
Computational Economics 9: 241-255, 1996. 241
(~) 1996 Kluwer Academic Publishers. Printed in the Netherlands.

Optimal Experimental Design for Combinatorial
Problems

SELDEN B. CRARY
EECS Department, University of Michigan, Ann Arbor, Michigan, USA

COSIMO SPERA*
Dept. of Quantitative Methods, University of Siena, Pzza S. Francesco

(Accepted 8 September 1995)

Abstract. We discuss two experimental designs and show how to use them to evaluate difficult
empirical combinatorial problems. We restrict our analysis here to the knapsack problem but comment
more generally on the use of computational testing to analyze the performances of algorithms.

Key words: Computational, experimental design, Empirical evaluation, NP-hard problems,
Knapsack problems

1. Introduction

In the past two decades researchers in operations research (OR) and computer
science (CS) have begun to analyze algorithms through computational tests [17],
[8], [22], [14]. While in disciplines like physics, medicine and economics empirical
works have similar importance to theoretical works, this has not been so in OR and
CS. Many reasons may be found for this, but we list three of the most evident here.

• Computational testing does not rely on deductive mathematics, so many do
not consider it to be work of high quality;

• Good journals rarely accept empirical papers, often because editors are unable
to judge the work; and

• Computational testing is not considered to be a science, because it is felt to
lack a formal framework.

The advantages of computational tests in OR and CS are, however, manifold.
They do not require the equipment needed by other disciplines, such as physics
and medicine, and the costs to carry out the computational tests are low. In many
cases, all that is needed is a workstation and a "graduate student". Once the test
cases are established and hardware requirements are known (number of floating
point operations, memory dimension, and the like), the experiments can be easily
duplicated in other laboratories. The Internet can be used to make an instances
data-base stored in a particular location available world wide to the entire scientific

* Corresponding author. Part of this work was carried out while the author was visiting the IOE
Department at University of Michigan and the CS department at Columbia University.

242 SELDEN B. CRARY AND COSIMO SPERA

community. Researchers may also contribute by providing instances of a specific
problem to update the data-base.

Frequently these instances play an important role in the implementation of algo-
rithms for solving particular problems. But this can cause problems. Implementors
often employ tricks to speed up the examination of given data sets, leading to
a computational testing speed race lacking a scienti f ic approach. To make things
worse, some experimentalists only add instances to the provided data set that work
well for their methods, thereby adding little truly new information. All should
realize that often negative results are as good as positive. But negative results are
frequently omitted from the literature.

The last observation we raise is that, while computational testing may be cheap
in cost, it can be very time consuming. So we like to obtain the needed information
from a minimum number of test cases. This is particularly true when evaluating
problems known to be difficult to solve and whose nm time is not possible to
anticipate for a given instance.

This paper show how computational testing can be conducted by following a
scient i f ic approach. Section two introduces the knapsack problem and the solution
methods we are evaluating. Section three describes the theory for the experimental
design, focusing on two particular designs: D-optimal and I-optimal. Section four
shows the design layouts obtained. Conclusions and future expansions complete
the paper.

2. The knapsack problem

A simple introduction to the knapsack problem is as follows. Suppose that a thief
breaks into a jewelry store, bringing along a knapsack. Once in the store, he wishes
to solve the following decision problem: which items (jewels) should be taken to
maximize the value of the contents of the knapsack? We assume that the thief has
good estimates of the values of the n jewels in the store and that these items may
be considered one dimensional. This is seen to be a simple 0 - 1 decision problem
whose mathematical formulation is

n

Zpixi
i = l

(i)

n

subject to ~ w i x i < wo
i = 1

(2)

x i = O , 1 i = l , . . . , n (3)

where Pi, w i i = 1 , . . . , n are, respectively, the profit and the dimension values
for the items, w0 is the dimension of the knapsack, and the x i are the binary
decision variables. (1) represents the function to maximize, and (2) and (3) are the
constraints. We refer to this problem as the single 0 - 1 knapsack problem (SKP),

OPTIMAL EXPERIMENTAL DESIGN 243

which is a very simple problem to state, but not to solve. In fact, as a decision
problem, it has been proved to be NP-complete [10]. There are two approaches
used to obtain the optimal solution to the SKP: dynamic programming (DP) and
branch & bound (B&B) algorithms. The first approach gives a pseudo polynomial
time complexity, O(nwo) . Difficult knapsack instances for DP are generated by
Chavtal [4]. These instances are easy to describe: Pi is set equal to wi (SKP becomes
the subset sum problem), and its value is given by an integer in the interval [1,
10n/2]. The capacity value w0 is set equal to ~]~=1 pi /2 . For n sufficient large,
Chavtal proves that "the running time of every recursive algorithm is bounded
from below by 2 z/l° for an overwhelming majority of such problems".

It is generally believed that B&B implementations perform better than DP
implementations. In [20] Martello and Toth present a large number of computa-
tional results obtained running randomly generated test cases for different B&B
algorithms. The generated instances are said to be uncorrelated if wi and Pi are
uniform random numbers from the interval [1,1000], weakly correlated if wi is as
above and Pi is a uniform random number from [wi - 100, wi + 100], and strongly
correlated i fw i is as above andpi is a uniform random number from [wi - 1, wi + 1].
All the algorithms are based on the following key principles:

• 1. Compute an Upper Bound for the solution.
An upper bound for the optimal solution is computed and updated after a
forward move is taken. The performance of the algorithm depends directly on
the accuracy of this value.

• 2. A Forward Move.

A forward move consists of inserting as many consecutive items selected from
the sorted list in decreasing order di = p i /w~ into the current solution.

• 3. A Backtrack Move. A backtrack move consists of removing the last item
inserted from the current solution.

Among the algorithms presented by Martello and Toth in [20], we have selected
the ones they have already coded so that programming skill does not influence the
computational results. The three algorithms are indicated as MT1, MT2, NKP01.
Their detailed descriptions are in [21], [19]. Here we sketch the main differences.

MT2 and NKP01 use a reduction procedure, [1], but different upper bound
values for the optimal solution. These values are reported in [20]. It is important
to stress that these values are not analytically comparable, see [20]. In the OR
literature these bounds take the name U6 (for MT2) and U2 (for NKP01 and MT1).
These bounds influence the performance of the algorithms because a branch of the
search tree is pruned when the current solution gives a value better than the upper
bound value associated with this branch. The reduction procedure seems to have a
great effect for large-scale problems. It fixes a priori the variables that will not be
included in the optimal solution, (i.e. those that are zero at the optimum) and those
that are included (i.e. those with value one at the optimum). MT1 and MT2 use
different upper bound values; however, MT1 does not use the reduction procedure.
MT1 and NKP01 use the same upper bound value and differ from each other in

244 S E L D E N B. C R A R Y A N D C O S I M O S P E R A

that NKP01 uses the reduction procedure. A previous computational study shows
how to construct a factorial experiment to determine the significant factors for
this problem [18]. To determine if these algorithms differ meaningfully, we need
to identify the nuisance factors that are not of main concem but which affect the
response. In this case, the response is the CPU time needed to obtain the optimal
solution. A machine independent response would be the number of nodes visited
in the search tree. This choice reduces the residual measurement error to zero.
Nuisance factors and their sources of variation can be controlled through three
possible methods:

• Fix the nuisance factor to a constant.

• Define the levels of a given factor and assign units of experiments to each
of these levels so that sources of variation can be distributed over the entire
experiment.

• Include the nuisance factors in the experiment.

The third method uses a blocking procedure to isolate the variation attributable to
the nuisance factors. The procedure defines n blocks of p homogeneous experi-
mental units, where p is the number of levels for the nuisance factors. A previous
study reporting on computational experiments on integer linear programming by
Lin and Rardin [17] describes several possible design layouts for this approach.
In our study we consider four factors: algorithms, number of total items, capacity
value, length of the interval [a, b] from which the values Pi and wi are extracted.
The last three factors are the nuisance factors. Their levels are defined as follows:

• N u m b e r of variables: we consider four different values for n: 100, 200 to
take into account small size problems, 500, 1000 for medium size.

• Capacity: we consider five different values for the capacity w0. These are
n computed as follows: determine ws = ~ j = l w j / m , for m = 2,4, 8, 16, 32

and then set w0 -- closest prime to ws.

• Interval length: let a be a value in the set A = (500, 1000, 1250}, and b be a
value in the set B = {750, 1000, 1500}, under the condition that a < b there
are 5 possible intervals: [500-750]; [500-1000]; [500-1500]; [1000-1500];
[1250-1500]. One interval has length 1000, two intervals have length 500 and
the remaining two intervals have length 250. Intervals with equal length differ
for the number of digits in the data.

The factorial experimental design layout is given in Table I.
The computational results for the factorial design are reported in [18], where it

is also indicated how observations that run for more than five minutes of CPU time
on a VAX/6610 are treated. These observations are called censored.

To determine the significant factors, we apply the ANOVA procedure. This
analysis assumes the normality of the corresponding random variables. This is
not our case. In fact, our three response variables (one for each algorithm) follow
the Gumbel-Max distribution as it appears evident by looking at the graph in
Figure 1, which shows its linearization for the algorithm MT1. From this graph

OPTIMAL EXPERIMENTAL DESIGN 245

Table I. Design Layout for Random Blocked Seeds

~ N u i s a n c e Level I P B m ~

actors
Level 1 . . . Level k

Algorithm 1 Problem a, b, c . . . Problem d, e, f
Algorithm 2 Problem a, b, c . . . Problem d, e, f
Algorithm j Problem a, b, c . . . Problem d, e, f

O

12D

Y
e

o

0

I

- 5 0
Figure 1. Gumbel-Max Cumulative Function.

5 10 15

t 'd

O

-1 0 1 2
Figure 2. Gumbel-Max first piece.

we distinguish three different linear pieces highlighted in Figures 2, 3 and 4. The
cumulative function of the Gumbel-Max distribution is

1 - (z - x) -(~-;~)
F (x) = - z e ~ e - e a (4)

246 SELDEN B. CRARY AND COSIMO SPERA

d

2 4 6 8 10
Figure 3. Gumbel-Max second piece.

O

lID

13.5 ~ 9.5 10 10.5
Figure 4. Gumbel-Max third piece.

The same analysis is valid for the other two response variables. For homo-
geneity the length of the three pieces is kept the same for all the three response
variables. Since we are dealing with the transformed response variables y =
log(CPU(MT11MT2INKPO1)) the three recognized segments are

1. ' 0 . 6 9 < y < 1.38
2. 1.39 < y < 9.99
3. 10 < y -

Table II reports the values of the parameters 5 and)~ of the Gumbel-Max
distribution for the three pieces, for each of the three algorithms.

OPTIMAL EXPERIMENTAL DESIGN

Table II. ~ and ~ parameter values for the Gumbel-Max

~ rithms

Segment ~ MT1 MT2 NKP01

1 1.58 0.45 4.16 -4.13 1.17 0.59
2 3.57 -3.05 2.81 -1.50 3.67 -3.55
3 0.35 7.99 2.76 --0.61 0.21 8.98

247

Table III. Proportion for the Considered
Algorithm

Algorithm Proportion

pl p2 P3
MT1 0.9 0.067 0.033
MT2 0.1 0.691 0.209

NKP01 0.86 0.09 0.05

Having determined the values of the parameters for the three segments and
computed the general mixed model for the three response variables, it is possible
to normalize them to apply the ANOVA procedure. The general mixed model is

F (x) = piG1 + pzG2 4- p3G3, (5)

where Gi indicates the Cumulative Function for piece i, and 3 }~i=1Pi = 1. The
proportions Pi, i = 1,2, 3 are reported in the Table III for the considered algorithms.

The transformation function is

/ z = 2 e---r--4- - l o g ~ , (6)

where z indicates the normal variable with mean zero and unitary variance.
The results obtained from ANOVA are given in [18]. A derived model, which

takes into account all the significant factors and their interaction, is

Y = flo + f l lN + f~2Id + fl3C + f l4NC 4- 135CId 4- f l6NId, (7)

where N indicates the "number of variables" factor, C indicates the "capacity
value" factor, and I d indicates the "length of the uniform interval distribution"
factor. An alternative model that puts more "emphasis" on the factor N is

y = 13o 4- 13IN 4- 132Id 4- t33C 4- 134NId 4- 135NC 4-.136 N2. (8)

The optimal designs derives from these two models are presented in section 4.

248 SELDEN B. CRARY AND COSIMO SPERA

3 . O p t i m a l D e s i g n T h e o r y

In this section, we review briefly the theory supporting the optimal design. In what
follows, bold face denotes vectors and matrices, a superscript T denotes the matrix
transpose operation, and a circumflex denotes expected value. The mathematical
model in this case is linear in the coefficients, as in

Y(x;/3) =/31fl(X) +/32f2(x) + ' ' " + ~3m fro(X). (9)

This allows for a broad class of functions, including multivariate polynomials,
such as Y = /31 +/32zl +/33:c2 +/34z1:c2, or functions with non-linear terms,
such as Y = /31 +/32 ln:cl +/33Zl lnz2. The functions f l (x) are assumed to be
linearly independent. A set of measurements represented by the column vector
Y = (Yl,]I2,.--, Yn) T is made at a set of specified values of the independent
variables x with a set of random errors e = (e 1, e2, • • •, en)T, the elements of which
are assumed to have been drawn with replacement from a normal distribution with
zero mean and constant variance 0 -2 ,

I/'2 f l (X2) f2(x2) "'" fm(X2) e2
• = : : • -[- .

Yn fl(Xn) :2(xn) "'" :m(Xn) e

(10)

This can be written as Y = X/3 + E, where X is called the design matrix.
A key result from regression theory is that the best unbiased linear estimator of
the coefficients is given by/3 = (x T x) - I x T y . The estimated variance of D is
given by 0-2(/~) = ~r2(xTx)-I , and the variance in the fit function is 0-2(I2(x)) =
0 - 2 f T (x T x) - l f, where f = (f l (x) , f2 (x) , . . . , fra(X)) T.

3.1. OPTIMALITY CRITERIA

Several optimality criteria are evident [27]. Three of the most useful are the fol-
lowing:

• D-optimality: the determinant of (x T x) -1 provides a measure of the over-
all uncertainty of the parameter estimates, and a design that minimizes this
determinant is called D-optimal. This criterion is equivalent to minimizing the
volume of the confidence regions for finding the actual parameters [9].

• G-optimality: a design that minimizes the worst-case expected error in predic-
tion is called G-optimal [13]. A theorem due to Kiefer and Wolfowitz estab-
lishes the equivalence of G- and D-optimal design in the limiting case that
the number of experiments can take on non-integer values [15], the so-called
approximate design.

• I-optimality: when the goal is to minimize the average variance in prediction
over the entire range of x, an appropriate objective function is [2]

mwin Jfx~X E{[lT(x) - Y(x)]2} d#(x)

O P T I M A L E X P E R I M E N T A L D E S I G N 249

= min / fT(X) (xTx) - I f (x) d#(x)
w JxEX

---- min trace B(xTx) -1,
w

where B = fxeX f(x)fT(x) d#(x)

is a matrix containing all the dependence on the model, and minw indicates that
the experimental design w is sought that minimizes the integral over the set of
points x E X. Weighting of different regions of the response is accomplished
through the differential d#(x). This criterion is called I-optimality and has
been detailed in the design-of-experiments literature [11].

3.2. AVAILABLE SOFTWARE

Finding optimal designs of experiments is a computationally intensive task, which
has been well established [11]. Fortunately, recent advances in speed of compu-
tation, coupled with new algorithms such as simulated annealing [16] [25] are
bringing the determination of optimal designs within the range of available capa-
bilities, without undue expenses [11] [23]. Available software for finding optimal
designs of experiments has been reviewed by Nachtsheim [24]. Software for find-
ing D-optimal designs on finite grids has become widely available, and indeed
included in popular statistical-software systems such as RS-Discover [28]. Meyer
and Nachtsheim have discussed software for finding D-optimal designs on con-
tinuous spaces [23]. Welch's ACED software [31] finds designs approximating I-
and G-optimal designs, in which potential design points are restricted to a fairly
coarse grid. However, until very recently, virtually nothing existed for determining
I- or G-optimal designs on continuous spaces - with the exception of a series of
programs by Haines [11] that were used for two small classes of functions.

The I-OPT program, which is an extension of the work of Haines [11], finds I-, D-
and A-optimal and near-optimal designs in cuboidal regions. (An A-optimal design
minimizes the trace of (xTx) - I) . I-OPT was first presented in October 1989 at
the First Great Lakes Computer Science Conference in Kalamazoo, Michigan, and
was used in 1990 to optimize crystal-growth conditions in experiments by Sherwin
et al. [29]. Originally, I-OPT used only simulated annealing, but it now includes a
downhill search option that allows for accurate determination of objective-function
minima. I-OPT has been available for researchers since its announcement in June
1991 [5] [27]. Since January 1992, 1-OPT has been available in a workstation
version that uses a hybrid of the simulated-annealing and downhill-search methods.
It treats arbitrary multivariate polynomial models with arbitrary n. Extensions to
I-OPT include capabilities for finding the following types of designs: compound
I-, A- and D-optimal designs; weighted-integral I-optimal designs; designs with
heteroschedastic error models; and Bayesian optimal designs, with a prior given for
the information matrix (xTx) . This last capability allows for sequential designs

250 SELDEN B. CRARY AND COSIMO SPERA

and for designs that take advantage of prior information on the distribution of
/3. Stopping criteria based on the probability that the global minimum has been
attained or approached within a user-specified tolerance have also been added to
the software. Interested parties may obtain the software by anonymous FTP to
freebie, engin, umich, edu in a directory pub/crary, after consulting README
file for downloading instructions.

Hardin and Sloane have written a C-language program named Gosset [12] that
is capable of finding A-, D- and I-optimal and near-optimal designs on discrete or
continuous spaces using multiple runs of a downhill-search technique initiated at a
number of different starting designs. Gosset is able to find designs in which subsets
of the independent variables can be constrained to spherical or cuboidal regions
with linear inequality constraints.

3.3. I-OPT ALGORITHM

I-OPT is an interactive program that solicits the model function, number of experi-
ments, and optimization method from the user. The optimization space has dimen-
sion d given by the product of the dimension of x and the number of experiments,
and the optimization can be performed using one of the following user-selected
methods: simulated annealing only, downhill search via a variant of Powell's
method only, or simulated annealing followed by the variant of the Powell's method.
The optimization algorithms have not been optimized.

Simulated annealing is accomplished using the variable-step-length general-
ized simulated annealing approach (VSLGSA) described by Sutter and Kalivas
[30] that generalizes simulated annealing to continuous spaces. Additional detail
on the implementation is available in [6]. The variant on Powell's method is similar
in many respects to that found in standard references [26]. It works by making a
set of line minimizations, constrained by the cuboidal boundaries of the space.
I-OPT determines the constraints on the line minimizations. First, the limits of
the line minimizations are determined by calculating the intersections of the line-
minimizations line with the boundaries. Line minimizations use Brent's method
[26], although we have extended this to allow for an active constraint. Initially
line minimizations are made along the d Cartesian directions, and then a single
line minimization is made along the new direction defined by the overall direction
taken by the preceding set of d line minimizations. This set of d + 1 line mini-
mizations defines an iteration. For the next iteration, the new direction replaces the
previous one for which the decrease in I was the greatest. Thus, the search is not
constrained to Cartesian directions. After d + 1 iterations, all directions are reset
to the Cartesian directions, as suggested by Brent [3], in order to overcome the
tendency in the Powell method for the set of directions to lose linear independence
after several iterations. The resetting defines what we call a Brent cycle. We find
that convergence occurs on the scale of one to a few Brent cycles.

OPTIMAL EXPERIMENTAL DESIGN 251

®

tribuUQr N ~ nu
Figure 5. Model 1, D-optimal design, 32 points. Integrated Variance = 2/27, Probability that
this is the global minimum = 91%.

®

. T J

Figure 6. Model 1, I-optimal design, 32 points. Integrated Variance = 2/27, Probability that
this is the global minimum = 95%.

®

'°~' 1 ~ ~ ~

o ®

tr~bt~li~l N ~" ~um
Figure 7. Model 1, D-optimal design, 64 points. Integrated Variance = 1/27, Probability that
this is the global minimum = 84%.

4. Design Layouts

Here we present the results obtained by using the procedures to compute the D-
optimal and I-optimal designs for the model 7 indicated in section 2. We have
decided to limit to 32 and 64 the number of replicated instances. To obtain some
significant results we ran 7500 instances. The first model is a second-order function
that includes the linear terms and all the interactions among the factors. As reported
in Figures 5 to 8, D-optimal and 1-optimal give the same design. These are fully

252 SELDEN B. CRARY AND COSIMO SPERA
®

~[ribt~ti~tl N ~ ou"'

Figure 8. Model l, I-optimal design, 64 points. Integrated Variance = 1/27, Probability that
this is the global minimum = 90%.

®

® ®

Ib - . i , , ~ ° . . . ~ i , b ~ ,
~ '~ [r l~ io r I N = rtun'

Figure 9. Model 2, D-optimal design, 32 points. Integrated Variance = 0.1284, Probability
that this is the global minimum = 49%.

®

1 @

~) " -I;;>L
- ' ><; ; i ; / i ®

Figure 10. Model 2, I-optimal design, 32 points. Integrated Variance = 73/720, Probability
that this is the global minimum = 75%.

symmetric and determine instances at each of the eight vertices of the hypercube
defined by the three nuisance factors.

More interesting results are obtained when we use model 8 of section 2. This
model includes the linear terms, but the second-order terms are limited to those in
which the factor N appears. The D- and I-optimal designs are shown in Figures 9
to 12. The first observation is that these designs do not coincide. The second is that

OPTIMAL EXPERIMENTAL DESlGN 253

®

lq

"lStrib~i~ "" N " rtu"'~-

Figure l l . Model 2, D-optimal design, 64 points. Integrated Variance = 0.06168, Probability
that this is the global minimum = 45%.

®

o ~::-..s
"~ >'+<+ii+ii ®

IStribt~ti~ N = i~ . '

Figure 12. Model 2, I-optimal design, 64 points. Integrated Variance = 0.05053, Probability
that this is the global minimum = 35%.

I[3 ~ i n t e ~ ~ + . . , , (" l :) l e ' ;
m dlStrib~ti~r ~ 1 N = Ou+b°'

Figure 13+ Model 2, l-optimal design, 16 points, integration over small cube only. Integrated
Variance = 0.07977, Efficiency w.r.t, l-optimal design w. Integration over large cube = 5.75.

is that the D - o p t i m a l des igns are not symmet r i c , whi le the I -op t ima l des igns are
s y m m e t r i c abou t p lanes o f the cube.

T h e last des ign we p resen t refers to mode l 8, and it is ob ta ined by put t ing m o r e
we igh t in a speci f ied region o f the des ign space. This is helpful in our case b e c a u s e
we migh t a priori k n o w which charac ter i s t ics have the ins tances difficult to solve.
In F igu re 13 the I -op t ima l des ign with 16 points is der ived ass ign ing m o r e we igh t
to the reg ion a round the lower right ver tex.

254 SELDEN B. CRARY AND COSIMO SPERA

Col-off (%) CPU sec.
5 0.Ol

10 3588 .38
15 0.08
20 0.05
25 0 .05
30 0,17
35 1.07
40 15.43
45 3 ,62

~50 7.9
55 17.58
60 13.1
65 4 .20
70 0.01
75 0.06
I10 0.08
85 8.87
90 2925.83
95 1,30

cut-off vs. computing 1In

30oo T t
3200 t / I
28001 I I A
2400 ~ I I

; . o o t / ~
leOO t / I
1~oo tl I
0oo ~/ 1
400 ~ 1

0 ~ i] I I] I I I ; : ; : ; ; I
m o in o fn o en 0 v) o h"r) 0 In 0 SO 0 In 0 In

~ w ~ ol ~'j e9 .q..q. In m ~ ,,D I,,. I,,. im I I m m

cu t -o f f (%]

Figure 14. Time according to the cut-off.

5. Summary

In this paper we have shown how to construct optimal experimental designs to
generate input instances to measure the empirical performance of algorithms. We
have also commented on how computational testing may be conducted follow-
ing a rigorous scientific methodology. We have left out some considerations and
comments on the importance of computational testing to derive new theoretical
results.

In this conclusions we briefly mention one case. From the analysis of the
computational results we observed that on the same instance the CPU time varied
according to the value of the capacity. This value takes the name of cut-off. Figure
14 shows the CPU times in seconds when the cut-off is positioned around a
given percentage of included elements in the "greedy solution", i.e., the solution
obtained by running a greedy algorithm that gives an upper bound value for the
optimal solution. A further analysis has brought us to discover that for instances
taking high CPU time, the elements around the cut-off have the value of the ratio
p j w i almost identically. "Almost identically" means that their values differ by a
quantity e, where e is a small positive number. The more the interval [p i /w i =k= ~]

around the cut-off is dense, the more CPU time the algorithm requires to obtain the
optimal solution. This allows us in [18] to conjecture the time complexity of B&B
methods as function of the density around the cut-off.

References

1. Balas, E. and E. Zemel. 1981. "An Algorithm for Large Zero-One Knapsack Problems", Opera-
tion Research. 28, 1130-1154.

2. Box, G.E.E and N.R. Draper. 1959. J. Amer. Statis. Assoc., 54, 622-654.
3. Brent, R.P. 1973. Algorithms for Minimization Without Derivatives, Englewood Cliff, NJ.

Prentice-Hall.
4. Chavtal V. 1990. "Hard Knapsack Problem", Operation Research, 28 (6).
5. Crary, S.B. 1991. Proceedings 1991 lnt'l. Conference on Solid State Sensors and Actuators, S.

Francisco, CA. June 23-27, pp. 404-407.

OPTIMAL EXPERIMENTAL DESIGN 255

6. Crary, S.B., L. Hoo and M. Tennenhouse. 1992. "I-Optimality Algorithm and Implementation",
published in Computational Statistics, Proceedings of the 10th Symposium on Computational
Statistics (COMPSTAT), Neuch~tel, Switzerland, August 24-27, 1992, v.2, pp. 209-214.

7. Crary, S.B. and Y. Jeong. 1995. Proceedings 1995 Int'l. Conference on Solid State Sensors and
Actuators, Stockholm, Sweden, June 25-29, Vol. 2, pp. 48-51.

8. Crowder, H.P., R.S. Dembo and J.M. Mulvey. 1978. "Reporting Computational Experiments in
Mathematical Programming", Mathematical Programming, 15, 315-329.

9. Fedorov, V.V. 1972. Theory of Optimal Experiments. Academic: New York.
10. Garey, M.R. and D.S. Johnson. 1979. Computers andlntractability. W.H. Freeman and Company

New York.
11. Haines, L.M. 1987. Technometrics, 29, 439--447.
12. Hardin, R.H. and N.J.A. Sloane. 1993. A New Approach to the Construction of Optimal Designs",

Journal of Statistical Planning and Inference, 37, 339-369.
13. Hedayat, A. 1980. Proceedings of the International Symposium on Statistics and Related Topics,

M. Cs~rg~ et al. (eds.), Ottawa, Ont., 39-56.
14. Hooker, J. 1994. "Needed: an Empirical Science of Algorithms", Operation Research.
15. Kiefer, J and J. Wolfowitz. 1960. Canad. J. of Math., 12; 363.
16. Kirkpatrick, S., C.D. Gelatt, Jr., and M.P. Vecchi. 1983. Science, 220, 671-680.
17. Lin, B.W., R.L. Rardin. 1978. "Statistical Comparison of Integer Programming Algorithms",

Management Science, 1978.
! 8. Maddaloni, A., C.K. Murty, L. Pagliai and C. Spera. 1995. "Empirical Analysis of Algorithms for

Combinatorial Problems: The Knapsack Case", Research Report, 1995, submitted for publication.
19. Martello, S. and P. Toth. 1988. "A New Algorithm for 0-1 Knapsack Problem", Management

Science, 34.
20. Martello, S. and P. Toth. 1991. Knapsack Problems. John Wiley & Sons: New York.
21. Martello, S. and P. Toth. 1982. "Algorithm for the Solution of the 0-1 Knapsack problem",

Computing, 28, 269-287, 1982.
22. McGeoch, C. 1994. "Graphical Methods for Assessing Functional Relationship", presented at

15th International Symposium on Mathematical Programming, Ann Arbor, MI, USA, 15-19
August 1994.

23. Meyer, R.K. and C.J. Nachtsheim. 1988. Amer. J. of Mathemat. and Management Sciences, 8,
329-359.

24. Nachtsheim, C.J. 1987. J. of Quality Technology, 19, 132-160.
25. Otten, R.H.J.M. and L.P.P.P. van Ginnekeu. 1989. The Annealing Algorithm. Kluwer Academic:

Boston.
26. Press, W.H., B.P. Flannerty, S.A. Teukolsky and W.T. Vettering. 1989. Numerical Recipes.

Cambridge University Press: New York.
27. Pukelsheim, E 1993. Optimal Design of Experiments. John Wiley & Sons: New York.
28. RS/Discover, B BN Software Products Corp., 10 Fawcett St., Cambridge, MA. Version 2.0, 1989.
29. Sherwin, M.B., G.O. Munns, M.E., Elta, E.G. Woelk, S.B. Crary, EL. Terry, and G.I. Haddad.

199l. J. Crystal Growth, 111, 594-598.
30. Sutter, J.M. and J.H. Kalivas. 1991. Analytical Chemistry, 63, 2382-2386.
31. Welch, W.J. 1984. Technometrics, 26, 217-224; ACED, version 1.6, 1987, available from W.J.

Welch, Dept. of Statistics and Actuarial Science, Univ. of Waterloo, Ont., Canada N2L 3G1.

