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A Spin Polarized Disc 

J. P. Krisch I and  L. S. Smal]ey 2 
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We present a solution to the gravitational field equations in a P~iemann- 
Cartan spacetime. The solution describes a disc of infinite radius and 
finite thickness. The solution has three forms which depend on the size 
of the acceleration. The matter content of the disc is a rotating spin fluid 
with a constant z acceleration and a spin density polarized along the axis 
of rotation. The fluid has zero axial and tangential pressures. There is 
a radial pressure. The energy density and pressure are finite within the 
disc. 

1. I N T R O D U C T I O N  

The Van Stockum [1] dust  solution describes an infinite cylinder of unac-  
celerated dust  ro ta t ing  abou t  the z-axis. The parameters  of the model are 
the angular  velocity, the radius of the cylinder, and  the zero acceleration. 
This solution, while probably  not  physical, has provided many  useful in- 
sights into general relativist ic solutions. One of the very interest ing things 
abou t  the Van Stockum solution is the existence of three exterior vacuum 
matches to  the  s ta t ionary  dust  interior [2]. Which exterior solution is 
chosen depends on the mass per un i t  length of the cylinder. 

In this  note  we describe an infinite disc solution tha t  is similar to the 
Van Stockum infinite cylinder. I t  is a radial ly infinite disc of finite thick- 
ness conta in ing ma t t e r  with cons tant  z-acceleration. The ma t t e r  content  
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of the disc is an axially polarized spin-fluid in a Riemann-Car tan  space- 
time. The fluid is rotating about  the z-axis. There is zero pressure in the 
axial and tangential directions. A non-zero finite radial pressure exists. 
The energy density of the disc is positive. For a fixed gzz, the parameters  
of the solution are the thickness of the disc, the constant z-acceleration, 
the divergence of the spin density and the angular velocity. There is a fluid 
singular surface which may be avoided by properly limiting the disc thick- 
ness. As in the Van Stockum exterior, we find that  there are three possible 
interior parameter  ranges, depending on the deviation of the thickness from 
the classical value. 

Cylindrically symmetric solutions with isotropic pressures have been 
discussed by Krasiriski [3]. In other calculations concemed only with the 
surface stress energy content of the source, discs have been used frequently 
[4-7]. The solution presented in this note has a well-defined and simple, 
if anisotropic, interior stress energy content. The solution may be use- 
ful in modeling large rotating structures with embedded intrinsic angular 
momentum. 

2. FIELD EQUATIONS 

2.1. Metr ic  and mat ter  content.  

We wish to consider the field equations for a Riemann-Car tan  space- 
t ime with metric 

ds 2 = - f d t  2 - 2k de dt q- exp(/~)dr 2 4- exp(F)dz 2 + - -  
D 2 _ k 2 

f 
de 2, (1) 

f = (r 4- ro)dF(z)  = (r 4- ro) d exp[2az] 

k = (r + r0)gC(z) 

D = (r 4- ro)aD(z) 

exp(~) = exp[/~(z) ] 

exp(fl) = (r + r0) b exp[-2Bz] .  

The constant z-component fluid acceleration, 

(2) 

F(z) 
2F(z )  = a ,  (3) 

has been imposed (prime (') is used to denote differentiation with respect 
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to z). It is convenient to introduce the tetrads that  diagonalize the metric, 

000) 
(0 00) 

el2) = (0, 0, exp [ - - - ~ ]  , 0)  

00 ) 
(4) 

These tetrads will be used to index the field equations. 
The spacetime contains a spin fluid - -  a perfect fluid with a spin 

density, Sij, defined throughout its extent. The stress energy tensor for 
this kind of fluid has been developed and discussed extensively by Ray and 
Smalley [8]. Using cylindrical coordinates (r, r z) we have three possible 
spin densities S~r S~r Srz. We wish to develop a solution describing a 
disc with a axially polarized spin content; S~r will be the only non-zero 
spin density. S~z is non zero only if f and k are directly proportional, 
i.e. the fluid is completely irrotational in general relativity. We will avoid 
this case. Zeroing Sz~ will constrain the metric potentials. 

2.2. Spin-metric contraints. The off diagonal field equations. 
We will focus on the particular case where the spin densities S~r and 

Szr are proportional to the classical fluid vorticities. 

f k r - k f r  k ( g - d )  
S r r  fv+- f = ~ r -Fro  ' (5) 

f k z - k f ,  - k  (F '  (7,1). (6) 
s ,+-  77"/ 

Requiring Szr to be zero imposes the constraint 

F' G I 
- - = - - = 2 a  
F G 

G(z) = ctF(z) = cl exp[2az] 

(T) 

with cl an integration constant. 
Requiring the spin density to be proportional to the vorticity creates 

a special type of solution to the field equations in an Rc space time. It 
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has been shown that  with the relations (5),(6), the diagonal and r z  field 
equations are formally identical to the field equations for a static general 
relativistic perfect fluid [9] The remaining (03) field equation is used to 
determine the off diagonal metric component in the Rc spacetime. The 
field equation that  constrains the metric potentials is the (tetrad indexed) 
(03) equation, 

(03): (r + ro)(b-2)(d -- g)d 
F ' ( z )  ( F l ( z )  G(z) ) exp[p(z) + 2Bz]. (8) 

Requiring Szr to be zero and S ~  non zero implies that  

d = 0 .  (9) 

The rz  field equation provides further constraining relations on the metric 
functions. 

F ! 
(rz)  : tz ' (z)s  + (b - 2s)-~  + s ~ -  = 0. (10) 

There are three possibilities: 

(a) s = 0 ,  b- -0 ,  (11) 

(b) s - - 0 ,  D ' = O ,  (12) 

F I b - 2s D t 
(c) s ~ 0, #'(z) + -~- + - - s  D - 0. (13) 

Case (b) produces unphysical fluid parameters. The infinite disc solutions 
belong to the parameter set (s = b = d = 0, g ~ 0). There are some 
interesting solutions in case (c) which will be described elsewhere. 

The metric that  we are considering can now be written as 

ds 2 = - exp[2az] (dr + c t (r  + r0)gdr 2 + exp[p(z)]dr 2 

+ exp[ -2Bz]dz  2 + D2(z) exp[-2az]dr  2. (14) 

We will impose the axial and tangential dust condition in the next section. 

2.3. Fluid parameters. The diagonal field equations. 
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The diagonal field equations generate the pressure and energy density. 
For case (a) the (tetrad indexed) diagonal stress-energies are 

/ D" D' D' ) 
pl = exp[2B,] ~,-5- + B-D- + "~ - " - 5  (15) 

D' p'D' 
P2 = e x p [ 2 B z ]  - a  s + a -~-  + -~--~-)  = 0 (16) 

p3=exp[2Bz] ( a 2 +  (P '  q~2B) (2a +p ' )  + - ~ ) = 0  (17) 

D" p" D' 
e = exp[2Bz] D 2 + 2 a ~  

+ - - - - Y - - -  --D- - # - a2 

3. T H E  SOLUTIONS 

(18) 

3.1. Metric solutions. 
Equations (16) and (17) provide two constraints. Equation (16) will 

determine D(z) as a function of #(z). 

D' 2a 2 
(19) 

D /# + 2a 

Equation (17) becomes 

2a2 -t- ( l~' +~2B ) (2a -t- i~') -t- i~" = O. (20) 

The solutions of eq. (20) provide the three different fluid descriptions. 
Equation (20) can be rewritten as 

- d /  z 
(p,' + a + B )  2 + 4a 2 - (a - B )  2 = 2 - zo.  (21) 

The three different solutions depend on the value of S where 

S 2 = 4a 2 - (a - B) 2, (22) 

Solution 1: S 2 > 0, 

Solution2: S 2 = 0 ,  (a) B = 3 a ,  

(b) B = - a  
Solution 3: _ y 2 = s  2 < 0 .  
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In invest igat ing the  solution s tructure,  constant  scale factors will be  ab- 
sorbed into the  coordinates.  

Solution 1: u l  = S(zo  - z /2 ) ,  S 2 = (3a - B ) ( a  + B)  > O. 
In tegra t ing  (21) one finds 

exp(p(z )  ) = cos2(ul) e x p [ - ( a  + S)z]  (23) 

exp[(a  - S ) z / 2 ]  (24) 
D(z )  = (a - B )  cos(u1) + S s i n ( u l )  " 

The  fluid pa r ame te r s  for this case are 

2a2S 2 
p = exp[2Bz] [(a - B)  cos(u1) + S sin(u1)] 2 '  (25) 

= .P--- (S t an (ux )  - a - B).  (26) e 
L a  

Solution 2 : u 2  = z - 2zo, (3a - B) (a  + B)  = O. 
In tegra t ing  (21) one finds 

exp~u(z) ] = (z - 2zo) 2 e x p [ - z ( B  + a)]  (27) 

and 
D(z )  = exp[2a2z/ (a  - B)]  { (a - B)  (z - 2zo) + 2} ~ (28) 

with w ---- - [ 2 a / ( a -  B)] 2. 
The  fluid pa ramete r s  are 

8a  2 exp[2Bz] 
P = (2 + (a - S ) ( z  - 2zo)) 2 '  (29) 

p [ 2 - ( a + b ) u 2  
(30) e =  ~ L I/'2 

For case 2a, B = 3a, we have 

2a 2 exp[6az] - -  2a(z - 2zo)) (31) 
P =  ( 1 - a ( z - 2 z o ) )  2 '  e = p ( 1  a ( z - 2 z o )  ' 

and for case 2b, B = - a  we have 

2a 2 exp [ -2az ]  1 
P = (1 + a(z  - 2zo)) 2 '  e = Pa(z  - 2zo)" (32) 
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Solution 3: u s  = Y ( - z o  + z / 2 ) ,  y 2  = ( B  - 3a)(a + B) > 0. 
Integrating (21) one finds 

and 
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exp[p(z) ] = exp [ - ( a  + B)z]cosh 2(u3) (33) 

exp[ (a  - B ) z / 2 ]  
D = Ysinh(us) + (a - B)cosh (us)" (34) 

The fluid parameters are 

- 2 a 2 y  2 
p = exp[2Bz] [(a - B)cosh (u3) + Y s i n h ( u z ) ]  2 '  (35) 

P [Ytanh ( u z )  - a - B] (36) 

Note that  the parameter choice B = 0, a ~ 0, a real, will be described 
by solution 1. For all of the solutions the spin density is 

k~ 
Srr ---- ~ = c: e x p [ a z ] g ( r  T ro)  9 - 1 .  (37) 

This is also the structure of the vorticity. The choice of the parameter g, 
the radial exponent in g0r has physical implications for the fluid. The non 
zero component of the spin density divergence in the RC spacetime is 

W e  = c l  g ( g  - 1) (r + ro) g-2 exp[az] exp[ -p(z) ] .  (38) 

g ---- 1 describes a divergence free spin density. 

4. THE DISC THICKNESS 

4.1. The Boundary points. 
Limitations on the positivity and finiteness of the energy density define 

the range of the z coordinate which can, in turn, be related to the thickness 
of the disc. The calculation is similar for all of the solutions except 2b. It 
is not possible to define an upper boundary and therefore a disc for this 
solution. We will use solution 2a as an example. From eq. (31), the energy 
density for this case is 

e ---- 2a 2 exp[6az] (1 - 2 a ( z  - 2zo)) (39) 
(1 - a ( z  - 2zo)) 2 a ( z  - 2zo) 
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For this energy density to be positive or zero requires 

z < 1 + 2zo. (40) 

This limit will also keep the pressure well behaved. We will take the equal 
sign to define the upper boundary of the disc 

1 
Zmax = H ---- ~a  + 2zo .  (41) 

Note that  this inmplies a zero energy density over the upper  boundary. 
By introducing a new parameter  it would be possible to keep the upper 
boundary under this point, thus providing a non zero upper boumdary  
energy. We do not do this for the upper boundary but will for the lower 
boundary point. To keep the energy finite we require 

z > 2zo. (42) 

To set the lower boundary we introduce a parameter  6 and define 

Zmi n ~--- -H = 2zo 0 < 6 < 1 (43) 
6 ' 

Using (39) and (41) we can write H in terms of 6, 

1 
H = 2a(1 + 5)" (44) 

5 is a parameter  that  will replace zo and can be used in modeling calcula- 
tions to vary the boundary position for a fixed acceleration. 

4.2. The thickness. 
The proper thickness of the disc is 

/_ ~ 2Hsinh( B H) T = exp(-Bz)dz  = (45) 
H B H  " 

The three solution regions correspond to the passage from the classical disc 
thickness to the relativistic thickness. Assuming positive acceleration, for 
B << 3a we have T = 2H, the euclidian value. In the transition region of 
the second solution, 2a, we can examine the range of thickness as we vary 
H for a fixed acceleration. Letting 6 run from 0 to 1 we have 

T 
1.1 < ~-~ < 1.42. (46) 

Solution 3 corresponds to a thickness much larger than the classical value. 
I t  is very interesting tha t  this classification is made by comparison with an 
acceleration rather  than an angular velocity as in the Van Stockum case. 
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5. C O N C L U S I O N  

In  conclusion, we have presented  a solut ion descr ibing a spin polar ized  
disc of  fluid in a R i e m a n n - C a r t a n  spacet ime.  The  disc could poss ib ly  be  
used t o  mode l  a large r o t a t i n g  s t ruc ture .  As an example ,  using solut ion 2, 
we e s t ima te  t he  accelerat ion,  and  central  energy densi ty  of a disc of  p rope r  
thickness T = n l ight  years  = 9.46n x 1015m. We use 6 = �89 F rom (44) 
we have a H =  �89 and  from (45) 

and 

8.3 lO_lTm_ I (47) 

2a2(1 -- 2al l6)  7.9 x 10 -32 
e ---- = m -2  

(1 - all,5) 2 (a l l6)  n 2 

which, for n a b o u t  1, is of  the  order  of  1012joules/m 3. A l imi ta t ion  of  the  
model  for smal l  scale mode l ing  is, of course,  t he  lack of a radia l  fall off. 
However, like t he  Van S tockum infinite cylinder,  th is  s imple infinite disc 
may prove to  be  an in teres t ing  and  useful solution.  
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