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1. INTRODUCTION

The Model A Planetary Test Flight was designed as the first in a series of
test flights to qualify a quadrupole mass spectrometer for high-pressure neutral
constituent measurements on future planetary exploratory missions. The spectrom-
eter, which was designed and built by the Laboratory for Atmospheric and Biolog-
ical Sciences at Goddard Space Flight Center (GSFC), was the first test of a
sterilized mass spectrometer electronics system in a flight environment. The
spectrometer employed a unique pressure reduction device at its inlet orifice to
permit measurements to be made at higher pressures than those measured by pre-
vious earth atmosphere devices.

The measurement region for this mission was chosen to be 30 to 60 km on the
basis that the ambient pressure profile in this portion of the earth's atmosphere
corresponds to a region in the Martian atmosphere from O to 25 km. The nose cone
design incorporated an atmospheric sample inlet system which provided a tolerable
pressure and temperature profile at the mass spectrometer inlet orifice for this
region.,

The payload contained temperature and pressure sensors mounted within the
nose cone for the purpose of verifying the inlet system design. In addition to
the control and telemetry circultry, the payload also contained a magnetometer
to provide aspect information, a thrust axis accelerometer to monitor rocket per-
formance, and a pyrotechnically activated breakoff device to open the spectrom-
eter to the atmosphere at the desired point in the trajectory.

The present report describes the payload instrumentation and the sample in-
let system design in detail and provides flight trajectory, temperature, and
pressure data. The mass spectrometer data are being processed by GSFC and are
not presented here.



2. GENERAL FLIGHT INFORMATION

The general flight information for NASA 18.78 GA is listed below. The table
gives the flight times and altitudes of significant events which occurred during
the flight. These parameters were obtained from the flight records and radar
trajectory information.

Launch Date: 21 August 1969
Launch Time: . 14:09 GMT; 10:09 AM, EDT
Location: Wallops Island, Virginia

Latitude: 37°50'1L4.915" N
Longitude: 79°29'01.693" W

NASA 18.78 GA TABLE OF EVENTS

Flight Time Altitude
Event
(sec) (km)

Lift-off 0 0

Nike Burnout 3.5 1.7
Tomahawk Ignition 11.6 6.2
Auto Filament Switch Enable 19.0 (est.) 14.0 (est.)
Tomahawk Burnout 21l.0 17.7

Mass Spectrometer Inlet Opening 24.5 24,8
Enter Measurement Region 27. 2 30.0

Exit Measurement Region 43,4 60. 0
Apogee 236.0 227. 4

L. O. S. L60.0 e



%,  LAUNCH VEHICLE

The NASA 18.78 GA launch vehicle was a Nike-Tomahawk two-stage, solid pro-
pellant, fin-stabilized, unguided sounding rocket. The first stage was a stan-
dard Nike (M5) rocket motor with a nominal 3.5 sec burning time. The second
stage was a Thiokol Tomahawk (TE L416) rocket motor with a zero delay pyrogen
igniter and a nominal burning time of 9 sec.

The Nike used Aerolab type fins canted 12 min to produce a nominal 1.2 rps
roll rate at burnout. The Tomahawk used Astro-Met type fins canted 20 min to
produce a nominal 6 rps roll rate at burnout. At Nike burnout, the two stages
drag-separated and the second stage Tomahawk coasted until T+1l2 sec, at which
time the second stage igniter fired by means of an on board timer and battery
pack located in the firing and despin module (FDM). The Tomahawk and payload
were not despun, and the coning angle and angle of attack were thereby minimized.

The launch vehicle, illustrated in Figures 1 and 2, performed satisfactorily
and boosted the payload to an apogee of 227.4 km, 236.0 sec after lift-off.



Figure 1. Rocket elevated for launch.
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L., PAYLOAD

Figure 3 shows the payload configuration for NASA 18.78 GA. Figure L is
an assembly drawing of the payload excluding the antenna section and the fire
and despin module which were furnished by GSFC. The nose cone section,
quadrupole mass spectrometer section, and the control and telemetry section are
discussed in this part of the report. Figure 5 is a block diagram of the com-
plete payload.

At T+2L.5 sec the timer provided a signal to fire the redundant Conax
linear actuators (-8 on Figure L) which fractured the ceramic of the breakoff
unit (-4 of Figure 4), thus exposing the spectrometer inlet orifice to the
atmosphere. The temperature sensor (-10R of Figure U4) and the pressure sensor
(-9R of Figure L) provided temperature and pressure data within the sample in-
let system nose cone cavity from 1lift-off to loss of telemetry signal.
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4,1. NOSE CONE AND INLET SYSTEM

The design of the nose cone and sample inlet system was based on the
principle of providing an environment in the earth's atmosphere which would be
similar to that encountered by a high velocity entry into the atmosphere of
Mars. The design was limited by the performance characteristics of the Nike-
Tomahawk launch vehicle in that the high velocity (15,000-20,000 ft/sec) and
resulting high stagnation conditions of a Martian entry could not be simulated.
Also, since the Tomahawk stage did not include an attitude control system, the
mission was dependent upon an upleg measurement., As it turned out, hcwever,
the payload and attached Tomahawk stage stabilized very soon after encourtering
the aerodynamic drag region on the downleg, and consequently some usable data
were obtained on the reentry portion of the trajectory.

The measurement region was chosen to be 30 to 60 km on the basis that the
ambient pressure of this portion of the earth's atmosphere is close to that in
the expected Martian atmosphere from O to 25 km., The design objectives of the
nose cone were to transport a sample of the atmosphere to the mass spectrometer
inlet orifice as rapidly as possible and at a temperature and pressure that
would not affect the pressure reduction device at the inlet orifice. The pres-
sure reduction device is a sintered stainless steel leak that provides molecu-
lar flow into the mass spectrometer, if the pressure external to the leak is
not too high. The leak used in this experiment required that the pressure in
the sample chamber be below 100 mmHg. The leak conductance is alsc dependent,
to a lesser extent, on its temperature. The nose cone and the inlet system
were designed to maintain the maximum pressure in the sample chamber below 100
mmHg, and to reduce the temperature of the incoming gas to a level such that
the total heat input to the leak did not raise its temperature more than 50°F,
(More than a S50°F rise results in a change in leak conductance.)

On the basis of three requirements, solid stainless steel was selected
for the nose cone:

(1) capability to withstand the high stagnation temperatures without
appreciable chemical reaction with the incoming gas sample,

(2) capability to act as a heat sink to the gas sample,

(3) capability to insulate the incoming gas sample from aerodyramic
heating of the conewall,

Stainless steel is the least reactive of the readily available metals capable

of withstanding the high stagnation temperatures. Copper, or a metal of similar
heat conductivity, would have been the obvious choice for a heat sink but these
metals are all very reactive and oxidize readily at high temperatures. The
conductivity of stainless steel i1s high enough to reduce the gas temperature to
the required level, The critical flow section of the inlet system was recessed
(Figure 6) 2.5 in. to reduce the amount of aerodynamic heating input to a mini-

12



mum. Because of the large mass and relatively low conductivity of the metal
surrounding this section and because the time duration in the aerodynamic drag
region was quite short, the external heat contribution from conewall heating
was very low. During flight, the gas temperature was monitored by using a
platinum wire temperature sensor built by Rosemount Engineering Corporation.
This sensor was mounted near one of the exhaust ports to insure that it would
be in the flow stream where the time response would be a maximum., Figures
38(a) and 38(b) show theoretical versus measured altitude profiles of tempera-
ture,

The pressure reduction was accomplished by using a critical flow section
(Figure 6) which limits the flow rate by choking the flow and large expansion
volume of the sample chamber. The exhaust ports were designed to be large
enough with respect to the small diameter of the choking section so that the
only restriction to exiting flow would be the external conewall pressure, A
pressure transducer built by Spartan Southwest Engineering was used to measure
the static pressure in the chamber. The transducer was mounted so that the
pressure was monitored near the top of the chamber where purely static condi-
tions most likely prevail. Figures 39(a) and 39(b) shows theoretical versus
measured altitude profiles of pressure.

To verify the calculations of pressure and temperature, wind tunnel tests
were run in which a 1/5 scale model of the nose cone was used (see Appendix).
Another objective of the tests was to determine whether there would be a posi-
tive flow rate throughout the measurement region, Since the pressure measured
in the chamber was always higher than the conewall pressure, a positive flow
rate was indicated, The gas temperature coming into the sample chamber was
measured and indicated that the temperature in the sample chamber was about
20% of the free-stream stagnation temperature. This agrees closely with the
theoretical temperatures in Figures 3%8(a) and 38(b).

Good data were received from both temperature and pressure senscrs
throughout the measurement region and clcse agreement was shown between the
theoretical and the laboratory data.

4.2, SPECTROMETER SECTION

The spectrometer section assembly, shown in Figure U4, contains the mass
spectrometer electronics (-2R), the quadrupole analyzer tube (-6R), the break-
off device (-4), the linear actuator assemblies (-8), the pressure sensor
(-6), and the temperature sensor (-10R). FEach of the above-mentioned components
is discussed below,

13
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L4L,2,1, Mass Spectrometer Electronics and Quadrupole Analyzer Tube

The mass spectrometer system (Kerne, Deskevich, and Elder, 1968; Consult-
ants and Designers, Inc., 1968), consisting of the electronics and the analyzer
tube, was supplied by GSFC and 1s described only briefly here,

The mass spectrometer system is designed to measure the neutral atmospheric
constituents with masses between 10 and 50 amu. The spectrometer is continu-
ously tunable and scans through one complete cycle every 2 sec. The spectrome-
ter output, an analog voltage proportional to the relative abundance of the
mass number to which it is tuned, is supplied to the payload telemetry unit.
Several housekeeping voltages are also monitored to assure proper spectrometer
flight operation.

L4,2.,2, Breakoff Device

The breakoff device assembly drawing 1s shown in Figure 7. This device
provided a seal for the mass spectrometer inlet orifice until the spectrometer
was in the desired region of the atmosphere. When the desired altitude was
reached (at T+2L.5 sec), two linear actuators were fired, which fractured the
ceramic at the scored line about its circumference. The upper portion of the
breakoff device is captured by a spring-loaded retaining device and the spec-
trometer was opened to the atmosphere.

4,2.3. Linear Actuator Assembly

The linear actuator assembly is shown in Figure 8 and the actuator itself
is shown 1in Figure 9. The actuator housing was a safety precaution which insured
that any gases escaping from the actuator itself during its activation would
not contaminate the mass spectrometer measurement. Two actuator assemblies
were used for the sake of reliability.

4,2.4, Pressure Sensor

The pressure sensor and its interface to the paylcad are shown in Figure
10, The final calibration curve for this O-1 psia sensor is shown in Figure
11, The pressure sensor was used to provide verification data on the sample
inlet system of the nose cone,
4,2.5. Temperature Sensor

The temperature sensor is shown in Figure 12 and its final calibration

tabulation in Figure 13, The temperature sersor was used to provide data to
verify the design parameters of the nose cone sample irlet system.

15
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Figure 11. Pressure sensor calibration.
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Figure 12, Temperature sensor.
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ROSEMOUSNT ENGINEERING COMPANY TEST REPORT

MODEL 146CY

SERIAL 3891

UATE 12 31 68

QUALITY CONTROL APPROVED

ACTUAL CALIBRATION POINTS
TEMP K RESISTANCE

273.1500 496.89610
373.1665 690.27000

ALPHA IS .00389100
DELTA IS 1.50501
BETA Is .1100

TEMP K SSISTANCE

549.38005
568.81997
588.20160
607.62504
626.79035
645.99742
665.14631
684.23706
703.26952
722.24384
741.15993
760.01783
778.81755
797.55900
816.24237
834.86753
853.43440
871.94313
390.239368
908.78899
927.12017
945.39810
963.61386
981.77382
999.87475
1017.91780
1035.90290
1053.82960
1071.69820
1089.50860
1107.26070
1124.95460
1142.59050
1160.16800
1177.68740
1195.14860
1212.55160
1229.89650
1247.18330
1264.41140
1281.58170
1298.69370
1315.74740
1332.74310
1349.68050
1366.55980

1383.38080
1400.14360
1416.84820
1433.49470
1450.88290
1466.612300
1483.08480
1499.49850
1515.85480
850.00 1532.15120
860.00 1548.39030
870.00 1564.57110
880.00 1580.69380
890.00 1596.75830
900.00 1612.76450
910.00 1628.71260
920.00 1644.60260
930.00 1660.43420
940.00 1676.20770
950.00 1691.92300
960.00 1707.58010
970.00 1723.17900
980.00 1738.71890
990.00 1754.20220
1000.00 1769.62660

Figure 13. Temperature sensor calibration.
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4.3, TELEMETRY AND CONTROL SECTION

In the telemetry and control section, illustrated in Figure U4, the follow-
ing components are contained (the number following the component is the com-
ponent designation number on Figure U4): magnetometer deck (-1U4), temperature
and filament switch deck (-1%), control deck (-12), commutator deck (-11),
battery deck (-10), subcarrier oscillators and transmitter deck (-9), and the
thrust axis accelerometer (-1R).

The telemetry and control section provided all payload contrcl and timing
functions, battery power, telemetry signal conditioning, and the umbilical
connection to the ground support console.

4,3,1. Magnetometer Deck

The main purpose of the magnetometer was to provide roll rate data. The
magnetometer deck is shown in Figure 1L, the interface to the payload in Figure
15, and the calibration table in Figure 16.

4.3,2, Temperature and Filament Switch Deck

Figure 17 shows the physical configuration of the electronics which per-
form the automatic filament switching function and the temperature sensor sig-
nal conditioning, and Figure 18 shows the temperature sensor-electronics inter-
face.

The temperature sensor electronics, which was designed by GFSC, accepts
the temperature sensor input, and then provides as input to the telemetry sys-
tem a O to 5 V signal proportional to the sample inlet system temperature.
Figure 19 is the temperature sensor circuit diagram,

The filament switch portion of this deck provides two functions, First,
it allows selection of either filament in the spectrometer ion scurce through
the ground support console; and second, in case of a filament A (preferred)
failure during flight, filament B 1s automatically switched in. Filament A
functioned throcughout this flight and a switch te filament B was not required,
The filament switching circuitry is shown in Figure 20,
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HELIFLUX®

CALIBRATION DATA MAGNETIC ASPECT SENSOR
TYPE RAM=5C

FIELD IN OUTPUT SIGNAL

MILLIGAUSS IN VOLTS D C

600 g 77 SeriaL N9 2528

550 % A

500 4 57

450 N A A

400 __#N0

350 J. 5

300 __ZL0 .

250 __F.40

200 220

150 7. 00

100 3.854

50 2. L0
0 2.4 (BIAS LEVEL)

-100 .00

i50 s I

e Y DIRECTION OF MAGNETIC FIELD FOR

@i SEY/R £ ¥ L — VOLTAGE SIGNALS ABOVE BIAS LEVEL
280 LA
- < NOTE:

300 L2 CALIBRATION MADE WITH A 100K

OHM RESISTOR FROM SIGNAL
-350 097 OUTPUT TO NEGATIVE TERMINAL
. OF BATTERY SOURGE, AND A 100K

=400 A OHM RESISTOR FROM BIAS OUTPUT
_450 ) 59 ;gur;%eexrwe TERMINAL OF BATTERY

~500 {esi SCHONSTEDT INSTRUMENT COMPANY
-550 +0./9 SILVER SPRING, MARYLAND

-600 200 CALIBRATED BY omassp rsar

CALIBRATION MADE WITH BATTERY SUPPLY oF_2 &, ) voLts DATE _7-26-68

lz2é2

Figure 16. Magnetometer calibration.
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4,%3.3. Control Deck

The control deck is shown in Figure 21 and the payload/control deck inter-
face is shown in Figure 22, Figures 2% and 24 show the circuitry involved in
the control deck. The control deck contains the Raymond "G" timer, the Ledex
rotary stepping switch, the internal/external power control, and the mass
spectrometer ion source filament on/off control.

The Raymond "G" timer was actuated at lift-off and provided three timing
signals: at T+l5 sec backup power was supplied to the entire payload; at T+19
sec redundant filament power was supplied and, after a three sec delay to allow
for filament stabilization, the automatic filament switching circuit was en-
abled; and at T+24.5 sec the pyrotechnic activating signal was generated, thus
opening the mass spectrometer breakoff device,

The Ledex rotary switch provided power to various payload components and
supplied various monitor points to the ground support control console depending
on which of twelve possible positions it was in. The table of functions and
monitors is shown in Figure 25.
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LATCHING RELAYS
ARE.P&B SL8IID 24

VOLT LATCHING.
R:6208)

LEDEX &

2| CONTROL 3] 1'Mer 4| BATTERY S|puLLAWAY
[ T T ]
' :
I ING4S IN645
| x DI D2 }
1 4E30M-8
{ "T'J“{:?g D3 ! l
- 4
|Ex_% %'NT = =l= |
; ' LATCHING !
T |
| ~— INT EXT ——a |
i T T INTERNAL-EXTERNAL POWER CONTROL
\V4
2 | CONTROL +20FIL 3 a
I e
| |
| & IN645 I
| IN645 D2 |
DI
| 1/50 -8 oK I
| T XEg, ,
i} ' 3 =
I —— _:-r |
| OFF on_? n |
| -
| ! l
| LATCHING |
| RELAY |
| K ON OFF |
|
lL ~
— TFICAMENT CIRCUIT IS CONFIRMED OFF BY 10K~ |s
%7 RESISTANCE TO GROUND.
FIL CONTROL MODULE +20R

Figure 2k.

Control deck circuits.
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L.3.L,

Commutator Deck

The commutator deck, shown in Figure 26, contains the commutator and the

O through 5 V precision reference supply voltages,

The circuit and the inter-

face diagrams are shown in Figure 27 and the commutator is shown in Figure 28,

The commutator cyclically sampled its 30 inputs at the rate of 75 samples

per second and supplied these sampled data to the telemetry system.

tator segment assignments were as follows:

Segment
No. Segment Assignment
1 mass spectrometer anode current
2 mass spectrometer filament reference
3 mass spectrometer quadrupcle rod voltage
L mass spectrometer multiplier voltage
5 mass spectrometer ion source temperature
6 mass spectrometer electronics temperature
7 mass spectrometer vac ion pump current
8 mass spectrometer vac ion pump voltage
9 mass spectrometer +20 V filament monitor
10 mass spectrometer automatic B filament
11 temperature
12 pressure
1% battery voltage/6
14 transmitter temperature
15 zero reference
16 mass spectrometer snode current
17 mass spectrometer filament reference
18 mass spectrometer quadrupole rod voltage
19 mass spectrometer multiplier voltage
20 mass spectrometer lon source temperatufe
21 mass spectrometer electronics temperature
22 mass spectrometer vac ion pump current
23 mass spectrometer vac ion pump voltage
2L 0 V reference
25 1 V reference
26 2 V reference
27 3 V reference
28 4 V reference
29 5 V reference and frame sync
30 5 V reference and frame sync

The commu-

Iy

fil ref
Vac
Viult

OV = fil off
= fil A
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4.3.5., Battery Deck

The battery deck is shown in Figure 29 and the schematic and payload
interface is shown in Figure %0. The battery deck supplies internal power for
the entire payload including the Conax linear actuators.

4.3,6. Subcarrier Oscillator and Transmitter Deck

The SCO and transmitter deck, shown in Figure 31, contains the transmitter,
mixer amplifier, four subcarrier oscillators (SCO's), and the SCO calibration
systems, The components for this PAM/FM/FM telemetry system were supplied by
the Sounding Rocket Branch of Goddard Space Flight Center and the telemetry
system was then assembled, calibrated, and tested by the Space Physics Research
Laboratory. The interconnection diagram for this deck is shown in Figure 32,

The SCO calibration system was designed to place O and 5 V, 50 msec pulses
on each of three SCO channels every 15 sec, The commutator SCO was not cali-
brated in this manner since a six-point calibration was included in commutator
segments 24 through 30. The SCO calibration block diagram is shown in Figure
33 and the component circuitry is shown in Figure 3.4.

4,%3,7, Thrust Axis Accelerometer

The thrust axis accelerometer, Figure 35, was provided by the Sounding
Rocket Branch of Goddard Space Flight Center to monitor the performance of the
rocket motors., The accelerometer operated satisfactorily throughout the flight.

L.L4L. PYROTECHNIC FIRING CIRCUITS

The pyrotechnic firing circuits are shown in Figure 36. As can be seen,
battery power is connected to the Raymond timer only in Ledex positions 10
(pre-flight check) and 11 (flight). After lift-off but before the mass spec-
trometer inlet opening, the Raymond timer kept a direct short across both Conax
linear actuators to protect against premature firing due to transient or
spurious radiated signals. At T+24.5 sec the timer removed the short and
applied full battery voltage across the redundant Conax linear actuators.
Four current limiting resistors were placed in series with the actuators to
protect the battery in case an actuator should present a short after firing.
In addition, the timer contact was only a momentary closure. The pyrotechnic
firing circult and breakoff device performed as required for this shot.

L1
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5. DATA

The telemetered data were reccrded on both magnetic and paper tapes at the
Wallops Island Main Base and Gcddard Space Flight Center Staticn A receiving
stations. The mass spectrometer data were reduced from paper records by Geddard
Space Flight Center personnel and are not discussed here. The temperature and
pressure data were reduced by computer techniques from the magnetic tapes.

5.1. TRAJECTORY AND ASPECT

The angle of attack of the payload was assumed to be less than *5° through-
out the meaningful portion of the flight. This was based on the facts that the
payload was not despun, the dynamic unbalance was very low, and the static sta-
bility margin was extremely high.

The first 83 sec of trajectory information were obtained from MPS-19 radar
data which was fitted and smoothed by computer techniques at Wallops Island.
The remaining portion of the trajectory was supplied (also by Wallops Island)
in the form of Spandar data. Figure 37 shows the trajectory and the occurrence
of significant events during the flight.

5.2, TEMPERATURE

The temperature data were reduced from the decommutated magnetic tapes.
Figures 3%8(a) and 38(b) show the theoretical and measured temperature of the
nose cone inlet system versus flight time.

5.%, PRESSURE

The pressure data were reduced from the decommutated magretic tapes. Fig-

ures 39(a) and 39(b) show the theoretical ard measured nose cone izlet system
temperature versus flight time.
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APPENDIX

MODEL TESTS BY GAS DYNAMICS LABORATORIES

A.1. INTRODUCTION

In order to make predictions regarding the air flow rate, pressure, and
temperature in a particular air sampling system, it was desirable that a series
of model tests be made at conditions somewhat similar to the most severe con-
ditions anticipated for the flight model tube. The most severe conditions of
interest here are approximately the following:

Mach number 7.%3
Altitude 61,000 ft
Stagnation pressure after normal shock 69 psia
Stagnation temperature L4L610°R

It was not practical to simulate these conditions, but it was possible to test

a scale model in the Gas Dynamics Laboratories' hypersonic tunnel without exces-
sive effort. This tunnel was designed to operate af, a Mach number of 8 with
stagnation pressures up to 600 psia and stagnation temperatures up to 1000°F.

A 1/5 scale model was chosen for the tunnel tests since that was con-
sidered to be about the maximum size that could be tested without choking the
tunnel. Figure LO is a photograph of this tunnel model. Figures 41, L2, and
4% are drawings of the model.

Although the external dimensions (diameter and length) of the model are
1/5 the corresponding dimensions of the flight nose< cone, 1t was not considered
appropriate that the inside diameter of the minimum diameter section of the
sampling supply tube should be scaled down by 1/5, A 1/5 scaling factor on
the diameter would reduce the minimum passage from 0.040 in. diameter to
0.008 in. diameter. It was considered more meaningful to scale *the restric-
ted passage area to 1/50 The length of *he restricted passage in the model
was chosen so that the L/D ratio would be the same for the model as for the
full scale unit. The dimensions of the other sections of the sampling duct
were scaled in a roughly similar manner and are no% critical in determining
flow conditions.

The tunnel model was designed so that the minimum diameter section cf the
sampling supply duct could be changed easily. Three different inserts were
made (see Figure L2), but only the 0.018 in. diameter insert was used in the
tests. Further tests did not appear to be warran®ed at the time.

o



The four radial exhaust ports in the model were drilled with a No. 25 drill
(0.149 in. diameter). This diameter was 1/5 of the exhaust hole diameter in
the flight cone; thus, the model exhaust area was 1/25 of the full scale cone.
One of the main objectives of the tunnel tests was to determine whether the
exhaust ports in the nose cone were properly sized and positioned to exhaust
the flow from the sampling system inlet without restricting that flow rate.

The use of undersized exhaust ports made the tunnel test results conservative
in that if no restriction occurred with the undersized passages, then the cor-
rect passage area would provide even less restriction. For example, at the in-
let temperatures tested (from 100 to 300°F), it was found that the actual flow
rate (through the 0.018 in. diameter by 0.50 in. long insert) was about 60% of
the flow rate calculated on the basis of a short choked orifice. It was also
found that the downstream pressure needed to be less than about 1/3 of the in-
let stagnation pressure in order that the flow rate would not be dependent on
the downstream pressure. In other words, if the spectrograph cavity pressures
were maintained at less than 1/3 the upstream stagnation pressure, the exhaust
ports would not be restricting the sampling flow rate.

Although more extensive tests would have been desirable, it was believed
that the test results obtained were adequate to interpret the tunnel test re-
sults.
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Figure 40. Model for Mach 8 tunnel tests.
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A.2. WIND TUNNEL TESTS

As mentioned previously, a 1/5 scale model of the nose cone was tested in
the Mach 8 facility. A major portion of the air sampling passage was dupli-
cated in the nose cone. The sampling system used in the scale model was designed
with the capillary section removable. This feature served two purposes: first,
any scale effects on the sampling flow rates could be corrected, and second, the
effects of capillary size and material (heat transfer rates) could be changed
if the sampling system performance was not adequate.

The wind tunnel model was made of aluminum and the capillary sections were
made of stainless steel. Although the full scale nose cone sampling system was
made of stainless steel, it was felt that the saving in time and machining costs
justified an aluminum model. Since the effects of heat transfer on the flow
would be controlled by the capillary section, the capillary inserts were made
of the same material as the full scale system. The model duplicated the full
scale nose cone to a point 2.5 in. back on the cylindrical body. The model
terminated there with an adapter plug which mated the nose cone to a tunnel
sting. The sting in turn held and positioned the model in the tunnel flow field.

A.3. MODEL INSTRUMENTATION

Provisions were made for monitoring seven pressures and one temperature
on the model. Figure L4 indicates the points where pressure measurements were
taken. Points 1, 2, 4, and 5 were all static pressure measurements on the
surface of the cone, while points 6 and 7 were static pressure measurements on
the surface of the cylindrical body Jjoining the cone. Point 3 is the pres-
sure in the nose cone cavity. A temperature measurement of the gas flow into
the cavity was also made. An iron-constantan thermocouple was used for the
temperature measurement. The cavity is the plenum into which the sampling
air flows before venting through the cone surface.

EXHAUST PORTS
TAP NO.3 INSIDE NOSE
CONE CAVITY

& % o &

Figure L4. Pressure tap locations.
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The pressure measurements were made via a pressure transducer data acquisi-
tion system. The output of the transducer is digitized and punched on paper
tape. The temperature measurement was recorded on an x-y recorder. The y
channel was run in time-base mode giving a recording of temperature versus time.

A.4. TEST PROGRAM

Because of time limitations, only a small number of tests were planned.
Also, the information that could be gathered from the model was reduced to one
particular aspect of the gas sampling system. The major emphasis was placed
on whether the gas sampling system would maintain an adequate flow rate over a
given altitude range. In the wind tunnel tests, this constituted the measure-
ment of the cavity pressure level as a function of tunnel total pressure levels.

The tunnel operating conditions were such that a Mach 8 flow could be pro-
duced with a total pressure variation between 50 psia and 500 psia, the alti-
tude equivalent being approximately 200,000 to 120,000 ft. It was anticipated
that the exhaust ports in the model could be easily enlarged but the test re-
sults indicated that it would not be necessary.

The rate of air flow through the sampling inlet duct 1s determined by the
temperature and pressure (and composition) of the air upstream of the minimum
diameter section, provided that the pressure in the downstream spectrograph
cavity is below a certain critical value. This critical pressure would be
about 1/2 of the upstream stagnation pressure if the restricted (throat) sec-
tion were only a few throat diameters long, but in the case where the restricted
section is many diameters long, the critical pressure must generally be scme-
what lower. A series of bench model tests were made to determine, at least
approximately, the values of this critical pressure for various inlet con-
ditions.

Figure 45 is a drawing of this bench model of the sampling flow inlet duct.
This model also was designed to allow for easy changes of the minimum diameter
section, but only the 0.018 in. diameter insert was tested. Upstream of this
bench model an electrically heated stainless steel tube was used tc raise the
incoming temperature of the gas. The air flow fed into the bench model was
measured by a calibrated capillary tube system. During a test, the flow rate
was maintained at a constant value independent of the heat input and the pres-
sure upstream of the test section.

The bench tests were not nearly extensive enough to allow accurate extra-
polation to the flight model, but certain approximate values were determined.
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A.5. TEST RESULTS

Three series of tests were run. The total pressure for these runs varied
from 60 to 390 psia with a flow Mach number of 8.03. Total temperatures for
these tests was TH60°F. The tunnel operating conditions are listed below.
Since the primary emphasis was on the sampling system flow rate, only the data
related to this feature were reduced.

A plot of cavity pressure versus equivalent altitude is presented in Figure
L6. Also plotted on this figure are the computed values for the pressure on the
surface of the cone and the total pressure behind a normal shock. The results
indicate that the cavity pressure was slightly higher than the theoreticzal cone
surface pressure, which would necessarily be the case as long as there was flow
from the sampling system. Also, the fact that the cavity pressure is roughly
1/6 of the stagnation pressure at the entrance of the sampling system inlet
indicates that the flow in the restricted portion of the supply tube was choked.

As mentioned previously, a thermocouple was installed to measure the tem-
perature of flow entering the cone cavity. Preliminary indications were that
flow temperatures were about 20% of the free stream total temperature. A
Schlieren photograph showing the flow field over the test model is also in-
cluded (Figure 47). This photograph indicates that the low flow rate from the
cavity did not significantly disturb the external flow.

More extensive tests with the tunnel test model could be made, but the re-

sults presented here are believed adeguate to meet the limited objective which
prompted this work.

TEST LOG

Tunnel Conditions

Equivalent

§2? Preszzz:lpsia TZ;;a}F %iih ARDC Std.
Alt. -Ft.

1 62.85 760 8.03 163,000

2 174.3 760 8. 03 155,000

3 391.6 760 8.03% 13%,000
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Figure 46. Predicted cavity pressure vs. altitude.
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Figure 47. Schlieren photograph of flow field around model in an M = 8.03

stream.
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