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1Department of Biomedical Engineering,
2Department of Mechanical Engineering, The University of Michigan,
Ann Arbor, MI 48109, USA E-mail: joebull@umich.edu

Abstract. The motion of a cylindrical bead in a fluid contained within
a two-dimensional channel is investigated using the boundary ele-
ment method as a model of a biomolecular-motor-powered microflu-
idics pump. The novelty of the pump lies in the use of motor proteins
(kinesin) to power the bead motion and the few moving parts com-
prising the pump. The performance and feasibility of this pump
design is investigated using two model geometries: a straight chan-
nel, and a curved channel with two concentric circular walls. In
the straight channel geometry, it is shown that increasing the bead
radius relative to the channel width, increases the flow rate at the
expense of increasing the force the kinesins must generate in order
to move the bead. Pump efficiency is generally higher for larger bead
radii, and larger beads can support higher imposed loads. In the cir-
cular channel geometry, it is shown that bead rotation modifies the
force required to move the bead and that shifting the bead inward
slightly reduces the required force. Bead rotation has a minimal ef-
fect on flow rate. Recirculation regions, which can develop between
the bead and the channel walls, influence the stresses and force on
the bead. These results suggest this pump design is feasible, and the
kinesin molecules provide sufficient force to deliver pico- to atto- l/s
flows.
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1. Introduction

Microfluidics circuits often do not include a pump and
flow must be generated using either gravity or an external,
macro-scale pump. Simply scaling down a conventional
pump does not provide the desired performance. This is
due in part to many conventional pumps being designed
to work at high Reynolds numbers, Re = ρUa/µ, i.e. the
ratio of inertial to viscous effects is high, where U is the
characteristic velocity scale, a is the characteristic length
scale, ρ is fluid density, and µ is fluid viscosity. In many
microfluidic devices, Re is small due to the small length
scales. Thus, many micro-flows lack the inertia required
for efficient function of these pump designs. Additionally,
conventional pumps often have intricate designs that are
difficult to manufacture at the micro-scale. Besides macro-
scale syringe pumps, a number of novel pump designs have
used a variety of driving mechanisms, such as expanding
and collapsing bubbles, electro-convection, surface ten-
sion, and gravity (Yuan and Prosperetti, 1999; Ory et al.,
2000, Geng et al., 2001; Ateya et al., 2004; Li et al., 2004;
Min et al., 2004). While these designs have been success-

ful in generating flow, most of these require relatively large
external equipment, or require the microfluidics circuit to
be positioned in a certain orientation. In ongoing work, we
are interested in developing a molecular-motor-powered
microfluidics pump that is truly micro-scale, robust, and
highly efficient.

Kinesins are molecular motors that move along micro-
tubules forming an intracellular transport system that is
responsible for transporting vesicles and organelles be-
tween locations within the cell (Howard, 1996; Hirokawa,
1998). The two heads of these motor proteins provide the
motor function, and the tail of the protein provides an at-
tachment point for the payload. An individual kinesin will
translocate along microtubles at a relatively constant rate
(Hunt et al., 1994; Meyhofer and Howard, 1995) over a
wide range of imposed load, and each kinesin can generate
a force on the order of 10 pN (Hunt et al., 1994; Meyhofer
and Howard, 1995). They are small (head domain ∼ 7 nm,
overall ∼ 50 nm), robust, and possess a high thermody-
namic efficiency (∼50–60%) and a high power to mass
ratio (4400 W/kg). By comparison, the typical car engine
has a thermodynamic efficiency ∼ 30% and a power to
mass ratio of ∼300 W/kg. The efficiency, size and power
density of kinesin suggest it may be an appropriate power
source for sophisticated microdevices, and a number of
reports in the literature have investigated the potential use
of kinesin in microdevices (Limberis and Stewart, 2000;
Moorjani et al., 2003; Hess et al., 2004; Jia et al., 2004).
We are developing a potential device for flow generation
that consists of a kinesin- (or microtubule-) coated bead
or cylinder moving along a microtubule (kinesin) track in
a channel.

To investigate the feasibility of this micropump design,
we consider a two-dimensional model in which a cylinder
moves with prescribed translational and rotational speeds
through a channel. Flow past cylinders in a free stream
has been studied in many contexts, such as heat exchang-
ers and membrane oxygenators (Sparrow and Loeffler,
1959; Wang, 1996; Dierickx et al., 2000). Other stud-
ies have considered the flow induced by the motion of
spheres (Dean and O’Neill, 1963; O’Neill, 1964). Flow
around cylinders and spheres inside channels and near
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boundaries has been studied in many applications, such
as transport of particles in sedimentation, and transport
of red blood cells in capillaries (Dvinsky and Popel,
1987a, 1987b; Sugiharaseki and Skalak, 1988; Halpern
and Secomb, 1991, 1992; Damiano et al., 1996, 2004;
Feng et al., 1998), as well as for primarily fundamen-
tal interests (Bretherton 1962, Goldman et al., 1967a,
1967b; Goren and Oneill 1971; Ganatos et al., 1978,
1980a, 1980b, 1982; Larson and Higdon, 1986, 1987; Ek-
lund and Jernqvist, 1994; Pozrikidis, 1994; SugiharaSeki,
1996; Staben et al., 2003). Most of these previous studies
have considered objects that are held stationary as fluid
flows around them, or objects that are carried along by
the flow. There is much less work on flow produced by
objects moving in channels. Most work in this area has
been motivated by fundamental interest in particles mov-
ing in closed tubes and channels (Happel and Brenner,
1965; Davis, 1992), or by the needle viscometer (Thiessen
and Krantz, 1992; Wehbeh et al., 1993; Liu et al., 2004),
which primarily considers long cylinders translating in
closed tubes. The current theoretical study investigates
the efficiency of this pumping mechanism, the potential
to generate useful flow rates, the effects of bead rotation
and position, and the effects of channel curvature.

2. Model

Although we expect that the actual pump will involve a se-
ries of micro-scale, check valves (Hasselbrink et al., 2002;
Kirby et al., 2002), we ignore the effects of these valves
in this preliminary investigation. Two model geometries
are considered—a straight channel and a circular chan-
nel model. The actual pump might consist of the circular
channel connected to an external circuit.

2.1. Straight channel
First, we consider the limit in which channel curvature
is negligible and use the simplified model geometry of a
straight two-dimensional channel with periodic boundary
conditions at the ends of the channel as shown in Figure 1.
By specifying a pressure drop, �p∗, across the ends of the
channel, we approximate an applied loading on the pump.
The channel half-width and length are a and L , respec-

Fig. 1. Straight channel model geometry. The two-dimensional,
circular bead of radius b translates with constant speed U through the
channel of half-width a.

tively, and a single bead of radius b translates along the
channel at a constant speed U . We use the notation that *
superscripts indicate dimensional variables. Dimension-
less variables and dimensional parameters are un-starred.
The channel is filled with a Newtonian, incompressible
liquid. The governing fluid mechanical equations are con-
servation of momentum
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and y∗ directions, respectively. The boundary conditions
are no slip and no penetration at the channel walls

⇀

u
∗
(x∗, y∗ = 0) = 0

(3)
⇀

u
∗
(x∗, y∗ = 2a) = 0

and the imposed pressure difference at the ends of the
channel

p∗(x∗ = 0) = 0
(4)

p∗(x∗ = L) = �p∗

In the straight channel model, the bead translates along
the channel centerline (y∗ = a) but does not rotate. The
boundary conditions at the bead surface are

u∗
bead = U

(5)
v∗

bead = 0

The governing equations and boundary conditions are
non-dimensionalized by the following scales:
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p∗ = µU p/a

where
⇀

x ,
⇀

u and p are the dimesionless position, velocity
and pressure, respectively. Note that for two-dimensional
Poiseuille flow in a channel with half-width a, the pressure
drop in a distance a/2 along the channel is given by µ ·
umax/a, where umax is the maximum velocity. We consider
the limit of negligible gravitational effects and Re → 0,
as is the case in the device due to the small dimensions of
the channel. The dimensionless governing equations are
conservation of fluid mass and the Stokes equation.

∇ · ⇀

u = 0
(7)−∇ p + ∇2⇀

u = 0



A Theoretical Model of a Molecular-Motor-Powered Pump 23

Fig. 2. Circular channel model geometry. The bead translates along
the channel bounded by two concentric circular walls. The bead may
rotate with prescribed angular velocity ω as it translates with speed U,
and may be shifted from the centerline of the channel by a distance
Y .

These governing equations are solved using the bound-
ary element method, as described below. The effect of
bead radius (b/a), channel length (L/a), and applied pres-
sure drop (�p) on resulting flow (Q) and the force (Fx )
required to move the bead were investigated.

2.2. Curved channel
The second geometry is a circular channel, as shown in
Figure 2. As in the straight channel model, the channel
half-width is a, but now the outer radius of the circu-
lar channel is Ro, and the inner radius is Ri . The origin
of the polar coordinate system (r∗, θ ) is at the center of
the concentric inner and outer walls. In addition to chan-
nel curvature, we investigate the effects of bead shift, Y ,
from the centerline of the channel and bead rotation, ω,
in this more complicated geometry. No slip and no pen-
etration boundary conditions are imposed at the channel
wall, and the fluid velocity is required to equal the bead
velocity at the bead surface. The governing equations are
the same in this model geometry as in the straight chan-
nel, and they are non-dimensionalized using the same
scales.

2.3. Solution method
The boundary element method (Brebbia and Dominguez,
1992; Pozrikidis, 1992) is used to solve the governing
equations and compute the resulting velocity and pressure
fields. A brief description follows. The solution for the
velocity field resulting from Stokes flow can be obtained
in terms of single and double layer potentials by taking
Fourier transforms of equation (1) and applying Green’s
theorem (Ladyzhenskaya, 1963; Pozrikidis, 1992). This
results in the following integral equation that must be sat-

isfied by the flow.
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where the curve C is the selected flow boundary;
⇀

f = σ ·n̂,
is the stress vector; n̂ is the unit normal pointing into the
fluid; σ = (−pI + ∇⇀

u + [∇⇀

u]T ) is the stress tensor;
and the two-dimensional Stokeslet and associated stress
field are given respectively by
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The tensor ck j is due to the stress jump at the bound-
aries. For smooth surfaces it has the value δk j /2, but is more
complicated if the domain has corners. The subscripts re-
fer to direction, i.e. x1 = x and x2 = y. Equation (9) is
solved numerically by discretizing the boundary into N
quadratic elements. The velocity and stress vectors,

⇀

u and
⇀

f , are discretized along the boundary and represented by
quadratic polynomials. The governing integral equation
then becomes
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where n indicates the element number and Cn refers to the
contour along element n. Equation (11) can be represented
by a system of linear equations,

Ĥ= w = Ĝ= t (12)

where Ĥ= and Ĝ= are 4N × 4N and 4N × 6N matrices,
respectively. The vectors w and t have lengths of 4N and
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6N , respectively, and w2n−1 = un , w2n = vn , t2n−1 = fxn ,
and t2n = fyn .

The elements of Ĥ and Ĝ are computed using a 10-

point Gaussian quadrature if
⇀

x doesn’t coincide with one of
the node points of Cn . A 10-point logarithmic quadrature
is used to evaluate the sections of the integral on which

⇀

x
does coincide with a node point.

We impose two boundary conditions (selected from u,
v, fx and fy) at each node point, and rearrange equation
(12) to obtain

A= z = b (13)

where A= is a 4N × 4N matrix, z is a 4N vector contain-
ing the unknown stresses and velocities, and b is a 4N
vector that contains the prescribed boundary condition in-
formation. Equation (13) is then solved, using Gaussian
elimination with partial pivoting, for the two unknown
boundary values at each node point. Once all components
of stress and velocity are known at the boundary nodes, the
velocity and stress can be determined at any interior point,
e.g. equation (8). A powerful feature of the boundary ele-
ment method is that only the boundary must be discretized
in order to solve for the unknowns on the boundary. This
facilitates the analysis of flows within complicated geome-
tries, allows the consideration of deforming and moving
boundaries without re-meshing of the boundary nodes at
each time step, and results in relatively fast computation
times.

3. Results and discussion

A range of dimensionless parameter values, correspond-
ing to values of the micropump, was considered. We in-
vestigated the effects of bead diameter, b/a, and channel
length, L/a, on the flow, Q, generated, subject to the speed
and available power of the kinesin motors. Typical kinesin
speeds are U = 0.8 to 1 µm/s, and depend on the type
of kinesin. Additionally, for the curved channel model,
the effects of bead shift, Y /a, from the channel centerline
and bead rotation, ω, were investigated. The force, Fx ,
per dimensionless unit depth normal to the plane of the
two-dimensional model required to move the bead was
calculated by integrating the stress over the bead surface,

Fx =
∫

bead

⇀

f · î dl (14)

using a trapezoid rule approximation for the integral. Note
that dimensional force F∗

x =µUaFx . Likewise the dimen-
sionless flow rate per unit depth into the page, Q, gener-
ated by the bead motion was determined by numerically

integrating the velocity over the channel cross-section:

Q =
∫ y=2

y=0

⇀

u · î dy (15)

for the straight channel or

Q =
∫ r=Ro/a

r=Ri /a

⇀

u · n̂dr (16)

for the curved channel.
The numerical solution the model was conducted on a

4-processor Sun Fire V880 equipped with 8 GB of RAM
(Sun Microsystems, Santa Clara, CA). The convergence
of the code was investigated for both the straight chan-
nel and the curved channel models. Both geometries re-
sulted in convergence for a relative small number of node
points. For simplicity, 640 node points were used along the
channel walls and 160 node points on the bead surface in
each case. For the calculation of the interior node points,
∼2000 node points (the exact number depended on which
geometry was used) were placed evenly, in (x , y) for the
straight channel or (r , θ ) for the circular channel, to form
a grid on which the velocity and pressure fields were cal-
culated. This resulted in convergence (for Fx , Q, pressure,
and streamlines) for all of the conditions investigated. The
interior node points were only constructed if the stream-
lines were computed. When they were not included, the
code required ≤1 minute to run. If they were included,
the computation time required was typically ≤30 min-
utes. Note that only the boundary nodes were needed to
calculate Fx and Q in the straight channel geometry, and
that only a few internal node points were required in ad-
dition to the boundary nodes to calculate the Q (and none
for Fx ) in the circular channel geometry. This results in
fast computation speeds and could potentially facilitate a
rapid optimization of the pump geometry based only on
minimizing Fx and maximizing Q. The speed and adapt-
ability of the boundary element method suggest it is a
powerful and versatile method for investigating flows and
performance of molecular-motor-driven microfluidic de-
vices, such as this pump. The internal points were needed
to determine the velocity and stress fields in the liquid, and
significantly increased the computational time, which was
still fast compared to other computational methods. As an
additional check on accuracy, the straight channel model
was modified to consider flow past a stationary cylinder
and the resulting force and torque on the cylinder were
compared to the results of previous studies (Dvinsky and
Popel, 1987a, 1987b) with excellent agreement. The re-
sults of our study of flow induced by cylinder motion in
the setting of a kinesin-powered micropump are described
below.
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Fig. 3. Dimensionless force, Fx , – –, and dimensionless flow rate, Q,
– –, vs. dimensionless bead radius, b/a, in the straight channel with
L/a = 20 and �p = 0.

3.1. Straight channel
As shown in Figure 3, we computed the dimensionless
force required to move the bead, Fx , and the resulting di-
mensionless flow rate, Q, for various values of the dimen-
sionless bead radius, b/a. As the bead radius is increased,
Q is increased, but at the expense of increasing Fx . As
b/a approaches 1, Q approaches 2, which is the value cor-
responding to all of the fluid in the channel moving with
the same velocity as the bead. The data shown in Figure 3
correspond to L/a = 20 and �p = 0. Fx increases with
b/a, partly because the increase in Q results in an increase
in pressure drop along the channel due to the Poisuielle
flow in the region away from the bead and partly because
of increased resistance in the region near the bead as fluid
is squeezed between the bead and the wall. As the liquid
film separating the bead from the wall becomes very thin,
the viscous resistance increases significantly, accounting
for the sharp increase in Fx near b/a = 0.9. Assuming
10 kinesin are in contact with the microtubule track, the
available dimensional force to move the bead is 100 pN.
Converting this dimensional force, F∗

x = µ · U · a · Fx ,
to a dimensionless force yields Fx = 5000 to 500,000,
corresponding to a = 10 nm to 10 µm, U ≈ 1 µm/s, and
µ ≈ 1x10−3 N·s/m2. This is much greater than the value
of Fx (< 200 as shown in Figure 3) required to move the
bead, suggesting the available kinesin will provide suffi-
cient force to power the pump. Dimensionally, the required
force and resulting flow are approximately 1.5 pN and 0.2
pl/s, respectively, for a = 10 µm, L = 200 µm, U ≈ 1
µm/s, and µ ≈ 1x10−3 N·s/m2.

The force, Fx , required to move the bead vs. channel
length, L/a, and Q vs. L/a are plotted in Figure 4(a) and
(b), respectively, for b/a = 0.1, 0.5, and 0.9. The relation-
ship between Fx and L/a is nearly linear for b/a = 0.9
for all values of L/a, and is nearly linear for b/a = 0.1
and b/a = 0.5 when L/a is greater than approximately
20. As b/a → 1 (i.e. the bead fills most of the channel)
there is little leakage of fluid around the bead and the ve-

Fig. 4. (a) Dimensionless force, Fx , vs. dimensionless channel length,
L/a, and (b) dimensionless flow rate, Q, vs. dimensionless channel
length, L/a. Each plot contains lines corresponding to b/a = 0.1, – –,
b/a = 0.5, – –, and b/a = 0.9, . . .. These data are from the straight
channel model.

locity profile is expected to be parabolic (as in Poiseuille
flow) away from the bead. If the only contribution to Fx
were the viscous losses due to Poiseuille flow in the region
away from the bead, one would expect Fx → 0 as L/a →
0 (note 1 ≤ L/a ≤ 30 in Figure 4). However, this is not
the case, indicating the flow field near the bead contributes
significantly to Fx .

A simplistic approach of considering an applied load to
the pump was to impose a pressure drop, �p, across the
ends of the channel, with the assumptions that one-way
micro-valves could be used to connect the pump to an ex-
ternal circuit and that a constant �p will provide some
insights into the behavior of the pump under those condi-
tions. The flow details of such micro-valves are neglected,
and it is noted that members of our group have previously
constructed such valves (Hasselbrink et al., 2002; Kirby
et al., 2002). The mechanical efficiency of the pump, η,
is defined as the power delivered to the fluid (Q∗�p∗)
divided by the power input to the pump (F∗

x U ). The effi-
ciency, η, is dimensionless, and non-dimensionalizing the
remaining terms, results in

η = Q�p/Fx (17)
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Fig. 5. Force, Fx , – –, and flow rate, Q, – –, vs. imposed loading, �p for (a) b/a = 0.1, (b) b/a = 0.5, and (c) b/a = 0.9. Efficiency, η, vs. �p, for (d)
b/a = 0.1, (e) b/a = 0.5, and (f) b/a = 0.9. These data are from the straight channel model with L/a = 20. �p represents the load applied to the pump.

Figure 5 contains plots of Fx and Q vs. �p for (a) b/a
= 0.1, (b) b/a = 0.5 and (c) b/a = 0.9, as well as plots
of efficiency, η, vs. �p for (d) b/a = 0.1, (e) b/a = 0.5
and (f) b/a = 0.9. In these plots, L/a= 20. The pump effi-
ciency is higher for the larger value of b/a. This is partly
because the when b/a is large there is less leakage of fluid
around the bead, and, consequently, a higher �p can be
supported before Q becomes negative. For each value of
b/a, η has a local maximum, corresponding to an optimal
�p at which the pump is most efficient. For this model,
which neglects the effects of valves, η can exceed 80%

(Figure 5) and depends on the bead size and �p. Theo-
retical predictions of mechanical efficiencies for flagellar
propulsion yield ηmax ≈ 3% (Childress 1981), indicating
the model pump could potentially be very efficient for this
size scale. Smaller beads result in lower efficiencies, be-
cause the bead motion does not induce much flow, but the
bead still must overcome the viscous resistance opposing
its motion.

The fluid pressure, p, at the centerline of the channel
vs. position, x ; the x component of wall stress, fx , vs. x ;
and the y-component of wall stress, fy , vs. x are plotted in
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Fig. 6. (a) Channel centerline pressure, p (y = 0), vs. longitudinal
position, x, (b) x-component of wall stress, fx (y = 1), vs. x, and (c)
y-component of wall stress, fy (y = 1), vs. x. Each plot contains lines
corresponding to b/a = 0.1, – –, b/a = 0.5, – –, and b/a = 0.9, . . ..
These data are from the straight channel model. Note that in (a) there is
a jump in the pressure curves at the bead because the centerline
pressure within the bead is undefined.

Figure 6(a)–(c), respectively, for b/a = 0.1, 0.5, and 0.9.
Stresses and pressure increase as the bead radius increases.
At locations away from the bead (x not near 10), the lon-
gitudinal pressure gradient, ∂p/∂x , is nearly constant, fy

is linear in x , and fx is constant, as would be expected in
Poiseuille flow. Note that Poiseuille flow has a parabolic
velocity profile and is the typical fully-developed lami-
nar flow in two-dimensional channels or cylindrical tubes

(Sutera and Skalak 1993; Pozrikidis, 1997a). For a two-
dimensional channel of half-width a, the relationship be-
tween the flow rate (per unit depth) and the constant pres-
sure gradient, in dimensional terms is

Q∗ = −2a3

3µ

∂p∗

∂x∗ (18)

Non-dimensionlizing equation (18) by the previously
described characteristic scales and rearranging yields

∂p

∂x
= −3

2
Q (19)

The slopes of the lines in Figure 6(a) are well approx-
imated by equation (19) away from the bead (x = 10).
However, near the bead, there are sudden changes in p,
fx , and fy , indicating the flow in the vicinity of the bead is
not Poiseuille flow. There is a jump in pressure across the
bead, with high pressure ahead of the bead and low pres-
sure behind the bead to induce motion of the fluid. The
value of fx along the wall is negative near the bead center
(x = 10) suggesting recirculation between the wall and
bead (as demonstrated in Figure 7). For b/a = 0.9, fx in-
creases near the front and rear of the bead (x = 10 ± b/a),
and becomes negative near x = 10, due to the very thin
gap between the wall and bead that any fluid not swept
along by the bead must squeeze through.

Figure 7 shows the streamlines in the region 0 ≤ y ≤ 1
when b/ax = 0.95, L/a = 20. Away from the bead, the
streamlines are parallel to the channel walls, and the veloc-
ity field has a parabolic shape corresponding to Poiseuille
flow. Near the bead, the flow is not uni-directional and
the bead affects the velocity field. A small recirculation
region develops between the bead and the channel wall,
as shown in Figure 7. For larger beads, the force required
to move the bead is not simply a result of Poiseuille flow,
but is significantly influenced by the flow near the bead,
as indicated by the large pressure gradients near the bead.
The close spacing of the pressure contours near x=10 in
Figure 7(c) corresponds to a higher pressure gradient than
in (a) and (b).

3.2. Curved channel
Figure 8 shows (a) dimensionless force, Fx , and (b) di-
mensionless flow rate, Q, vs. dimensionless bead radius,
b/a, for Ro/a = 3 and Ro/a = 10. These two values of Ro/a
were selected to allow investigation of channel curvature
effects. Both sizes could be used for the pump, as well as
less curved channels. As in the straight channel geometry
(Figure 3), increasing b/a increases both Fx and Q, and
Q approaches Qmax = 2 as b/a approaches 1. At a given
value of b/a, Ro/a = 10 results in a higher Fx and lower
values of Q for 0 < b/a < 0.95 compared to Ro/a = 3,
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Fig. 7. Streamlines and pressure contours for the straight channel
with L/a = 20 and �p = 0, for (a) b/a = 0.1, – –, (b)b/a = 0.5, – –,
and (c) b/a = 0.9, . . . . The flow is unidirectional far away from the
bead, but recirculation occurs near the bead. The pressure is higher in
front of the bead than behind. The resulting pressure gradient increases
as bead radius is increased, as indicated by the closer spacing of the
pressure contours. Note that the pressure contours are constructed in
the same manner for each frame, with the range p = ±50 divided into
15 increments. Fewer pressure contours correspond to a smaller
variation in pressure.

as would be expected due to the longer channel length at
higher Ro/a = 10.

Figure 9 shows (a) dimensionless force, Fx , vs. dimen-
sionless outer channel radius, Ro/a, and (b) dimensionless
flow rate, Q, vs. dimensionless outer channel radius, Ro/a

Fig. 8. (a) Dimensionless force, Fx , and (b) dimensionless flow rate,
Q, vs. dimensionless bead radius, r , in the circular channel with Ro/a
= 3, – –, and (b) Ro/a = 10, – –.

for b/a = 0.1, 0.5, and 0.9. As in the straight channel case
(Figure 4), the curves are nearly linear for large Ro/a and
large bead radii, but not for small Ro/a and small bead
radii, suggesting an interplay between flow near the bead
and flow away from the bead in determining the force re-
quired to move the bead and the resulting flow rate. This is
also indicated by the variation in channel centerline pres-
sure and the wall stresses with radial position, θ . Since
circumferential length is given by θ · r and r = Ri /a + 1 is
the centerline radius, θ in the circular channel geometry is
analogous to x in the straight channel geometry. Channel
centerline pressure, p (r = Ri /a + 1), vs. angular posi-
tion, θ , for (a) Ro/a = 3 and (b) Ro/a = 10, is shown in
Figure 10. Each plot contains lines corresponding to b/a
= 0.1, 0.5, and 0.9. In these plots, the center of the bead is
located at θ = π/2 ≈ 1.57. Near the bead, p is not linear
in θ , but away from the bead it is.

Figure 11 shows (a) normal wall stress, fn , vs. θ and (b)
tangential wall stress, fτ , vs. θ for Ro/a = 3; and (c) nor-
mal wall stress vs. θ and (d) tangential wall stress vs. θ for
Ro/a = 10. Each plot contains lines for the stresses on the
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Fig. 9. (a) Dimensionless force, Fx , vs. dimensionless outer channel
radius, Ro/a, and (b) dimensionless flow rate, Q, vs. dimensionless
outer channel radius, Ro/a. Each plot contains lines corresponding to
b/a = 0.1, – –, b/a = 0.5, – –, and b/a = 0.9, . . . . These data are from
the circular channel model.

outer and inner channel walls for b/a = 0.1, 0.5, and 0.9.
Away from the bead, the stresses vary linearly with θ , but
near the bead, there are significant variations. The stresses
are higher for higher b/a. For each value of b/a the normal
stress is higher on the outer wall than on the inner wall
when Ro/a = 3. For Ro/a = 3 and b/a = 0.9, there is an in-
crease (decrease) in the fτ on the outer (inner) wall near the
front and back of the bead, and a decrease (increase) in fτ
near the center of the bead. This indicates the importance
of the leakage of fluid around the bead and the correspond-
ing stress field on the required force that must be gener-
ated by the kinesin and the resulting flow generated by the
pumping mechanism. Note that the different curvature of
the inner and outer walls, along with spatial variations in
the velocity field, results in different stresses on the inner
and outer walls. Similar behavior is noted for Ro/a = 10,
except in that case, the differences between stresses on the
inner and outer walls are reduced, as the channel curvature
is much smaller. Additionally, Ro/a = 10 leads to higher

Fig. 10. Channel centerline pressure, p(r = Ri /a + 1), vs. angular
position, θ , for (a) Ro/a = 3 and (b) Ro/a = 10. Each plot contains
lines corresponding to b/a = 0.1, – –, b/a = 0.5, – –, and b/a = 0.9,
· · ·. These data are from the circular channel model. Note there is a
jump in pressure at the bead because centerline pressure is undefined
in the bead.

pressure gradients and higher normal stresses than does
Ro/a = 3.

The effects of bead rotation on the force required to
move the bead, Fx , were considered for the case of the
curved channel. Figure 12 shows Fx vs. the angular rota-
tion speed of the bead, ω, for a range of bead sizes. Figure
12(a) corresponds to highly curved channel, with Ro/a =
3, and Figure 12(b) corresponds to a less curved channel,
with Ro/a = 10. The effects are more pronounced in the
higher curvature case, Figure 12(a), but are also notice-
able in the less curved channel. Clockwise rotation of the
bead reduces the forces required to move the bead. In this
motion, the bead appears to roll along the inner wall of the
channel. For small beads, the rotation has little effect, but
for larger values of b/a the effect is significant (∼200%
change in Fx ). The effects of this rotation on flow rate are
small (< 2%) at each value of b/a, and thus Q vs. ω plots
are not shown. To understand the mechanisms by which
bead rotation effects Fx , streamlines and pressure fields
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Fig. 11. (a) Normal wall stress vs. θ and (b) tangential wall stress vs. θ for Ro/a = 3. (c) Normal wall stress vs. θ and (d) tangential wall stress vs. θ

for Ro/a = 10. Each plot shows: outer wall stress b/a = 0.1 – –, inner wall stressb/a = 0.1, – –, outer wall stress b/a = 0.5 –· –, inner wall stress b/a
= 0.5 . . ., outer wall stress b/a = 0.9 – – – –, and inner wall stress b/a = 0.9 – ·· –.

Fig. 12. Bead force, Fx , vs. rotation frequency, ω, in the circular
channel for (a) Ro/a = 3 and (b) Ro/a = 10.

were plotted with and without bead rotation, for Ro/a = 3
and several values of b/a, as shown in Figure 13. Figure
13(a)–(c) correspond to b/a = 0.1, 0.5, and 0.9, respec-
tively, with ω = 0. Figure 13(d)–(f) correspond to b/a =
0.1, 0.5, and 0.9, respectively, for ω = 4. When the bead
does not rotate about its center, regions of recirculation
regions form between the bead and the channel walls, as
shown in Figure 13(a)–(c). For larger beads, clockwise ro-
tation eliminates the recirculation region between the bead
and the channel walls (Figure 13(e) and (f)). Instead, there
is some flow in the direction of the bead motion between
the bead and the outer wall (at Ro/a) and opposite flow be-
tween the bead and the inner wall (at Ri /a). For b/a = 0.1,
the recirculation region remains with bead rotation. For
all three bead radii, the clockwise bead rotation reduces
the size of the high pressure region in front of the bead
(Figure 13), and, therefore, reduces the net force required
to move the bead, as indicated in Figure 12.

Plots of dimensionless force, Fx , and dimensionless
flow rate, Q, vs. dimensionless bead shift, Y /a, are shown
in Figure 14 for b/a = 0.5, and Ro/a = 3 and 10. Q is
lower for Ro/a = 10 than for Ro/a = 3 because the viscous
losses are higher due to the longer channel. Likewise, the
Fx is higher for Ro/a = 10, except when the bead is po-
sitioned very close to the channel wall. Shifting the bead
slightly from the centerline of the channel towards the
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Fig. 13. Streamlines and pressure contours for the circular channel with ω = 0 when (a) b/a = 0.1, (b) b/a = 0.5, (c) b/a = 0.9, and ω = 4 when (c)
b/a = 0.1, (d) b/a = 0.5, (e) b/a = 0.9. The streamlines indicate recirculation near the bead, and flow parallel to the channel walls away from the
bead. Note that the contour levels for the pressure field range from −10 to 10 (dimensionlessp) and there are 15 levels in each plot. The highest
pressures occur in front of the bead and the lowest behind the bead.
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Fig. 14. Dimensionless force, Fx , and dimensionless flow rate, Q, vs.
dimensionless bead shift, Y /a, in the circular channel with b/a = 0.5,
and Ro/a = 3 and 10.

inner wall results in a decrease in Fx and an increase in Q.
The pressure and velocity fields are not symmetric about
the channel centerline, as shown in Figure 13(b), because
of channel curvature. Shifting the bead slightly inward re-
duces the effect of the outer wall, which results in higher
pressures near the outer wall in the vicinity of the bead.
Given the high accuracy with which proteins can be pat-
terned (Hoff et al., 2004), this shifting of the bead slightly
inward is potentially an achievable design modification.

3.3. Limitations
This model is an idealization of the flow induced by
kinesin-powered micro-bead motion, and there are a num-
ber of simplifications and limitations. The model is two-
dimensional, and ignores details of the top and bottom
walls of the channel. Although two-dimensional models
have been successful in capturing the behavior of corre-
sponding three-dimensional situations (Pozrikidis, 1997b;
Gaver and Kute, 1998), the model here may underestimate
viscosity effects due to the neglect of the top and bottom
walls of the channel. Additionally, we have not modeled
the connection of this device to an external circuit, which
likely increases the losses in the system. Therefore the
efficiencies and flow rates predicted by this model are
likely higher than would be expected in the actual sit-
uation. Nevertheless, this model provides an indication
that this micropump design is feasible and provides guid-
ance for its optimization. Efficient and adaptable mod-
els such as this one will be a powerful tool in designing
biomolecular-motor-powered-microfluidics devices. Fu-
ture work should include valves and external connections,
should account for the effects of load on the kinesin speed,
and should consider transport of ATP to fuel the kinesin.
Further investigation and refinement of the model will lead
to a better understanding of the transport phenomena in the
micropump, and subsequently an optimized micropump.

4. Conclusions

The theoretical study presented here demonstrates the
boundary element method is a powerful tool for the anal-
ysis and design of microfluidic devices. The model results
suggest that our novel microfluidics pump will be rela-
tively efficient and can drive a substantial external load
while delivering flows in the atto- to pico-l/s range. The
flows generated by the pump increase with bead radius.
The force required to move the bead also increases with
bead radius, but at a slower rate than the flow rate increases
until the bead nearly occludes the channel, indicating that
large beads are preferred from the stand point of generat-
ing maximum flows. The efficiency of the pump increases
with bead size and larger bead sizes are able to support
a higher imposed pressure. Bead rotation in the same di-
rection as bead translation in the circular channel model
reduces the force required to move the bead with mini-
mal effect on flow rate. Shifting the bead slightly inward
also reduces the force required to move the bead. This ini-
tial theoretical model suggests that this micropump design
may provide an efficient alternative to existing micropump
technologies, and provides a starting point for optimiza-
tion of the current pump design and investigation of more
complicated pump geometries.
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