABC BCA CAB ABC

17–20 ABC BCA CAB ABC

21–24 ABC BCA CAB ABC

Given these new routes, the attendance at each location in each time period
becomes:

Table XI. Attendance.

Collection Period 1 Period 2 Period 3

Number A B C A B C A B C

1 8 8 8 8 8 8 8 8 8

2 9 6 9 6 12 6 9 6 9

3 12 6 6 6 12 6 6 6 12

Notice the relationship between robustness and diversity. Collection 1, the most
diverse collection, remains organized even after location D has been dropped, but
the other two collections do not. Further, the second collection, which is more
diverse than the third, has less variance in attendance after location D has been
dropped. I define an organized collection of routes to be robustly organized with
respect to location k if when location k and one time period are dropped, the
collection remains organized. The next proposition states that robustly organized
collections of routes exist.
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PROPOSITION 1. For any number of locations, there exist robustly organized
collections of routes with respect to every location.

Proof. Consider the collection of routes that equals all possible permutations on
L objects. This collection contains L! routes. It suffices to show that this collection
is robustly organized with respect to all 
 ∈ {1, 2, . . . L} The proof to follow shows
that dropping any location, creates L copies of the permutation group on L − 1
members, an organized collection of routes.

Without loss of generality assume that location L is dropped. Consider all ob-
jects of the permutation group on L objects that visit location L first in their routes.
There are (L−1)! such routes. After dropping location L, these routes comprise the
permutation group on (L − 1) objects. This same holds for all other placements in
the route: there are (L−1)! routes that visit L second. After L is dropped these form
the permutation group on (L−1) objects. It follows that after dropping location L,
the collection of routes consists of L copies of the permutation group on (L − 1)

objects, an organized collection.

A collection can be robustly organized with respect to a specific location but
not be equivalent to the permutation group or to some finite number of copies of
the permutation group as the next example demonstrates.

EXAMPLE 2. Consider the following twelve routes. DABC, DCAB, DBCA,
ADBC, CDAB, BDCA, ABDC, CADB, BCDA, ABCD, CABD, and BCAD. The
attendance at each location in each time period equals three, so this collection of
routes is organized. Now, drop location D. This leaves four copies of the following
three routes: ABC, CAB, and BCA, which form a MICOR.

In the example, the location being dropped must be location D. If location C
were dropped the collection no longer remains organized. Define a collection that is
robustly organized for any location as fully robust. The next proposition states that
there exist fully robust collections of routes that are not copies of the permutation
group.

PROPOSITION 2. There exist collections of L! routes that are robustly organized
with respect to every location which are not the permutation group.

Proof. The proof is by construction of an example for the case L = 4. Similar
examples can be constructed for larger L. Begin with the L! = 24 routes that form
the permutation group on four objects.

Table XII.

ABCD ABDC ACBD ACDB ADBC ADCB

BACD BADC BCAD BCDA BDAC BDCA

CABD CADB CBAD CBDA CDAB CDBA

DABC DACB DBAC DBCA DCAB DCBA
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Consider the two pairs of routes (ABCD,ABDC) (BADC,BACD). In each pair,
the second route can be created from the first (and vice versa) by flipping its third
and fourth locations. To create a robustly organized collection of routes different
from the permutation group, begin with the permutation group and replace the
second route in each of the pairs with the first route.

It suffices to show that this change in the collection of routes remains organized.
This requires showing that the routes are organized and remain so after dropping
any of the four locations.

Organized: It suffices to show that the locations visited in each period for the sub
collection of routes ABCD and BADC is the same as for for the subcollections of
routes they replace, ABDC and BACD. This follows by inspection.

Dropping location A: If location A is dropped, the new routes become: BCD and
BDC. The replaced routes become BDC and BCD.

Dropping location B: If location B is dropped, the new routes become: ACD and
ADC. The replaced routes become ADC and ACD.

Dropping Location C: If location C is dropped, the new routes become: ABD and
BAD. The replaced routes become ABD and BAD.

Dropping Location D: If location D is dropped, the new routes become: ABC and
BAC. The replaced routes become ABC and BAC.

2.4. SYSTEM LEVEL PHENOMENA AND INDIVIDUAL LEVEL CHOICES

I have shown that the permutation group on L objects is maximally diverse and
also fully robust. And, I have shown that MICORs are not robustly organized.
These two facts reveal a relationship between diversity and robustness. If a central
planner were to coordinate routes without regard to robustness, she would probably
construct a MICOR. If robustness were a consideration, she would construct the
permutation group. The obvious question to ask next is what sort of collections
will decentralized collections of agents evolve. Will they self-organize into diverse,
robust collections or will they create fragile MICORs? The answer, as I shall show,
depends upon how the collection of agents self-organizes upon how agents adopt
their routes.

3. Self-Organization

I begin with a mathematical analysis of self-organization. First, I define an equi-
librium with respect to route choice. I then prove that an equilibrium need not be
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self-organized. However, as I show later, self-organized collections will tend to be
close to organized, given an appropriate distance metric.

Given a collection of routes, r = {r1, r2, . . . rM}, let the attendance for agent
i, Ai(r) equal the total attendance over all L locations that agent i visits, and let
Ai
(r) equal the attendance at the location that agent i visits in the 
th period. Let
T s


 (r) equal the attendance at location 
 in period s.
Several issues arise in determining how agents choose routes. In this discussion,

I will focus on just two: problem size and information. With twenty locations and
twenty time periods there are 243,290,200,817,664,000 possible routes. No agent
could simultaneously contemplate all of them. However, if an agent knew the at-
tendances at all twenty locations in each of the twenty time periods, a total of four
hundred pieces of information,2 then she could formulate an integer programming
problem and find the optimal route.3 Yet, both assumptions, knowing all of the
location attendances and deriving the optimal route, seem unreasonable. Therefore,
rather than assuming that agents best respond, I restrict the set of attainable routes,
h(ri) to be a subset of the set of all possible routes.

Given this assumption, I can define a collection of routes r = {r1, r2, . . . rM} to
be an h − equilibrium if Ai(r) ≤ Ai(r̂i , r−i ) for all r̂i in h(ri). In the case where
h(ri) = P(L), this becomes a standard Nash Equilibrium. The next proposition
states that any organized collection of routes is an h−equilibrium. When an organ-
ized collection of routes has been ‘grown’ by beginning from a non equilibrium
state, I shall refer to the collection as self-organized.

PROPOSITION 3. Every organized collection of routes {r1, r2, . . . rM} is an
h−equilibrium for any h.

Proof. Suppose that agent i changes its route from ri to r̂i . If the 
th location
visited by agent i is the same under both routes, ri
 = r̂i
, then attendances at
that location are equal, Ai
(r) = Ai
(r̂i , r−i). Otherwise, the attendance at the
location on the route belonging to the self-organized collection must be less than
on the other route, Ai
(r) < Ai
(r̂i, r−i), which completes the proof.

The converse need not hold. A self-organized collection of routes need not be
organized. The next example is a collection of routes that is an h-equilibrium for
all h but that is not organized.

EXAMPLE 3. Four agents, four locations:

Table XIII.

Agent Route

1 ABDC

2 BCAD

3 CDAB

4 DBCA
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This collection of routes, though not organized, is an h−equilibrium for all
h. Each agent has an attendance of only one (itself) at three locations and is one
of two agents at one other location during its route. Using the notation provided
above, A1(r) = 5, A2(r) = 5, A3(r) = 5, and A4(r) = 5. To show that this
collection of routes is an h−equilibrium for all h, it suffices to show that no agent
has a route that reduces its attendance to 4. To achieve this, agent 1 must visit
location A in period 1 and in period 2, which violates the assumption that agents
visit all locations. Agent 2 would have to visit location B in periods 1 and 3, also
a violation of the assumptions. Similarly, agent 3 must visit location B in periods
3 and 4, and agent 4 must visit location A in both periods 2 and 4, completing the
proof.

Though this example proves that equilibria need not be organized it does not tell
how far from organized an equilibrium can be. The distance depends upon h, the
heuristic for choosing new routes and upon the routes belonging to the collection.
The next proposition states that if all routes belong to the collection, and if h allows
switches of pairs of locations, then any h−equilibrium is self-organized.

PROPOSITION 4. Suppose that r is an h−equilibrium collection of routes and
that {ri}M

i=1 = P(L), then the collection r is self-organized, provided that h allows
switches of pairs of locations.

Proof. The proof is by contradiction. Without loss of generality assume that
location A has k+ agents at time period 1, where k+ > M

L
and has k− agents at

time period 2, where k− < M
L

. An agent whose route begins AJ would NOT strictly
prefer to switch to JA if its new attendance from the first two periods, T 2

A(r) +
T 1

J (r)+2 was weakly greater than his current attendance, T 1
A(r)+T 2

J (r). Hereafter,
to simplify notation, I drop the (r) term. Since all routes belong to the collection
this must hold for all J . In other words,

∑
J 
=A

(
T 2

A + T 1
J + 2

) ≥
∑
J 
=A

(
T 1

A + T 2
J

)
.

This can be rewritten as
∑

J 
=A

T 1
J −

∑
J 
=A

T 2
J


 ≥ (L − 1)(k+ − k− − 2) .

Since k+ > M
L

and k− < M
L

, the right hand side is weakly positive. Also, because
the total attendance in each period must sum to M,

∑
J 
=A

T 1
J = M

L
− k+
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and ∑
J 
=A

T 2
J = M

L
− k− .

It follows that the left hand side is strictly negative, a contradiction.

Note that this proposition does not say that if you begin with at least one copy
of every possible route that you end up with a self-organized collection of agents.
It only says that if you have an equilibrium that contains every possible route,
then it is self-organized – provided that the route choosing heuristic allows pairs
of locations to be exchanged. The next proposition and its corollary place bounds
on the distance from self-organized an h-equilibrium can be when only pairs of
locations can be switched.

PROPOSITION 5. Suppose that r is an h−equilibrium collection of routes and
that h only allows switches of pairs of locations. Then, no agent whose total
attendance exceeds M can visit a location that has an attendance greater than
1 + (M

L
).

Proof. Assume that total attendance for agent i, Ai(r) exceeds M. It suffices to
show that the attendance at any location that agent i visits cannot exceed 1 + M

L
.

Without loss of generality assume that the route ri visits the locations in increas-
ing order. If no pair of locations can be switched to lower attendance, then the
following inequalities must hold for 
 = 2, ..L.

T 1
1 (r) + T 



 (r) ≤ T 1

 (r) + T 


1 (r) + 2 .

Summing these (L − 1) inequalities and dropping the r gives the following
inequality:

L∑

=1

T 


 + (L − 2)T 1

1 ≤
L∑

s=2

T s
1 +

L∑

=2

T 1

 + (L − 1) · 2 .

Since every agent visits each location, it follows that
∑L

s=1 T s
1 = M. And since

in every period, each agent must be at some location
∑L


=1 T 1

 = M. Further, by

assumption
∑L


=1 T 


 = Ai , the attendance for the route of agent i. Therefore, the

inequality above can be rewritten as

Ai + (L − 2) · T 1
1 ≤ (M − T 1

1 ) + (M − T 1
1 ) + (L − 1) · 2

which reduces to

Ai + L · T 1
1 ≤ 2(M + L − 1) .

By assumption, Ai > M, total attendance for the agent exceeds M. Therefore, this
inequality can be rewritten

L · T 1
1 < 2(M + L − 1) − M = M + 2(L − 1) .
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Dividing both sides by L gives

T 1
1 <

M

L
+ 2(L − 1)

L
.

Which implies T 1
1 ≤ M

L
+ 1. Since this must hold for every location visited, the

proof is complete.

This proposition can be used to place an upper bound on the total attendance
for any agent.

COROLLARY 1. Suppose that r is an h−equilibrium collection of routes and that
h only allows switches of pairs of locations. Then, no agent’s total attendance can
exceed M + L − 1.

Proof. As before, without loss of generality assume that the agent visits the L

locations in ascending order. Suppose that each of the first k locations on the route
have an attendance of M

L
+1. From the proof of the previous proposition recall that

the following inequality holds for 
 > 1.

T 1
1 (r) + T 



 (r) ≤ T 1

 (r) + T 


1 (r) + 2 .

Now suppose that k = L, and arrive at a contradiction. If k = L, then the
inequalities can be rewritten as

M

L
+ M

L
≤ T 1


 (r) + T 

1 (r) .

As before, every agent must visit each location, so
∑L

s=1 T s
1 = M. And in every

period, each agent must be at some location, so
∑L


=1 T 1

 = M. So, summing these

L − 1 inequalities gives

2(L − 1) · M

L
≤ 2

(
M − M

L
− 1

)

which rearranged gives

L · M

L
≤ (M − 1) .

This is a contradiction, therefore, k < L.

These mathematical results suggest that switching pairs should be an effective
heuristic.
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3.1. GROWING SELF-ORGANIZATION

I now approach the question of self-organization computationally, trying to grow
organized collections given specific rules for choosing routes. This mode of
analysis emphasizes the gap between proving the existence of an equilibrium
and constructing a world that achieves it. Phrased alternatively, taking a com-
putational approach forces the modeller to have a complete representation. All
assumptions about timing, information, or behavior must be included and imple-
mentable (Tesfatsion, 1997). Not only can a computational approach demonstrate
the achievement of equilibrium, but when multiple equilibria exist, it can help to
select from among them (Holland and Miller, 1988). Here, given the enormous
number of equilibria, this will be valuable.

I attempt to grow self-organization using two types of agents. Under each, an
agent i switches from its initial route ri to some other route r̂i if and only if Ai(r) >

Ai(r−i r̂i). The first type of agents rely on simple isolated switching (SIS). SIS
agents switches pairs of locations in its route. The agent gets accurate information
about whether attendance rose or fell and accepts the switch if the latter occurred.

It is a well known result that pairs of switches, such as those used by SIS agents,
can be used to construct any route from any other route. However, this does not
mean that if route r̂i is preferred to ri that every switch from r toward r̂i lowers
attendance. Using the notation from the previous section, given a route ri , the set
of neighboring routes h(ri) equals.

h(ri) = {r̂i : ∃
, 
′, s.t. rij = r̂ij j 
= 
, 
′, r̂i
 = ri
′ and r̂i
′ = ri
} .

The second type of agent relies on a replicator dynamic. For convenience I
call them best replicator operator agents, or BRO agents. In this case, h(ri) =
{rj }M

j=1. An agent can pick any route from among those in the current collection.
Theoretically, all routes are possible; however, in any particular experiment, the
only available routes are those that exist in the population. The lack of mutation
bounds the level of diversity to that present in the initial population.

3.2. SELF-ORGANIZING WITH BRO AND SIS

The natural statistic to gather is the probability that self-organization occurs from
random starting points. The data suggest that SIS agents outperform BRO agents.
I begin with 120 agents and vary the number of locations from 3 to 20, including
only those numbers that divide evenly into 120. (Otherwise, self-organization is
not possible.) So, this means that L belongs to the set {3, 4, 5, 6, 8, 10, 12, 15, 20}.
In each time segment, I update M randomly chosen agents (some agents may be
picked more than once) sequentially. This guarantees that agents can take into
account the changes in the routes made by other agents during that time segment. I
run the experiments for one hundred time segments, so on average, each agent can
change its route one hundred times.
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SIS agents demonstrate an ‘amazing’ (in the Schelling sense of the word) ability
to self-organize. In Table XIV, I show the percentage of time that SIS agents self-
organize and the number of time segments until equilibrium.

3.2.1. 120 Agents

For the initial seeding, I began with a common route and allowed up to four hun-
dred changes of pairs of locations. The number of location pairs switched was
uniform in the set {0, 1, . . . 400}. In the tables that follow, all data are averages
over one hundred trials. The second column gives the percentage that successfully
self-organized and the third column gives the number of time segments (up to one
hundred) until all collections were self-organized. This means that in each of the
one hundred trials, SIS agents had self-organized in first three periods.

Table XIV. SIS self-organization.

# Loc’s %S-O TS

3 100 3

4 100 9

5 100 12

6 100 31

8 80 100

10 50 100

12 8 100

15 0 100

20 0 100

These data show that as the number of locations grows, SIS agents become
less likely to self-organization. This is not too surprising. The number of non self-
organized equilibria might increase in the number of locations, because there are
more subsets of locations on which agents could get stuck in a bad equilibrium.

As Table XV shows, BRO agents self-organize less often.
This occurs because of a lack of diversity. A BRO agent may choose a subop-

timal route because no other agent in the population is taking a better one. So the
system gets stuck.

The percentage of self-organized collections is a rather crude measure. It could
be that the BRO agents are locating nearly self-organized collections of routes. To
test this hypothesis, I define the distance from organized for a collection, r, to be
the average attendance across agents minus the average in an organized collection,
M
L

.

d(r) = 1

L2

(
L∑


=1

L∑
s=1

(T s

 )2

)
− M

L
.
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Table XV. BRO self-organization.

# Loc’s %S-O TS

3 100 1

4 100 11

5 80 100

6 6 100

8 0 100

10 0 100

12 0 100

15 0 100

20 0 100

Table XVI. Distance from self-organization (100
iterations).

# Loc’s SIS BRO RAN

3 0.000 0.000 0.613

4 0.000 0.000 0.795

5 0.000 0.001 0.793

6 0.000 0.006 0.832

8 0.001 0.035 0.846

10 0.002 0.169 0.908

12 0.004 0.335 0.913

15 0.010 0.570 0.951

20 0.021 0.784 1.045

Table XVI presents the data on the average distance from organized for 120 SIS
and BRO agents respectively for varying numbers of locations. It also shows the av-
erage distance from organized for randomly generated collections of routes. These
data show that, SIS agents come close to self-organization even when there are a
large number of locations. Further, BRO agents perform well when the number of
locations is small and badly when the number of locations is high.

As the number of locations grows large, the BRO agents’ performance drops
off sharply. This is because the BRO agents can choose from among at most 120 of
the many routes available, fewer than one in thirty thousand of the possible routes.
The fact that BRO agents get close at all is remarkable.

Counting the number of distinct routes in the final collections shown in
Table XVII reveals that SIS agents evolve much more diverse collections than
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Table XVII. Diversity # distinct routes.

# Loc’s %SIS BRO

3 *6 *6

4 23.94 23.72

5 78.90 63.20

6 112.52 75.68

8 119.94 66.52

10 *120 62.06

12 *120 68.10

15 *120 76.48

20 *120 86.52

do BRO agents. Those entries with asterisks (*) signify the collections that are
maximally diverse given the population size.

All of the BRO agents diversity comes from the initial collection of routes. A
less diverse initial collection would hamper the BRO agents far more than it would
the SIS agents. In fact, even if all routes initially were identical, the SIS agents
can self-organize. In an experiment with four locations and 120 agents, in each
of one hundred trials SIS agents had located a self-organized collection by time
segment fourteen, only three more time segments than when the initial population
was diverse.

3.2.2. 600 Agents

Since a lack of diversity lowers the BRO agent’s performance. An increase in the
number of agents from 120 to 600 should benefit the BRO agents. The effects
on SIS agents are not immediately obvious. On the one hand, more agents could
take longer. On the other hand, the larger number could create better averaging
and therefore less time to organization. As before, I allow for the number of agent
updates in each time segment to equal the number of agents. I find that with more
agents, self-organization occurs more quickly.

As expected, BRO agents perform far better with 600 agents than with 120.
The data on distance to self-organization are even more compelling. In the

case of 15 locations, the distance falls to 0.02 from 0.57 and with 20 locations,
the distance falls to 0.14 from 0.784. In each case, the initial distances from
self-organization are approximately the same.

3.3. SCALING

As a further check on how the system scales, I ran computational experiments with
up to six thousand agents and twenty locations. The data presented in the table
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Table XVIII. SIS self-organization.

# Loc’s %S-O TS

3 100 1

4 100 2

5 100 4

6 100 10

8 100 24

10 100 54

12 100 64

15 88 100

20 38 100

Table XIX. BRO self-organization.

# Loc’s %S-O TS

3 100 1

4 100 2

5 100 23

6 92 100

8 0 100

10 0 100

12 0 100

15 0 100

20 0 100

below are for SIS agents. Given the increase in the number of agents, I increased
the maximal number of switches of pairs in the creation of the random routes from
four hundred to six hundred.

3.4. THE SPEED OF SELF-ORGANIZATION

These systems of agents self-organize quickly. In this section, I derive some
mathematical results which explain the rate of convergence. To bound the rate of
convergence, I reinterpret the distance function as an energy function. It can then
be shown that when an agent changes its route, lowering its average attendance,
it also reduces the total energy in the system. Hereafter, I shall refer to energy as
disorganization.
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Table XX. SIS self-organization.

# M %S-O TS

1000 3 100

2000 28 100

3000 98 100

4000 99 100

5000 100 44

6000 100 39

Formally, define the disorganization, D(r) of a collection of routes to be the
sum of the squares of the attendances at each time in each location. Note that
disorganization differs from distance to organization by a constant: D(r) = d(r)+
M
L

.

D(r) =
L∑


=1

L∑
s=1

(T s

 (r))2 .

The next proposition states that if an agent locates an improvement in its route,
it lowers the level of disorganization.

PROPOSITION 6. Given a collection of routes r, if Ai(r) > A(r ′
i , r−i ), and r ′

i is
created from ri by switching a single pair of locations, then D(r) > D(r ′

i , r−i ).
Proof. Without loss of generality, suppose that locations A and B were origin-

ally visited in periods 1 and 2 respectively, but that now location B is visited in
period 1, and location A is visited in period 2. Since the new route has lower total
attendance, it follows that

T 1
A + T 2

B < T 1
B + T 2

A + 2 .

By definition D(r) − D(r ′
i , r−1) equals

(T 1
A)2 + (T 2

B)2 + (T 1
B)2 + (T 2

A)2 −
− (T 1

A − 1)2 − (T 2
B − 1)2 − (T 1

B + 1)2 − (T 2
A + 1)2 .

Which reduces to

D(r) − D(r ′
i , r−1) = 2T 1

B + 2T 2
A − 2T 1

A − 2T 2
B + +4 .

By assumption T 1
A +T 2

B < T 1
B +T 2

A + 2. Therefore, the right hand side is positive,
which implies that D(r) decreases.

Building upon this proof, a crude upper bound can be constructed for the
maximal number of improvements that can be made by switching pairs of
locations.
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PROPOSITION 7. If h allows only switches of pairs of locations, then at most
(L2−1)M2

2 route improvement can be made before attaining an equilibrium.
Proof. The maximum possible value for D(r) occurs when all agents take the

exact same route. In this case, D(r) = L2 ·M2. The minimal value is attained when
there are exactly M

L
agents at each location in each time period, which implies that

D(r) = M2. From the proof of the previous proposition, any switch of pairs of
locations that lowers the agents total attendance, lowers D(r) by at least 2, which
completes the proof.

The proposition describes a worst case scenario at odds with the average finding
from the computational experiments. The proposition states that as the population
grows the time to convergence increases by order M2. If M agents update their
routes each time segment, then this would mean that the number of time segments
until convergence should increase linearly in the number of agents. But, in com-
putational experiments, convergence decreases in M. A partial explanation for the
variance between the worse case and what happens on average can be provided
by an appeal to the central limit theorem. With lots of agents, the percentage
of agents in each location will approach M

L
in each time period. And, since the

number of agent updates in each time segment equals the total number of agents,
the random starting points are likely to organize more quickly. In other words, with
one hundred agents and twenty locations, the populations at each location in each
period may vary from two to ten percent of the population, but with thousands of
agents, the populations at each location in each time period will be close to five
percent. Thus, the large populations will organize more quickly.4 The extension of
this logic to the case of the millions and million of which Schelling speaks explains
how the amazing occurs.

3.5. ROBUSTNESS

I next analyze the robustness of self-organized collections of routes. Recall that
I measure robustness according to whether the system remains organized after a
location and time period have been dropped. Robustness is a system level char-
acteristic. An agent in an economy would probably not know the robustness of
its strategy unless he noticed that he was seeing many of the same people at the
different locations, which would suggest over-coordination.

To test the robustness of the collections, I allow agents to self-organize over
six, five and four locations and then drop one location. I find that in none of the
one hundred cases for each number of initial locations do the agents evolve a
robust organization. This is not surprising given the rarity of robustly organized
collections. The more relevant data are the distances from organization.

The SIS agents tend to be much closer to self-organized than a random col-
lection of agents. Interestingly, in the aforementioned case with four sites and the
initial population of 120 identical routes where the SIS agents self-organized in
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Table XXI. Robustness: Distance from
self-organization after dropping a loca-
tion.

# Init Loc’s SIS BRO RAN

4 0.148 0.202 0.508

5 0.170 0.307 0.602

6 0.212 0.450 0.707

Table XXII. Attendance.

Period 1 Period 2 Period 3

A B C A B C A B C

30 30 60 60 60 0 30 30 60

fourteen or fewer periods, the level of robustness was not significantly different
than with the diverse initial population. Looking at an example helps to explain
SIS agents performed better according to this robustness measure. In a randomly
chosen set of output, 31 of the BRO agents had chosen the route ABDC, 30 had
chosen the route BACD, 29 had chosen CDAB, and 30 had chosen DCBA. Notice
that ABDC, BACD, CDAB, and DCBA forms a MICOR. What happens when you
drop location D? You obtain the following four routes ABC, BAC, CAB, and CBA.
To simplify the mathematics, assume that there are thirty agents taking each route.
The attendances are given in Table XXII.

In this example, the distance to organization equals 3.333. This is less organized
than a random collection of routes, which in the table above is shown to have a
distance of only 0.508.

4. Conclusion

In this paper, I have constructed a model to study self-organization. I have demon-
strated how unsophisticated agents can self-organize or come close to doing so.
And, have found that self-organization becomes easier as the number of agents
increases and harder when the number of locations increases. I showed that the
collections of routes that agents evolve are diverse, and that this diversity makes
them robust to dropping locations. Finally, I have supported these computational
findings with mathematical results.

The particulars of the model, agents choosing routes to visit locations, though
rather mundane, fit within a broader research enterprise: the study of decentral-
ized coordination. Investigations of how socio-economic systems self-organize,
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whether they be national economies or corner market places are relatively rare.
Yet, the level and extent of organization in the economy can be awe inspiring. The
organized flow of goods to markets and people in a crowded city, the elaborate
dance of waiters, waitresses, and busboys in a busy restaurant, and the stream of
cars along cities streets occur with only partial orchestration. This paper belongs to
a research agenda that hopes to strip away the mysteries of that self-organization; to
explain how decentralized systems of heterogeneous agents can arrange themselves
in efficient ensembles. In the past, these questions have been ignored because
scholars had few ways to analyze systems with large numbers of diverse agents.
Agent based computational models allow the construction of order from the bot-
tom up; a researcher can generate artificial worlds which exhibit both order and
disorder. The resulting research question of whether self-organization will prove
successful, critical (Bak 1996), or catastrophic may even someday provide as much
grist for the intellectual mill as has the question of whether unfettered markets will
produce efficient outcomes.
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Notes
1 For some general proofs, I rely on lower case letters to denote both locations and periods. I

apologize for any inconvenience this causes to the reader.
2 Actually, 361 pieces, because once the attendances at nineteen locations are known in each

of the first nineteen periods, the twentieth can be deduced. Further, once the first nineteen period
attendances are known, the twentieth period attendances can also be deduced, since each location
must have the same total attendance.

3 The encoding of the problem is obvious. Let xij = 1 if the agent visits location j in period i and
write the appropriate constraints and objective function.

4 Of course, many of the populations will not self-organize fully, but they will come close.
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