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A F mily of Strings with Spin 
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Using an equivalence theorem, we discuss some stationary interiors for a 
string with spin density in a space with torsion. We show that there is 
a family of solutions characterized by the spin divergences and compare 
the solutions to string solutions in general relativistic spacetimes. 

1. I N T R O D U C T I O N  

Interior solutions for infinite cosmic strings have received recent attention. 
The early models [1] of cosmic strings assumed an infinitely thin string 
with an energy density and tension along the string. The interest in more 
complex string interiors is motivated by the recognition that  a string is a 
complex collection of fields [2] and may have other stress energy compo- 
nents besides the energy density and tension along the axis and without 
exact solutions there is no way of evaluating the more simple string mod- 
els. Simple strings are also singular along the axis and non singular exact 
solutions can be very useful in discussing possible vacuum matches at the 
string boundary. There are three general types of single cosmic string in- 
teriors found in the literature. In general-relativistic spacetimes there are 
static interiors with a perfect fluid content [3-6] and stationary interiors 
supporting a perfect fluid with heat flow [7]. In Einstein-Cartan spaces 
(with torsion) there are stationary solutions [8] containing a perfect fluid 
with spin density, a spin fluid. In this note we discuss some new string 
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interiors with spin. We show that  the solution with torsion described by 
Soleng [8] is the simplest member of a family of solutions. The members 
of the family are characterized by their divergence. We obtain the general 
relativistic spinning string solution with the same geometry as the new 
solution with torsion and compare it to the general relativistic string with 
heat flow discussed by Jensen and Soleng [7]. 

2. STRING INTERIORS 

2.1. The general metric and field equations 
The metric we consider is 

ds 2 = - F ( d t  + kdr 2 + dr 2 + dz 2 + D2dr 2. (1) 

Jensen and Soleng [7] discuss one stationary solution where the string 
interior is accelerated but most interiors assume an unaccelerated string 
interior. We shall assume 

F = 1. (2) 

The general relativistic field equations for a string with a perfect spin fluid 
stress energy content in a space without torsion are 

(00) e = ~  92  D ' (3) 

(zz)  P3 = - ~  +- -~ - ,  (4) 

(rr) (r162 P l = P 2 = ~  92 , (5) 

(0r (6) 

Derivatives are with respect to the r coordinate and denoted by prime. 
These field equations follow from the spin fluid stress energy tensor devel- 
oped by Ray and Smalley [9] which is applicable to both spaces with and 
without torsion. 

The static and stationary general relativistic solutions for the space- 
time of eq. (1) can be discussed using these equations. We will not write 
down the Einstein-Cartan field equations for spacetimes with torsion as 
those solutions will be obtainable from the general relativistic static solu- 
tion by an equivalence theorem [10]. This will be shown below. 
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The field equations are tetrad indexed using the tetrads that  diagonal- 
ize the metric. These tetrads are chosen so that  the time like component 
lies along the comoving velocity, u*: 

~o) = (1,  o, o, o) 

~,.) -- (o, 1, o, o) 
(7)  

e~) -- (0, O, 1, O) 

�9 - k  1 

Tetrad indices are in parentheses and spacetime indices are not. The spin 
content of the field equations is discussed in the next section. 

2.2. Spin c o n t e n t  

The field equations given in eqs. (3)-(6) are derived using the spin 
fluid Lagrangian discussed by Ray and Smalley [9]. The spin density in 
the fluid, Sij, is defined as 

, (r) (r (r) (r S~j =pa~e~ ej - e j  e i ) (8) 

where a is a spin module function and p the proper density of the fluid. 
The spin density is related to the vector spin density by 

S i -- eiJklujSkl 
2v,.:~ (9) 

Limiting the spin density to Srr is equivalent to assuming that  the spin is 
oriented along the z-axis. 

The divergence of the spin density is 

w~= (s~J);~. (10) 

The divergence has a different form depending on whether or not the con- 
nections of the spacetime include torsion. For a general relativistic space- 
time without torsion the two non zero tetrad indexed components of the 
divergence are,  

W (~ = k ' S  re, (11) 

W(r  d (DSCr)= d 
d--~ ~rr (-SZ)" (12) 
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For an Einstein-Cartan spacetime with torsion the diverence components 
are 

W (~ = (k' - Srr  re, (13) 

W ( r  d ( D S r  d 
d-~ ~rr (-SZ)" (14) 

We will see that  the divergence of the spin density can be used to char- 
acterize the solutions discussed in this paper. It also allows insights into 
the spin structure. The timelike component of the divergence can be cal- 
culated directly or it can be simply obtained in a general form from the 
Frenkel condition on the spin 

u~S~J=O. (15) 

Taking the derivative with respect to j and using the standard ex- 
pansion of the velocity covariant derivative this equation may be written 
a s  

(16) 

where wij(Rc) is the vorticity in the torsional spacetime and wij is the 
usual ca  fluid vorticity. The equivalence enforces a zero timelike divergence 
component. This is a statement that  in this stationary fluid, the usual cR 
fluid vorticity is directed oppositely to the spin. A very rough analogy that  
is helpful in visualization can be made between the spin fluid and some 
atomic states with j = O, i, s r 0. The spacelike divergence component, 
from eq. (12) or (14), will determine the functional form of the spin in a 
modeling calculation. It also carries information about the vector nature 
of the spin since this component is proportional to the curl of the vector 
spin density, S i. 

2.3. String interior solutions 
For each of the solutions, the functions to be determined are D, k and 

the pressures, energy density and spin density. 

P.3. I. The static string 
The perfect fluid static string has been discussed by Hiscock [3], Linet [4,6] 
and Gott  [5]. The stress energy content is e -- A, P2 = -A,  Pr = PC - 0, 
k = 0, Srr = 0. The field equations give the interior geometry 

(dsl) 2 = - d r  2 -I- dr 2 + dz 2 + D2 dr 2 (17) 
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and with the assumption that  the metric will be flat on the axis one has 

D = sin(vfAr ) 
v ~  (18) 

2.3.2. The E ins te in -Caf tan  stationary string with spin-solution from 
equivalence 
The stationary Einstein-Caftan string has been discussed by Soleng [8]. 
The stress energy content is e = A, P2 = -A, P~ = PC = 0, k = 0, 
Srr = SoD. The geometry is 

ds 2 = - ( d r  + kdr 2 + dr 2 + dz 2 + D2dr 2 (19) 

with 

D - sin(vfAr ) and k = So (1 - cos (v~r )  ). 

The stationary string in the spacetime with torsion fo]lows directly from 
the static string in general relativity using the equivalence shown by Krisch 
and Smalley [10]. The equivalence was originally stated for isotropic pres- 
sures but  is also true for anisotropic fluids. For static metrics with only 
radial dependence, the statement of equivalence is as follows. Every static 
perfect fluid solution (gij, e,pi, D) in general relativity is equivaIent to a 
stationary Einstein-Cartan solution (g'j, e, p~, D, Sij) with 

gij ---- gi*j, i, j -- r, z, t, 

gor - k  with (gook' ' ' = - kgoo)goo = 0,  (20) 

( - g o o k '  + kg~o) 

For the unaccelerated string solutions considered here these simplify to 

gi~ = g~*~, i, j = r, z, t, 

g~, = - k ,  (21) 

. S~ = k'. 

Using the relation between spin density and spin, the last equation can be 
written as 

k' = D S z. (22) 
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If the spin density is constant 

S = = So (23) 

and using the static D function required by the equivalence we obtain 

So (1 - cos(V~r)). (24) 

This interior is the solution found by Soleng [8] for a spinning string in 
an Einstein-Cartan spacetime. The equivalence makes it clear that  this is 
only one of a family of spinning string solutions and other members of the 
family can be generated from eq. (20). The assumption in eq. (21) that  the 
spin is constant is one of many possible choices. The equivalence produces 
a spin in the Einstein-Caftan spacetime with a zero timelike divergence 
component for any functional choice of spin. The Soleng constant spin 
choice [8] corresponds to a spin density with a zero spacelike component 
also. Other choices for the spins would lead to more complex vorticity and 
divergence behavior but would not change the fluid's energy density or 
pressures. The energy and pressure remain the static general relativistic 
values. 

2.3.3. Another  solution belonging to the equivalence family  
Soleng's solution [8] has a zero divergence and the next family member 
one could consider would be one with a constant divergence W (r -- W0, 

S z = W o ( R  - r), (25) 

with R a constant. The associated tensor density is 

Srr = DW0(R - r). (26) 

Using the static D function that  is appropriate for this family we have 

, s in(v~r  ) (27) 
k' = w 0 ( R  - 

Integrating eq. (24) one obtains 

- W 0 {  (s in(x /~r )~  } 
k = ( R  - r )  cos[J r] - + k l  �9 (28)  

kl is a constant of integration 
This solution describes a string with the same energy and pressure as 

the static string but with a spin density and vorticity that  vanish at the 
point r = R. For comparison it is of interest to find the fluid parameters 
for the general relativistic solution that  has this same geometry. 
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3. THE GENERAL RELATIVISTIC STATIONARY STRING WITH 
SPIN 

3.1. The solution 
We star t  bysolv ing  eq. (6). The solution is 

k ' = S r r  (29) 

We assume k2 = O in order to examine the same kind of solution as in the 
Einste in-Car tan interior and assume that  S~r is given by eq. (23). Using 
the static D function, one obtains the same function for k, eq. (25). The 
metric for this solution is them formally identical to the metric for the 
constant divergence Einstein-Cartan solution discussed in Section 3. The 
fluid parameters  follow from the field equations 

or 

4 
W ~ ( R  - ~)~ 

pz = - A  + 
4 

- 3 w ~ ( R  - r)  ~ 
Pr = P C =  4 

(30) 

S~r -- D W o ( R  - r) (31) 

s t = W o ( R  - ~).  

For this interior, the spin density tensor Srr approaches zero on the 
axis but in such a way that  the spin vector density S z is a constant. The 
spin divergences follow from eqs. (11) and (12). 

w ~~ = W g ( R  - T) 2 
(32) 

W (r = W0. 

Comparing this solution to the Einstein-Cartan constant divergence so- 
lution with the same geometry, we see that  the general relativistic string 
with spin has a much more complex fluid behavior. One might think that  
a more complex spin behavior in the Einstein-Cartan interior would gen- 
erate a more complex stress-energy content, but it does not. Changing 
the spin in the family of Einstein-Cartan solutions described above mod- 
ifies the fluid vorticity and the spin divergence. A very interesting insight 
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follows from comparing this general relativistic solution to the solution of 
for a string with heat flow [7]. The field equations considered by Jensen 
and Soleng are equations (3)-(5) with Srr = 0. They modified eq. (6) in 
order to generate interesting solutions by adding heat flow to their fluid. 
Equation (6) becomes 

k' -- 2D~A(R - r). (33) 

A static D function is used. A comparison of eq. (30) to eq. (24) shows that  
the geometry of the spinning string in general relativity and the general 
relativistic string with heat flow are formally the same with 2a)~ replacing 
W0. The fluid parameters are similar but a different assumption about the 
form of the energy leads to slightly different coefficients. 

4. CONCLUSIONS 

We have shows that  the constant spin string interior in a spacetime 
with torsion is only one of a family of string interiors characterized by the 
spin divergence. We present a second Einstein-Caftan interior which has 
the same geometry as either the general relativistic spinning string or the 
general relativistic spin with heat flow. The energy and pressures for the 
string with torsion are the same as those for the static string. The general 
relativistic solutions have a more complex fluid behavior. Since a string 
interior is a field or set of fields, the motivation for choosing an interior 
with spin over one with heat flow depends on the physics of the problem 
being considered. Choosing a spacetime with torsion over one without 
torsion is a question that  will be answered experimentally. 
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