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A Spin Polarized Disc. II 
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We present a solution to the gravitational field equations which describes 
either a static disc in general relativity or a spin polarized rotating disc 
in a Riemann-Cartan spacetime. The disc has infinite radius and finite 
thickness. The energy and pressure are finite and positive within the disc 
and for some parameter choices, a radial fall off in the fluid parameters 
is possible. A comparison is made to axis-symmetric wall solutions. 

1. I N T R O D U C T I O N  

Disc shaped  mass  d i s t r ibu t ions  have been frequent ly  used to  model  galact ic  
s t ruc tures .  Since m a n y  galaxies  are  h ighly  compressed in the  z-di rec t ion  
c o m p a r e d  to  the i r  r ad ia l  extent ,  the  s imple s ta t ic  models  often assume 
t h a t  the  ga lac t ic  vo lume dens i ty  is a funct ion only of  z. A model  of this  
t y p e  was in t roduced  by  Oor t  [1]. I t  is a s imple infinite slab of collisionless 
m a t t e r  runn ing  be tween z = + H  wi th  a dens i ty  po(z)  and a g rav i t a t iona l  

po ten t i a l  [2] 

r - 47rGp~ + constant .  (1) 
2 

+ H  are  t he  boundar i e s  of t he  disc. Discs conta ining m a t t e r  under  pres- 
sure  have also been discussed in a classical background  [3]. Models  of 
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self-similar discs have been developed by Lynden-Bell and Pineault [4] 
and Lemos [5]. Finite discs were treated by Morgan and Morgan [6] who 
also discussed counterrotating discs. Bi~ak, Lynden-Bell and Katz [7] used 
counterrotating discs as sources for static vacua and Bi~ak and Ledvinka 
[8] have applied this to the Kerr vacuum. Kuzmin [9] has discussed the 
Newtonian gravitational field of a thin disc and his work was extended by 
Evans and deZeeuw [10]. In this note we describe a relativistic, infinite 
disc solution with a metric structure that, for small z, generates a poten- 
tial similar to eq. (1). The matter  content of the disc is a fluid under 
pressure and it can be interpreted in two ways. It is either (i) a static 
anisotropic fluid in a general relativistic spacetime or it is (ii) an axially 
polarized rotating spin-fluid in a Riemann-Cartan spacetime. The formal- 
ism that  shows the equivalence of the two descriptions was developed by 
Krisch and Smalley [11]. For either interpretation, the fluid parameters 
are well behaved. This paper is the second [12] in a series that discusses 
spin polarized disc solutions. Discs have been used frequently in other 
calculations concerned only with the surface stress energy content of the 
source [13-18]. The solution presented in this note has a well-defined and 
simple, if anisotropic, interior stress energy content. The solution may be 
useful in modeling large rotating structures with embedded intrinsic an- 
gular momentum. In addition, infinite discs with specific symmetries have 
been used to discuss wall defects [19-23]. This aspect of our solution will 
be discussed at the end of the paper. 

2. METRIC AND MATTER CONTENT 

A. Metric 
We wish to consider the field equations for a spacetime with metric 

ds 2 = - f  dt + 7 de  + exp(#)dr2 + exp(B)dz2 + "7- dr (2) 

The form that  we will assume for the metric potentials is 

f = (r + ,-o)dF(~) 

k = rgG(z)  

D = (r + ro)SD(z)  

exp(~) = (r + r0) b-2 exp[~(z) ] 
exp(Z) = (T + ~0) b exp[~(z) ]. (3) 
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e~(1) = 

eV(2) = 

e ~ ( 3 )  = 

These tetrads will be used to 

The solutions that  we generate will describe both a static general rela- 
tivistic fluid and a stationary spin fluid in a spacetime with torsion. This 
form for the metric has been used previously in a discussion of the energy 
conditions in a spacetime with torsion [24]. F(z) will be assumed to be 

F(z) = D2h(z), D2(z) = exp[az2]. (4) 

Since, in the Newtonian limit, g00 = 1 + 2&, this choice will produce the 
quadratic potential of the simple disc models, eq. (1). Other metric choices 
could have been made that  also provided a quadratic potential. The choice 
(3),(4) is convenient because of the existing discussions of energy density 
interpretation. 

In our notation, we denote the coordinates (t, r, z, r by (0,1,2,3) and 
prime (~) denotes derivative with respect to z. It is convenient to introduce 
the tetrads that  diagonalize the metric: 

000) 
00) 

(00 x [ l 0) 
- k  ,o,o, 

x/-fD D ]"  

index the field equations 
The spacetime contains a spin fluid - -  a perfect fluid with a spin 

density, Sij, defined throughout its extent. The stress energy tensor for 
this kind of fluid has been developed and discussed extensively by Ray and 
Smalley [25]. Using cylindrical coordinates (r, r z) we have three possible 
spin densities Srr Szr S~z. We wish to develop a solution describing a 
disc with a axially polarized spin content; S~r will be the only non-zero 
spin density. Sr~ is non-zero only if f and k are directly proportional, i.e. 
the fluid is completely irrotational in general relativity. We will avoid this 
case. Zeroing S~r will constrain the metric potentials. The stresses and 
energy density developed for the Riemann-Cartan spin fluid will be the 
same as for the zero spin static general relativistic solution. 

B. Spin-metric eonstraints. The off diagonal field equations 
We will focus on the particular case where the spin densities Srr and 

S~r are proportional to the classical fluid vorticities. 

) 
f v 7  v 7  ~ g~o ' (~) 
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,.,=,,z-,. 
f.v/- ~ ----- ~ -  . (7) 

Requiring Szr to be zero imposes the constraint 

F '  G' 
F G 

so that  
G(z )  = ClF(Z) = Cl exp[hc~z 2] (8) 

with cl an integration constant. 
Requiring the spin density to be proportional to the vorticity creates 

a special type of solution to the field equations in a Riemaan-Cartan (Rc) 
spacetime. It has been shown that  with the relations (6),(7), the diagonal 
and r z  field equations are formally identical to the field equations for 
a static general relativistic perfect fluid [il]. The remaining (03) field 
equation is used to determine the off diagonal metric component in the Rc 
spacetime. The solutions that  we find will be valid for either a static perfect 
fluid in general relativity or a stationary spin fluid in an ac spacetime. The 
(tetrad indexed) (03) equation constrains the metric potentials. 

(03): ,0, 

If Szr is to be zero and Srr non-zero we must have 

d : 0 .  (10) 

The r z  field equation provides further constraining relations on the metric 
functions. 

r z :  W(z)s + (b- 2s) + s T = 0. (11) 

There are three possibilities, 

(a) s---O, b : O ,  (12) 

(b) s - - O ,  D ' = O ,  (13) 

F t 2s - b D I 
(c) s # 0 ,  ~ ' ( z )+ -~-  = s D (14) 
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Case (a) was considered in an earlier paper [12]. Case (b) produces un- 
physical fluid parameters. The spin polarized discs that are the subject of 
this paper occur for case (c). Using eq. (14) we have 

#(z) = ( 2 s - b  - 2h)  2 (15) 

The integration constant has been scaled into the coordinate definition. 
The form of the metric is 

ds 2 = - exp[haz 2] I dt + clrgdr 2 + exp[c~z2(1 - h)] (r + r0)2Sdr 2 

+ e x p [ ( 2 s f  b 2h) -~-~-] ( r+ro)b-2{dr2+(r+ro)2dz2} . (16)  

For the static general relativistic metric, cl = 0. cl r 0 is the Einstein- 
Cartan case. 

C. Stress energy content. The diagonal field equations 
The diagonal field equations generate the pressure and energy density. 

For case (c) the diagonal equations generating the pressure and energy 
density are 

bs ( b-2s), (171 e x p [ # ( z ) ] ( r + r 0 ) b p l = - ~ + a + a 2 z  2 h 2 + 1 +  2s J 

) exp[#(z)] (r + ro)bp2 = s ~  + a2z 2 h 2 , (18) 

2s - b 
exp[/~(z) ] (r + ro)bP3 = a ~  + h20~2z 2, (19) 

b - 2 s ~ _ ( h _ l ) 2 a 2 z  2. (20) exp[#(z)] (r + ro)be = --s 2 -I- a 2h - 1 + 2s ] 

D. Spin content  
Equations (17)-(20) refer to either a static disc in general relativity or 

a rotating disc in a Riemann-Cartan spacetime. If the space is Riemann- 
Caftan than the spin density of the fluid in the disc is 

Srr  [ h 2 ] - cl exp ~ gr g-1. (21) 

g > 1 will guarantee that  the vorticity and the spin vanish on the axis of 
rotation. 
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E. The z cutoff for the disc 
The  upper  and lower surfaces of the  disc can be defined as the surfaces 

over which P2 vanishes. Using eq. (18) we find for a non-zero denominator  

[s(2s - b)/2] 
a l l = +  h 2 - [ ( 2 8 - b ) / 2 s ] "  (22) 

If  h = 0 and b = 2s, the z pressure is identically zero and the  boundary  
must  be identified from a matching procedure. If  there is no matching the 
pressure becomes a tension. The  case s = 0 was discussed previously [12]. 

3. PARAMETER CONSTRAINTS 

Requirements  on the sign and finiteness of the energy and pressure 
set parameter  constraints.  (We do not  consider acoustic limits.) First look 
at the disc in the (r, r plane, z = 0. The  fluid parameters  in this central 
disc are 

b$ 
(r + ro)bpl = ~ + a,  (23) 

(r + ro)bp2 = S 2s -- b 2 ' (24) 

2s - b (25) (r + rO)bp3 ---- a 2----~ ' 

b-2s  (26) ( r + r 0 ) b e = - - s  2 + a  2 h - l +  28 ] "  

Assuming s > 0 and b > 0, the parameter  constraints are 

P2 >__0 b < 2 s  (27) 

p3 > o a _ o (28) 

s 2 
c >_ o ~ >- 2 h -  1 + ( b -  2s)/2s" (29) 

There  are some conditional constraints on the parameter  h. If  ~ is a free 
parameter ,  eq. (29) imposes the  constraint  on h: 

b 
h > 1 - 4s  for any ~. (30) 
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For some models the  choice a = s 2 is convenient since then P2 and P3 
are equal in the plane z = 0. Wi th  this choice eq. (29) will impose an 
addit ional  constraint  on h and we have 

3 b 
h > ~ - 4--~ if a = s 2. (31) 

From the definition of  the z-cutoff of the disc we have the constraint  

2s - b for any a,  b # 2s. (32) h2 > 2---7- 

Finally, requiring the energy to be positive above the z = 0 plane at the z 
cutoff imposes the  constraint  

b -  2s~ _ ( h -  1)2a2H 2 > 0. - s  2 + c ~  2 h - l +  2s J (33) 

For a part icular  model all of the constraining equations need to be exam- 
ined to determine the operative parameter  limits. 

4. S O M E  M O D E L S  

The  models described below are infinite discs in general relativity 
(cl = 0) or for cl # 0, an infinite disc with spin density in an Einstein-  
Caxtan space. The  fluid parameters  are the same for both  cases. 

A. P a r a m e t e r  choice: b = 0, a = s 2 
The  operat ive constraint  for h is eq. (31) or (33) giving h > 3. We 

will choose h = 2. For this choice 

•  s H - - - ~ ,  #(z)=-s2z 2 

exp[g(z) ]e = s2(1 - s2z2), 

exp[#(z) ]Pl = s2( 1 + 4s2z2), 

exp[#(z) ]P2 = s2(1 - 3s2z2), 
(34) 

exp[#(z) ]P3 = s2( 1 + 4s2z2) �9 

In the  z = 0 plane the pressures are isotropic and the equation of state is 
e = p .  
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The Einstein-Cartan spin density (and the equal vorticity wrr is 

Srr = exp[s2 z2]clgr g-1. (35) 

B. Parameter choice: b = s ,  a = s 2 
Equation (33) imposes the operative constraint on h. h > 1.25. We 

will choose h = 2 again. For this choice 

+1 3s2z 2 
sH = x/7 and # ( z ) -  T '  (36) 

exp[l~( z) ] (r + ro )Se-- s2 ( 3 - s2z2),  

+ 2 ) '  
exp[#(z) ] (r + ro)Sp2 ---- s 2 (1  7s2z 2 ~ (37) 

2 1' 

exp[#(z) ] (r + ro)SP3 = s2(2 + 4s2z2 ) .  

Note that  for this model in the z = 0 plane there are equations of state 

P2,3 = ~ and Pl = e. (38) 

The spin density (and the equal vorticity) is the same as in case A. 
Emphasizing again that the interior spin-vorticity content is in an 

Einstein-Cartan spacetime with the same fluid parameters as the static 
general relativistic spacetime, we plot graphs of the size of the vorticity 
vector (or spin vector) for both of the numerical examples given above. 
This will help clarify the role of the parameter r0. The vorticity vector is 

w ~ = e ~~162 x/-fwr4' (39) 
D exp[tz + /3 /2  ] 

and ~ = wx/-~--&~. The size is shown as a function of radius in Figures la,b 
for the parameter choice B discussed above. It  is clear from these examples 
that  r0 parameterizes the location of the peak in the vorticity vector curve. 
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F i g u r e  l a .  Graph of ~/2cl,  versus radial distance r, in the z -- 0 plane for ro = 1, 
b = s = 2 ,  g = 2 .  
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F i g u r e  l b .  Graph of f l /2cl ,  versus radial distance r, in the z -- 0 plane for ro ---- 0.5, 
b = s = g = 2 .  

5. C O M P A R I S O N  T O  W A L L  S O L U T I O N S  

T h e  m e t r i c  (16) is s imi la r  in s t r u c t u r e  to  t h e  gene ra l  m e t r i c  used  to  
d e s c r i b e  s t a t i c  gene ra l  r e l a t iv i s t i c  t h i n  a x i s - s y m m e t r i c  wal ls  [4,20,26,27]. 

As  g iven  in  Ref.  4, t h e  m e t r i c  is 

ds 2 = - r  2n e x p [ N ] d t  2 + r 2~ e x p [ 2 P  - N ] d r  2 

+ r 2(~- t )  e x p [ Z  - N]  (dr 2 + r2dz 2) (40) 
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where ~, n are constants, N, P, Z are functions of/~ and we have used z 
instead of/~. 

Comparing with (16), we see that  eq. (40) is equivalent to (16) with 

~ z  2 
n = O ,  ~ = s ,  b = 2 s ,  N = h a z  2, P = - ~ ,  Z = O .  (41) 

A classification of some wall solutions has been given by Lemos and Ven- 
tura  [20]. While our metric is different from the ones that  they classify, 
we note that  for this choice of parameters (n = 0), the metric (16) lies at 
the origin of their classification diagram. 

The fluid parameters  generated by this choice of functions are eas- 
ily found from (17)-(20) and one finds both pressures and tensions as is 
common in defect solutions. I t  is possible to match the metric (16) with 
the parameter  choice given by (41) to a vacuum. The vacuum match at 
z -- =t:H is then 

ds 2 = - d r  2 q- (r q- ro)2S-2(dr2 q- z2(r  Jr r0)2dr 2) q- dz  2. (42) 

This match identifies the boundary z 2 = H 2 = c~-1 and forces the interior 
fluid parameters  P2 = P3 = O, Pl = - e  -- s 2 + a + a 2 z  2, a positive 
pressure and negative energy density. In general relativity, negative energy 
densities are unphysical. The possible physical acceptability of solutions 
with negative energy density in a spacetime with torsion, i.e. Riemann-  
Car tan spacetimes, have been discussed previously [24]. The strong energy 
condition may be satisfied in such spacetimes if an effective stress energy 
tensor is used in interpreting the energy conditions. 

6. DISCUSSION 

We have presented a solution to the gravitational field equations which 
describes either a static disc in general relativity or a spin polarized ro- 
tat ing disc in a Riemann-Car tan  spacetime. The solution has many nice 
features: finite energy and pressure, a well defined z-boundary which is 
useful for modeling, and for some parameter  choices, an isotropic pressure 
in the z = 0 plane. I t  allows the modeling of a polarized rotating structure. 
I t  has a zero l~iemann-Cartan vorticity but non-zero fluid vorticity and 
spin. While it is strictly non quantum-mechanical, in order to understand 
the relation between the spin and fluid vorticity of the medium in the disc 
one could draw a very qualitative analogy between the spin-vorticity struc- 
ture of the fluid and the J = 0 (with non-zero L and S) states of some 
atomic systems. One might also make a qualititative analogy between 
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counter  ro ta t ing  components  and two different and oppositely polarized 
sources of angular  momen tum.  Interes t ing questions can be asked about  
the spin polar izat ion of the ma t t e r  content  of a specific galaxy, or, re- 
garding a galaxy as a prime const i tuent ,  about  the spin polarizat ion of 
a galactic fluid. Some authors  have also considered evidence [28] for a 
polarized universe and  discussed some of the possible tests tha t  one could 
make for this  effect [29,30]. These questions are clearly of great impor- 
tance in unde r s t and ing  the evolution of the angular  m o m e n t u m  st ructure  
of galaxies and  larger ro ta t ing  systems. 
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