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Abstract 

Electromagnetic scattering from a two-dimensional groove recessed 
in an arbitrarily thick conducting screen is studied. The groove may 
be empty or loaded with a lossy material which may or may not 
completely fill the cavity. For the partially loaded groove, the filling 
material is assumed electrically dense so that the standard impedance 
boundary condition is applicable at the top surface of the material. 
Employing a full-wave analysis, integral equations are derived for 
the tangential components of the electric field over the aperture. It 
is shown that  the equations are identical for both partially loaded 
and completely loaded (or empty) cases provided that  the aperture 
admittance of the groove is treated as the equivalent admittance of 
the internal medium looking into the aperture, thus simplifying the 
integral equations. 

When the groove is completely filled by a dense material, the 
formulation reduces to that corresponding to a direct application of 
the impedance boundary condition over the aperture. 

K e y  words :  Electromagnetic scattering and detection, full-wave 
analysis, impedance boundary condition, cracks and grooves. 
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Introduction 

The study of electromagnetic scattering from filled cavities re- 
cessed in ground planes is important in many engineering applica- 
tions because such cavities can be considered as approximate models 
for thin cracks in metal surfaces. At millimeter wave frequencies, 
electromagnetic scattering might be used in non-invasive detection 
and evaluation of gaps and cracks in structural systems for the pur- 
pose of failure prediction. Also, in radar signature analysis of various 
man-made structures, diffraction from cracks and joint openings can 
become a dominant mechanism in the bistatic scattering behavior of 
a target. Therefore, it is important to examine the effect of different 
geometries and material inserts on the scattering behavior of grooves. 

When the operating wavelength, Ao and the aperture width of the 
groove, w are such that the groove is electrically narrow (w << Ao)~ 
certain approximate solutions have been proposed. These include the 
transmission line model [1], the narrow resistive strip model based on 
Babinet's principle [2], and the closed from low-frequency solution [3]. 
In the latter, analytical expressions were derived for the equivalent 
magnetic current distribution and over the aperture of the narrow 
groove based on a quasi-static analysis of the exact integral equations. 

In the millimeter wave region, however, the above narrow-width 
approximations are no longer valid and a more accurate solution is 
required. In this paper, an exact full-wave formulation is developed 
for the rectangular groove problem based on the Generalized Net- 
work Theory and the equivalence principle [4]. This theory has been 
applied to a number of related aperture and slot problems in the 
past [5, 6]. In particular, we will extend the work of Auckland and 
Harrington who applied this theory to treat the TE transmission 
through a slit in a thick conducting screen. Employing the equiv- 
alence principle, the external fields are expressed in terms of the 
scattering integral while the fields internal to the ca~vity are given in 
terms of appropriate waveguide modes. An integral equation i~ then 
formed by enforcing continuity of tangential fields across the interface 
and is solved numerically via the method of moments. The problem 
will be formulated for general termination condit ions as well as both 
principle polarizations. 

When the groove is fully loaded by a lossy material, the analy- 
sis may be simplified by employing the impedance boundary condi- 
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tion [7] and simulating the groove as an impedance insert. The type 
and complexity of the boundary condition used depend on the ma- 
terial composition. For high contrast material fillings, the standard 
impedance boundary condition (SIBC) yields good results [8] while 
higher order (generalized) boundary conditions (GIBC) may be more 
desirable for simulating material fillings of lower contrast [9]. 

The above studies treated the fully loaded cavities. For partially 
loaded grooves, on the other hand, the SIBC is still applicable at 
the top surface of the filling material provided the material can be 
assumed electrically dense. The range of validity for such an as- 
sumption will be discussed later. This renders a groove model with 
an imperfect termination and it is shown that the integral equations 
in this case are identical to those obtained for the completely loaded 
(or empty) case with an appropriate modification of the groove's 
aperture admittance. 

Full-Wave Formulation 

Consider the infinitely long groove of width 2w, and depth d illu- 
minated by the plane wave 

Hi( or E i) = ze jk~176162176162176 (1) 

for I-I- (or E-) polarization, where ko = 2~r/Ao is the free space wave 
number and r is the angle of incidence (Figure 1). The groove is 

Y 

_ . . . . _ . . . . : : . . . . . : . . : . . . . . . . , . . . . . . , . .  , . . . . . . ]  

2w 
hripedance Sheet 

Vf 

X 

Figure 1: Geometry of a filled rectangular groove terminated by 
an impedance sheet. 
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assumed to be filled with a lossy material of relative permittivity eb, 
and permeability #b, with an index of refraction Af~ = e x / ~  and 
terminated by an opaque sheet satisfying the impedance boundary 
condition 

H -  ( ~ . H )  ~ = vsYbE x ~ , y = - d  (2) 

where vf is the normalized admittance at the groove's floor, Yb is the 
intrinsic impedance of the material filling the groove, and (E, H) are 
the fields at the top surface of the sheet. As will be shown later, this 
model can be used to simulate grooves partially loaded with electri- 
cally dense material. To formulate the scattered field by the groove, 
the Generalized Network Theory [4] is employed. Accordingly, the 
aperture is closed by a perfect conductor and the equivalent magnetic 
current 

M = E x ~ = E x g  , y = 0  (3) 

is introduced over the aperture (equivalence principle, Figure 2). 
Here, E is the total electric field in the aperture of the groove. The 
scattered fields outside the cavity are those radiated by the equivalent 
magnetic current and consistent with the continuity of the tangential 
electric field across the aperture the field inside the cavity is that 
radiated by 

M ' = E - x ~ ' = - E - x f i = - E  + X ~ = - M  (4) 

where E + denote the total electric fields just above and below the 
aperture. To find the equivalent magnetic current we must also en- 
force the continuity of the tangential magnetic field across the aper- 
ture. We thus have 

x [ H a ( M ) + H  i~] = ~ x H b ( M  ') , y = 0  (5) 

where H i~ is the total field in the external region with the aperture 
closed, H ~ represents the external scattered field, and H b is the total 
field in the interior region. 

To construct an integral equation in M, I-I ~ and H b must be ex- 
pressed in terms of the Green's function corresponding to each region. 
The tangential component of the external scattered field (attributed 
to M) can be expressed as 
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Figure 2: Application of the equivalence principle to the groove 
problem. 
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f Ha(r)  : - j koYo  M ( z ' ) .  F(z; zP)dx ~ (6) 
W 

where Yo is the intrinsic admit tance of the free space and F is the 
half space dyadic Green's function 

1 [ 1 02 .~^ ~] 
r ' (z ;x  p) : ~-~ (1 + ~o-~x2)xx + 2 H!2)(koIx - x']) (7) 

The internal fields (those at t r ibuted to M')  can be written in 
terms of the TMz and TEz waveguide modes as 

E b = E T M  ._[._ E TF, 

H b = H T M  j -  H T E  

= --jkbZb(~2~ TM) -- V • (z~'9 TE) (8) 

: V • ( ~ M )  _ . i k b ~ b ( ~ E )  (9) 

where kb = .hfbko is the wave number inside the cavity and Zb = 
1/Yb is the intrinsic impedance of the filling material. The functions 
~TM and 9TE are the wave potentials both satisfying the scalar wave 
equation 

~-~-{x2 + ~--~y2 + k~ t I ' = 0  (10) 

subject to the boundary conditions 

E~ = Ez = 0 , z = :t:w (11) 

on the cavity side walls, and 

M' = E • ~' , y = 0 (12) 

over the aperture. In addition, the potentials must  satisfy the impedance 
boundary condition (2) on the floor and in scalar form 

H z =  v]YbE~ , y = - d  (13) 

H~ = - v ] Y b E z  , y = - d  (14) 

Below, we consider the two principal polarizations separately. 
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H-polarization 
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For H-polarization (the TEz case) we have 

~'2 = H~ '~ + H?" = 2~ j~o~c~ (15) 

which is the geometrical optics field with the aperture closed. The 
tangential  component  of the external scattered field is given by 

H ; ( M z )  - koYo f ~  Mz( z , )g j2 ) ( ko i x  _ x,Ddz,  (16) 
2 w 

while the internal fields are given by (8) and (9) and in this case we 
have 

(17) 

H b = n T E  = - - j k b Y b ( ~  TE) (18) 

In order to find useful expressions for E b and H b, we need to solve 
for the wave potential  lkl~ TE. To this end, ~TE can be expressed as an 
infinite sum of orthogonal modes 

o o  

q2 TE = ~ Apr (19) 
p=0 

where Ch are the waveguide modes all satisfying the wave equation 
(10) and Ap are coefficients to be found. Substi tut ing for ~TE in (17), 
and using (11) and (13), the boundary conditions to be imposed are 

a h ~ r  0 , x = + w  (20) 

-~-0r h =  j k ~ ] r  h , y = - d  (21) 
ay p 

where ~/f = 1/v]  is the normalized impedance of the floor. A set of 
eigenfunctions satisfying the first condition and the wave equation is 

r = [~J~,(~+~) + R~-J~,(~+~)] cos Y ( ~ -  w)] (22) 
L2W ", 
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where Rh is the reflection coefficient of the floor and kp satisfies the 
separation parameter equation 

~ = k~ - ( P ~  (23) "2wJ 

Enforcing the second condition (21) and solving for Rh gives 

kb 
v] -- -~p 

R~ - - -  (24) kb 
vt  + k~ 

We now seek to find the coefficients Ap by imposing the condition 
(12) on the aperture. Thus, we have 

F~jk~A,(~J~p ~ - R ~ - J ~ p ~ ) c o s [ ~ ( ~  - ~)] = - M "  = M~ (25) 
L W  

P 

Multiplying both sides by cos [9~,,(x- w)] and integrating over the 

aperture yields 

P 

f q~r 
]_, M z ( x ) c o s [ ~ ( x  - w)]d~ 

and by invoking the orthogonality relation 

cos [ ~ ( x  - w)] cos [ ~ ( x  - w)]dx 

we find 

Ap J 

w[l+Spo] , p =  q 

/ 0 , p ~ q  

[1 + 6po]Wkp(e~p d - R~e-Jkpd) 

(26) 

(27) 

(28) 

where ~pq iS the Kronecker delta 
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1 , p = q  
5,q = 0 , p # q 

The function kll TE in (19) is thus completely defined and the tan- 
gential magnetic field just below the aperture may be expressed as 

H ~ ( - M . )  = --jkbYb /_~ M~(x')Gh(x;x')dx ' (29) 

where the Green's function is given by 

(30) 

and 

1 
eP - 1 + 6po (31) 

Substituting (15), (16), and (29) into (5) we obtain 

ZoeJko~:Cosr ~ = __k~ M.(x,)H?)(kolx _ x,t)dx 
4 

p~r f '~  Mz( x ') pTr , + ~_,%vhpeos[-~w(X--W)] J-~. coS[~w(X - w ) l d x '  (32) 
p=0 

where Vhv are the normalized H-mode admittances of the cavity given 
by 

v] + j ~-~p tan kpd 

Uhp = Yb'jvy~[k tan kpd + 1 
b 

(33) 

and 

1 (Yb/Yo) (34) 
Yb = ~ w  
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is the normalized characteristic admittance of the material in the 
groove. Equation (32) is an exact integral equation to be solved for 
Mz(~). 

E-polarization 

For E-polarization (the TMz case), we have 

H~ ~ = -21/o sin r jk~162176162176 (35) 

and the corresponding tangential scattered fields are given by 

H ~ ( M , )  = koYo 1 + M. (x ' )H?) (ko Ix  - x'J)dx' (36) 
2 k2o Ox~] ., 

and 

/_~ M~(x')a~(x;x')~x ' (37) H2(-M~)  = - ~  _ 

To find the Green's function G ~ we note that  

E b = E TM -= --jkbZb(•ffJ TM) (38) 

H b H TM V x ( ~ T M )  ~_~yI~TM ^ O TM . . . .  ~ (39) 

Following steps similar to those taken for the H-polarization case, the 
wave potential kI/TM i8 expressed as 

OO 

~TM : ~ B~r (40) 
p=0 

and the boundary conditions to be satisfied are 

r  = 0 , x = :kw (41) 

0 
r = jkbrl]-~yCV , y = - d  (42) 

suggesting the following form for the eigenfunctions ~b~ 

~; = [~,(~§ Ro~-,~( ~+~)] sin E ~ ( x -  ~)t (43) 
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where R~ is the reflection coefficient of the floor given by 

kp 
v] - -~b 

Re -- - -  (44) 
vf + k_..~p 

k6 

and kp is defined in (23). Enforcing now the boundary condition (12) 
on the aperture, we have 

E kpBp (e jk'd- R~e -jkpd) sin [~u~j(x - w)] = M~ (45) 
P 

To find Bp, we multiply both sides by sin [9~,,(x - w)] and integrate 

over the extent of the aperture. As before, by employing the orthog- 
onality relation 

/ w[1-Svo ] , p = q  
f- sin[-~w(X-W)]sin[~w(X-w)]dx = / (46) 

0 , p # q  

we find 

Yb f "  M~(x)sin[~w(X-w)ldx (47) Bp = jkbw(eJkj~ R~e_Jkpd ) 
The tangential magnetic field in the internal region may now be 

expressed explicitly as 

H~(x,O) = j ~ I G - [ e j k ,  a_Rce_jk, dj sin [~-~w (x -- w)] 

�9 j_~M.(x')sin[~ww(X'-w)]dx' (48) 

and comparing this with (37) we deduce that 

G ~  = - 

pro  . p~r  
�9 sin [ G ( ~ - -  w)] s l n [ G ( x  -- w)] 

(49) 

Substituting (35)-(37) and (49) into (5) yields the integral equa- 
tion 
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sin o J xc~176 ko ( LO 2 ) , , ,  = T 1 + k2 ~ Ox2]/_~oMx(x')I-I(o2)(kolx - ~"t)dx' 

where 

F + ~ vep sin [~w(X - w)] ~, M~(x') sin L[P~r(2w x '  - w)]dx' (50) 
p=l  

�9 k v  
~I + ~ tan 4d 

(51) Vep ~ Yb t., 

j v ] ~  tan kpd + 1 

are the normalized E-mode admittances of the cavity and Yb is given 
by (34). Equation (50) is an exact integral equation to be solved for 
M:~(x). 

Clearly, (32) and (50) are both invalid when 

tan(kpd) = 0 (52) 

and this occurs only when the material filling the groove is lossless. 
To be specific, the modal solutions fail if there exist integers p and q 
such that 1 

( P ) 2  (q)2=(2Hb)2 +'d -~o p, q e z  (53) 
This difficulty in the evaluation of the internal Green's functions may 
be circumvented by assuming a small loss in the material or slightly 
disturbing the geometry of the cavity. We also note that for the 
proper behavior of the field in the internal region, we must have 

~e {kp} _> 0 , ~m {kv} _< 0 (54) 

when using (23). 
The integral equations (32) and (50) are solved numerically by the 

moment method. The discretization procedure and the expressions 
for the admittance matrix elements are given in the Appendix. Upon 
a solution of the integral equations, the scattered field in the half 
space z > 0 can be found from the scattering integral. In particular, 

1The formulation for the H-polarization case also fails if kp = 0 in addition to 
(52). This  is equivalent to p/q = 2w/d when p, q 6 2:. 
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the radar scattering echo width of the groove is defined as 

and therefore 

and 

II-PI 2 (55) 

~r~ = ko sinr176162176 2 (57) 

for H- and E-polarizations, respectively�9 K-as is physically the case- 
the groove is long but finite in length, the physical optics approxima- 
tion may be used to relate the three-dimensional radar cross section 
to the echo width (55) calculated on the assumption of infinite length. 
Hence, for plane wave illumination normal to the z-axis, we have 

r = 2( o)2 r (58) 

where ~ denotes the actual length of the groove. 

Unifromly filled Grooves 

For a homogeneously filled or empty groove terminated by a per- 
fect conductor, we set ~/f = 0 and find 

�9 kb . k p  
yap = - 3 Y b ~  cot kpd v~p = - 3 Y 6 ~  cot kpd (59) 

Figure 3 shows a sample calculation of the backscattering echo width 
for a i0)% long empty groove based on the above formulation. The 
results are in good agreement with a corresponding finite element 
method (FEM) solution [11]. 

The echo width of a 1Ao wide groove filled with a nonmagnetic 
material of dielectric constant e~ = 4 at normal incidence is shown 
in Figure 4 as a function of its depth. The two curves correspond to 
two different values of the loss tangent r b. The apparent damping 
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Figure 3: Comparison of the backscattering patterns of a long 
two-dimensional groove obtained from a finite element solution 
(FEM) [11] and the method of moments (this study). The groove 
is assumed to be 10A long. (20 samples/ A with 60 waveguide 
modes). 
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EehowidLh of a Uniformly Filled Groove 
Normal Incidence, H-Pol. 
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Figure 4: H-polarization echo width of a uniformly filled 1Ao 
wide groove as function of depth at normal incidence. The filling 
material is nonmagnetic and have e/ = 4 - jO.1 (o o o) and 
~ / =  4 -  j l .0  ( e ,  ,). 

effect in the resonance pattern is due to the dielectric losses inside 
the cavity. 

Figure 5 shows the echo width of a 0.5Ao deep groove uniformly 
filled with a low-loss material (eb = 2.54 - j0.01) as a function of 
its width for both principal polarizations. Also shown are the low- 
frequency quasi-static solutions derived in [3]. It is observed that  the 
quasi-static solutions remain valid for up to about 2w =- 0.5~o and 
break down for wider apertures in which case the full-wave solution 
is required. 



186 Barkeshli 

20 

I0 

o 

-10 

-20 

(a) H-Pol 

t e full-wave _~ 
_q_u.asi-stotI_c I 

I ~ I l T 

0.0 0.5 1.0 1.5 2.0 
Width, 2W/Xo 

2.5 3.0 

t ~  

-o 

0 

2 0  

10 

0 

- 1 0  

- 2 0  

f.....@~ 
~ J  

Cb) E-Po~ 

t l e full-wove [ 
_quasl-statlc ] 

I t [ I I 

0.0 0.5 1.0 1.5 2.0 2.5 
Width. 2 w / k  ~ 

Figure 5: Echo width of a 0.5Ao deep groove uniformly filled 
with a nonmagnetic material (eb -~- 2.54 -- j0.01) as a function 
of width at normal incidence: comparison of the full-wave ( - - )  
and the quasi-static solution (- - -) [3] for (a) H-polarization and 
(b) E-polarization. 
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Partially Loaded Grooves 

The integral equations (32) and (50) may be implemented for 
computing the scattering by a partially loaded groove where the lower 
portion of the groove is filled with a dielectric material (Aff = ~ ) .  
In this case, the material fills the interior region z < - d ,  is of thick- 
ness t, and is composed of a high contrast material (Figure 6a). The 
top portion of the interior region - d  < z < 0 is empty and thus 
kb = ko. In employing the above formulation, the material was re- 
placed by an impedance sheet at z = - d  such that  (see eqn. (2)) 

vf  = - 3  cot(Affkot) (60) 

as shown in Figure 6b. This model remains valid if [7] 

IXll > 1 (61) 

and 

5f i t  << 1 (62) 

where 5 / i s  the skin depth of the material 

1 
5f = i.~m {Aff } I ko (63) 

The first condition ensures that  within the medium, the field behaves 
essentially as a plane wave propagating in the direction of the inward 
normal to the filling layer. The second condition, on the other hand, 
imposes the requirement that the inward traveling field suffers enough 
attenuation so that  no outward traveling waves exit at the interface 
due to reflection. 

The computed E- and H-polarization backscattering patterns are 
shown in Figure 7 for t = 0.3~o, d = 0.23%, and w = )~o with the 
lossy filling material having relative permittivity e I = 12.5 - j 2 . 5  
and permeability #y = 4.5 - j l . 2 .  Conditions (61)-(62) are satisfied 
in this case 

INsl = 7.7 5slt = 0.18 
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Loaded Grooves 189 

20 

10 

.<- 
~ o 
AZ 
J 

3 : - 1 0  o 
rO 

- 2 0  

- 5 0  

H-Pol Full-Wove �9 H-Pol FEM 
E_-_PoLFuII-W~v~ o E-Pol ~ u  

| �9 �9 . - ~  . " ~ ' ~  

r ~" - V 

d 
/ 

. , , , , , , , , [ , , , , , , , , , ] 1  

30 6O 

/ 

Angle of Incidence ~0" deg. 
90 

Figure 7: Scattering from the partially loaded groove shown 
in Figure 6 with t = 0.3Ao, d = 0.2Ao, and w = Ao. The filling 
material has e / =  12.5-j2.5,  #] = 4.5 - j l . 2  indicating a highly 
refractive medium (I.A/f I --. 7.7) with a relatively small skin depth 
( 6 l i t  = 0.18). 
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and as seen, the results are in good agreement with the corresponding 
data based on the finite element-boundary integral method [12, 13] 
used to simulate the original groove geometry without invoking the 
impedance boundary condition. 

Densely Packed Grooves 

When the groove is perfectly loaded with an electrically dense 
material, it may be efficiently modeled as an impedance insert in a 
ground plane [8, 9]. The integral equations (32) and (50) in this case 
reduce to those corresponding to a direct application of the standard 
impedance boundary condition (2) over the aperture. In particular, 
by letting d --~ 0 in Figure 6 corresponding to the completely filled 
groove, we have 

v] 
v~p = v~p --* 2w (64) 

and the second members of the integral equations (32) and (50) be- 
come 

v] Mz(x')  ~,cos[ (x -  w)] cos ,2~,~ 
2w 

2w M ~ ( x ' )  }--~sin[ ( x - w ) J s i n [  ( x ' - w ) ]  dx' (66) 
kp=l 

where ~w is the normalized characteristic admittance of the impedance 
insert and we have interchanged the order of summation and inte- 
gration. Identifying now, the bracketed summations as Dirac delta 
functions [14] 

o o  

~ ]  cos pTr 5-~...~ cos o~..~' = w6(~ - ~') (67) 
p=0 ~ u J  

o o  

E sin sin - (68) 
p=l 

we arrive at the well known integral equations based on the impedance 
boundary condition 
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Zoe 'k~176162176 = v M = ( x )  + M=(x')H!2)(kolx - x'i)dx' (69) 

for H-polarization and 

v.f 
sin r jk~162176162176 = ---~M=(x) 

W 

kl 

for E-polarization. 
The above integral equations have the advantage of avoiding the 

summations corresponding to the calculation of the cavity Green's 
functions, hence simplifying the computations significantly. They can 
be solved by a numerical procedure such as the moment method or the 
conjugate gradient FFT method. Figure 8 shows the amplitude and 
phase of the equivalent magnetic current density, as well as bistatic 
and backscattering echo widths for the groove considered in Figure 
7 completely filled with the same lossy material of high index of 
refraction. As expected, the agreement with the full-wave solution is 
very good. 

Finally, the bistatic echo widths of a 2Ao wide, 1Ao deep groove 
at r = 45 ~ are shown in Figure 9 as the groove is progressively filled 
with a lossy material. The total depth of the groove (d + t in Figure 
6) is kept constant. The layer thickness t, and relative skin depth 
5s/t are also listed in the figure for each case. 

Conclusions 

The problem of scattering from two-dimensional rectangular grooves 
was studied using a full-wave analysis. The analysis is applicable to 
grooves of arbitrary width and thickness with perfect or imperfect 
terminations. The effect of electrically dense loading was simulated 
using the standard impedance boundary condition. When the groove 
is completely filled by a high contrast material, its scattering be- 
havior can be represented by a direct application of the impedance 
boundary condition over the aperture. 
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Figure 8: Simulat ion of  a groove filled with  a high-contrast  mate-  
riaJ using the standard impedance  boundary condition; w = Ao, 
d = 0.5A; E~ = 1 2 . 5 -  j2 .5 ,  Pr = 4 . 5 -  d l .2 ,  and ~o = 30 ~ �9 
Comparison  of  the full-wave ( - - )  and SIBC (- - -) results.  
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20 

Bistatic Echowidth of a Partially Loaded Groove 

as a Function of Loading Layer Thickness, E-Pol. 
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Figure 9: Bistatic echo width of a 2Ao wide, IAo deep groove 
as it is progressively filled with a dense material (El = 12.5 -- 
j2.5,#/ = 4.5.--ji.2, IAf/l = 7.7). Incidence angle: r = 45 ~ 
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A p p e n d i x  

Numerical Discretization 

Considering the H-polarization case, the integral equation (32) 
may be discretized by expanding Mz(x)  as 

N-1 A 
M~(x) : E M z ( x n ) P ( z -  x~), x~ = n/~ + --  (71) 

n=0 2 

where P ( x )  denotes piecewise constant basis function. Substituting 
for the current expansion in (32) and applying point matching, a 
system of linear equations is obtained which can be solved easily by 
standard matrix methods. The elements of the admittance matrix 
are expressed as 

Ym= = Tm=+H~= (72) 

where Tmn and H,~ are elements attributed to the external and 
internal tangential fields, respectively. They are given by [3] 

ko , j2  [ _ , koA ,  
m r 7  ) + - 1 

Tm,, ~ (73) 

~ AH(2)(koixm - x,~l), n # m 

and 
OO 

IIm,~ A ~ 1 p~r p~r p~r A 
= ,=o ~p2~k, ,h ,  cos [ G ( x .  - ~)] cos [ G ( x n  - ~ ) ] s i n c ( G T )  

(74) 

in which 3' = 1.78108 is the Euler's constant. A similar discretization 
can be carried out for E-polarization. 
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