
International Journal of Parallel Programming, Vot. 19, No. 1, 1990

Cache Coherence Requirements
for Interprocess Rendezvous

Russell M. Clapp, 1 Trevor N. Mudge,
and Donald C. Winsor

Received May 1989; Revised July 1990

Multiprocessors in which a shared bus is used by the processors to com-
municate with common memory are an emerging class of machines where there
is a need to support parallel programming languages. A language construct that
is found in a number of parallel programming languages to support syn-
chronization and communication in the interprocess rendezvous. Shared-bus
multiprocessors require a protocol to keep the date in their caches coherent.
There are two major categories of these protocols: invalidation and write-broad-
cast. This paper examines the requirements for cache coherence protocols to
support efficient interprocessor rendezvous. The approach taken is to examine
the memory referencing patterns to the run-time data structures during rendez-
vous execution. The appropriate coherence protocol is shown to be a function
of the processor scheduling strategy used by the run-time system at synchroniza-
tion points during the rendezvous. When processes migrate freely as a result of
the scheduling strategy, invalidation protocols are found to he more eff•
When migration is restricted by the scheduler, write-broadcast protocols are
more efficient.

KEY WORDS: Cache coherence; rendezvous; run-time systems; process
migration; concurrent programming languages.

1. INTRODUCTION

In the past few years a wide variety of commercial multiprocessors have
emerged. The most successful by far have been the shared-memory style
architectures that connect no more than a few dozen processors and their

1 Advanced Computer Architecture Laboratory, Department of Electrical Engineering and
Computer Science, The University of Michigan, Ann Arbor, Michigan 48109-2122.

31

0885-7458/90/0200-0031506.00/0 �9 1990 Plenum Publishing Corporation

32 Clapp, Mudge, and Winsor

Bus

Fig. 1. Cached shared-memory multiprocessor.

caches to a common memory using a shared bus. (1'2) Figure 1 illustrates
this shared-bus architecture. Examples of such systems are the Sequent and
Encore series of computers. (3'4) In these architectures copies of the data can
be present in several caches. Therefore, a mechnism is present to keep the
data consistent or, as usually referred to, coherent. The most common
approaches to maintaining coherence rely on a bus watching mechanism in
each cache that monitors bus activity to keep its data consistent. These bus
watching mechanisms are frequently referred to as snooping cache
protocols. (5.6)

The commercial success of the shared-bus multiprocessors is due, in
large part, to the fact that they provide a direct and cost-effective replace-
ment for supermini class systems. In this role, they usually provide a
timeshared computing facility that serves a job stream of logically inde-
pendent heavyweight processes, typically separate user programs. These
processes are assembled into a single job queue and distributed among the
available processors. This application of shared-bus multiprocessors has
been referred to as multistream operation. (7~ More recently, shared-bus
multiprocessor architectures are also being used to speedup the execution
of single programs through parallel processing. (8 13) The advent of single
user parallel computers such as multiprocessor workstations and graphics
supercomputers, including Digital's experimental Firefly, (14) Silicon
Graphics' IRIS4D series, (15) Apollo's DN10000, O6) and Ardent's Titan
(now the Stardent 3000), ~17) are furthering this trend.

To take advantage of the shared-bus multiprocessor's potential for
parallel processing requires programming languages that support
parallelism. By incorporating the parallelism into the language, the run-
time support can be made more efficient by taking advantage of lightweight
processes that share address space and permit fast context switching
between program tasks without operating system intervention. Key
components in any parallel procedural language are mechanisms for
synchronization and communication. The interprocess rendezvous is a
language construct that supports both of these mechanisms. This paper
examines the efficient implementation of interprocess rendezvous on

Cache Coherence Requirements for Interprocess Rendezvous 33

shared-bus multiprocessors, focusing on the cache coherence requirements.
An efficient implementation of the rendezvous is of general interest because,
in various forms, it is the basic synchronous communication primitive for
several concurrent languages, including Ada, C1~ Concurrent C, (~9) and
Occam. (2~ The rendezvous is also one of several forms of communication
in the distributed programming languages Synchronizing Resources, (21)
LYNX, (22) and NIL. (23) Each of these language has its own particular
variations of the rendezvous.

There have been several pioneering studies of the impact of cache
coherence on parallel programs. (6'24 26) In these studies, multiprocessor
traces were used as input to a simulator. These traces came from synthetic
multiprogramming workloads and parallel applications. The applications
used were written in sequential languages, and parallelized at the language
level using adhoc system dependent library routines and Single Program
Multiple Data ~ (SPMD) techniques similar to those described in Refs. 9,
27-29. SPMD parallel programs consist of one sequential program that is
replicated on several processors, each operating on its own set of data. The
resulting traces are not representative of the behavior of parallel language
programs that communicate primarily by rendezvous. Multiprogramming
traces do not exhibit any application level sharing, and SPMD style
programs are normally found on multicomputer systems such as hyper-
cubes. Because SPMD style programs are more suited to machines that do
not share memory, this style of programming is dramatically different from
what one would expect in the tightly coupled shared-memory class of
machines considered in this discussion. In contrast, when parallel algo-
rithms are coded in a concurrent language using processes and rendezvous,
the parallel programs are more tightly coupled and data sharing between
processes is more common. It is this latter style of parallel programming
that leads to higher levels of data sharing than that currently observed in
the aforementioned parallel traces.

An alternative approach to coherence protocol evaluation would
simulate performance based on memory reference patterns that are derived
from statement frequency statistics gathered from a large base of parallel
programs. While this approach was used to construct a representative mix
of statements for the Dhrystone benchmark program,(3~ this gathering of
statistics has not been done for programs written in concurrent languages.
Furthermore, any such study would be highly dependent on the applica-
tions chosen, since the state of parallel programming in such languages is
still immature, and there are too few large programs to use as a basis. With
this immaturity has also come some controversy and confusion over "good
programming practice" for concurrent languages. In the case of Ada, the
Language Reference Manual (LRM) ~s) states explicitly that rendezvous

828/19/1-3

34 Clapp, Mudge, and Winsor

are the preferred mechanism for sharing data between program tasks. In
fact, if variables are shared in Ada without using rendezvous to at least
provide synchronization, the value of the variables is not guaranteed to be
consistent, and the program is said to be erroneous. Clearly, the rendezvous
construct has been included in many concurrent languages as the primary
means of data sharing between threads of execution. And finally, even
though it is unclear as to the percentage of memory references that are due
to rendezvous activity, it is becoming apparent that even infrequent
synchronization activity and references to shared data can dominate a
program's running time if they are not implemented efficiently. (31)

Our approach to establishing the cache coherence requirements for
interprocess rendezvous is quite different from previous approaches. We
examine what happens to the run-time support data structures during
interprocess rendezvous and, in particular, how cache coherence protocols
affect them. The approach is based on our experience in designing run-time
support mechanisms for interprocess rendezvous. (32-35) We propose a
typical implementation and then examine the reference patterns that occur
to the run-time system data structures during rendezvous execution. From
this referencing behavior the effect of different cache coherence protocols
is assessed. The advantage of this approach is that it overcomes the
current lack of a large base of parallel programs with which to perform
experiments, particularly ones coded using one of the several concurrent
languages listed earlier. On the other hand, the results of our approach of
examining data structure reference patterns are subject to the implementa-
tion choices for the run-time system. While we describe the variations in
rendezvous semantics for several languages, the following sections will
primarily concentrate on the rendezvous semantics for Ada.

The remainder of this paper is organized as follows. The next section
provides background on the rendezvous construct and describes a typical
implementation of its run-time support. In Section 3, a brief overview of
cache coherence protocols is given. In Section 4, we examine the interaction
of the rendezvous run-time support with processor scheduling strategies
and assess the impact on cache coherence requirements. Finally, some
including remarks are made.

2. I N T E R P R O C E S S R E N D E Z V O U S

2.1. Background

The term rendezvous was first used by the designers of Ada (xS) to
describe the construct for communication between processes, which are

Cache Coherence Requirements for Interprocess Rendezvous 35

referred to as tasks in Ada (process and task will be used interchangeably).
This high-level primitive can be used to send a signal, lock a shared
variable, or send a message, while avoiding the problems associated with
low-level primitives such as semaphores. (36/

The rendezvous construct can be traced to the process communication
primitives described in Hoare's Communicating Sequential Processes
(CSP) and Brinch-Hansen's Distributed Processes (DP). (36) The two
processes involved in a rendezvous communicate through a procedure call
style interface and suspend execution while data is transferred. If one pro-
cess requests a rendezvous while the other is busy, the requester will block
and wait for the other process to become available. In some versions it is
possible to withdraw requests for rendezvous or suspend while requesting
one of several possible rendezvous. The extended rendezvous allows com-
putation (a critical section) in one process and bidirectional data flow. The
main difference between the rendezvous and a procedure call is that the
called process in a rendezvous is an active object that may be capable of
handling several different call interfaces, while the procedure is a passive
object with a single interface that is only activated when called. Moreover,
procedures are normally reentrant and multiple calls may execute in
parallel.

2.2. RENDEZVOUS SEMANTICS

Basic Model . The basic rendezvous is summarized in Figs. 2 and 3.
Both figures show execution time with solid lines and blocked time with
dashed lines. The ovals show points where the run-time system is invoked,

Time

Execution

@

Blocked

C
Resume Execution

Calling Process Accepting Process

Execution [
Call Queue

S~I Critical Sec t io~

Resume Exoeution ~l F

Fig. 2. Rendezvous execution: caller blocks first.

36 Clapp, Mudge, and Winsor

Calling Process

Execution I

Entry Call

Blocked ,

Resume Execution~ ~

Time

Empty
Call Queue

"l

Accepting Process

Executio~

i Blocked

Critical Section

,@�9
Resume Execution

Fig 3. Rendezvous execution: aCceptor blocks first.

and context switches occur. We will adopt the terminology of Ada and
refer to these control transfer as synchronization points. (18)

Figure 2 shows the case where the calling process issues an entry call
before the accepting process is ready for communication. The calling pro-
cess is blocked by the rendezvous request. The run-time system enqueues
the call record (see Fig. 4 for queue structure) and may schedule another
process to execute on that processor. When the accepting process is ready
to receive the call, it enters the run-time system so that the call may be
dequeued and the accepting process be prepared to service it. At this point,
the run-time system may schedule another process to run on this processor,
but it may also reschedule the accepting process since it is now ready to
proceed with the rendezvous. If there is a critical section to be performed
(an extended rendezvous), the accepting process executes it and enters the
run-time system when it is completed. Next, any return parameters are
made available to the calling process and both processes are made runnable
and are eligible to be scheduled. If there is no critical section, the two calls
to the run-time system made by the accepting process may be combined
into one. Variations may limit the queue to a length of one (e.g., Occam)
or may keep the queue in priority order(e.g., Concurrent C). (A detailed
comparison of rendezvous semantics between Ada and Concurrent C can
be found in Ref. 37.)

Figure 3 shows the case where the acceptor is the first process to reach
the synchronization point. Since no calls are pending, the acceptor blocks
until a call is made. When a call is available to be serviced, a call record
is made available immediately to the accepting process and the rendezvous
begins. The rendezvous completes in the same manner described for Fig. 2.

Cache Coherence Requirements for Interprocess Rendezvous 37

Variations. Several general variations of the simple rendezvous are
possible. These include placing conditional requirements and time bounds
on both the calling and receiving sides of the call. A conditional require-
ment would prevent a call from being attempted or accepted if it cannot
proceed immediately. In the case of time bounds, a call record is removed
from the queue if a timeout expires before the call can be accepted, or an
accepting process stops waiting for a call to arrive after some delay and
resumes execution of some other useful work. An alternate construct allows
the accepting process to choose from one of several different entry points.
This construct can be combined with guards, which are boolean conditions
on entry points that must be satisfied in order for a particular call to be
accepted.

2.3. RENDEZVOUS IMPLEMENTATION

Run-Time Environment. Here, consider a basic run-time
environment that is similar to the one described in Ref. 32. Although this
reference describes an implementation intended for a distributed memory
multiprocessor, the characteristics of a multithreaded run-time system and
its data structures for the rendezvous are nearly identical for any process
model parallel language on a shared-bus multiprocessor.

It is assumed that there is a gobal time-of-day clock available for
reading by all processors, and that an interval timer is available for time
slicing. (38) It is also assumed that the hardware provides some support
for mutual exclusion such as the locks described in Ref. 39 or Some type
of noninterruptible memory read-modify-write instruction. The run-time
system is a reentrant kernel resident in memory. Each processor executes
in the run-time system in response to calls to perform rendezvous. The
run-time system maintains several types of data structures to help perform
its operations. These include task control blocks (TCBs) for each process,
a run queue of TCBs corresponding to processes that are ready to be
scheduled, entry queues of call records for each entry, pointers to the head
and tail of each entry queue, and a linked list of timed events. The TCBs
contain state information and local stack space. The ru n queue indicates
the order in which ready but non-executing processes are to be scheduled
when processors become available. This queue will be kept in priority order
if priorities are supported. Entry queues are managed as linked lists of call
records, with pointers to their heads and tails stored in the TCB containing
the entry point (see Fig. 4). The list of timed events is a doubly linked list
of records that indicate an action to be performed at a certain time (e.g.,
cancel a timed entry call). This list is sorted on order of increasing time
values.

38 Clapp, Mudge, and Winsor

Task Contro l Block Entry Queue

Datafora {
particular
entry point.

p

'~176

State

I
Head Ptr =

Tail Ptr �9

Guard Value

Other Info

Fig. 4. Task control block and entry queue for an accepting task.

Implementation. The case of the simple call and accept is
straightforward and contains the basic operations for all forms of rendez-
vous. Below we describe a typical implementation of the rendezvous that
accounts for some of the variations listed earlier.

The compiler generated code for the calling process begins by assem-
bling a call record and making a call to the run-time system that passes
a pointer to this record. The call record is a contiguous block of memory,
allocated by code that is generated by the compiler. This memory could
come from a pool of available storage or be a frame allocated on the call-
ing process' local stack space. The call record's entries include the identity
of the caller, the name of the entry called, and either values of parameters
or pointers to parameters. If the parameters are passed by reference,
pointers are present in the record. If the parameters are passed by value or
copy, values are placed in the record. If they are passed by copy, the same
parameters space is used by the accepting process to return results.

After the run-time system is invoked and receives the pointer to the
call record, the state of the calling process is changed to indicate that it is
waiting for rendezvous completion. A check is then made to determine if

Cache Coherence Requirements for Interprocess Rendezvous 39

the called process is awaiting a call on that entry. If it is, a pointer to the
call record in memory is passed to that process and the rendezvous is
started by changing the state of the called process. If the process is not able
to immediately accept the rendezvous, the call record is inserted into the
queue for that entry. The entry queue head and tail pointers are then
updated as necessary. When the call is accepted, the pointers for the queue
are updated to remove the call record from the linked list. A pointer to this
record is given to the accepting process so that it may have access to the
parameters and modify them as necessary. At the conclusion of the rendez-
vous, the run-time system is entered by the accepting process so that the
calling process may be made runnable. The code generated for the calling
process reads the value of the parameters from the call record (if necessary)
and then deallocates this space.

In order to prevent race conditions with multiple processors accessing
data, locks are normally used to provide mutual exclusion. They must be
acquired by the run-time system before it modifies any shared data struc-
ture. A lock is implemented to provide mutual exclusion for each entry
queue in the system. In addition to entry queues, the run queue, timed
events list, and in some cases, TCBs, also need locks.

Support fo r V a r i a t i o n s . In order to support variations of the
rendezvous, the run-time system may need to remove call records from the
middle of the queue, or check the parameters of a queued call to see if it
is eligible for execution. In the case of Occam, there will be queues for each
channel or possible sender-receiver pair which will be either empty or of
length one. In other cases, the queues may be of variable length.

In the case of the timed entry call, the call itself is issued in the same
manner as the simple call. If it is accepted immediately, no more work is
required. If it is not, an additional record is created and put in the timed
events list. This record indicates the time when the call is to be canceled,
a pointer to the call record that has been inserted into the entry queue, and
a unique call identifier. The timed events list is a queue that is sorted in
order of increasing times. Whenever the run-time system begins executing,
the time-of-day clock is read and the value compared to the first event on
the list. If the event's time has passed, it and any others that may be ready
are processed. (38) In the case of a timed entry call, a check is made to see
if the calling task is still waiting on the same entry call. If it is, the call
record is removed from the queue and the task's state is changed to make
it runnable. If the call has already been accepted, no action is taken after
the timeout.

When an acceptor nondeterministically has to choose between several
possible entry calls, the run-time system implements a check of the specified

40 Clapp, Mudge, and Winsor

queues to determine if a call can be accepted. If one is ready, the rendez-
vous proceeds as usual; otherwise, (depending on the semantics of the
language), the accepting process may wait for an eligible call. In this case,
it is up to the run-time system to make this process runnable when an
eligible call occurs. If a bound is placed on the time a process should wait
for an eligible entry call, a record is added to the timed events list. If the
timeout occurs and the acceptor is still waiting, its state is changed to
runnable so that it may proceed with its execution after the call point.

3. PROTOCOLS FOR M A I N T A I N I N G CACHE COHERENCE

A simple software solution to the cache coherence problem is to place
all shared writable data in non-cachable storage and, if cache entries are
not tagged with a process identifier, to flush a processor's cache each time
the processor performs a context switch. Although this scheme does
provide coherence, it does this at a very high cost in performance. The
classical hardware solution to the cache coherence problem is to broadcast
all writes: each cache sends the address of the modified line to all other
caches. The other caches invalidate the modified line if they have it.
Although this scheme is simple to implement, it is not practical unless the
number of processors is very small. As the number of processors is
increased, the cache traffic resulting from the broadcasts rapidly becomes
prohibitive.

The most practical solutions to the cache coherence problem in a
system with a large number of processors use a directory scheme in which
the directory information is distributed among the caches. These schemes
make it possible to construct systems in which the only limit on the maxi-
mum number of processors is that imposed by the total bus and memory
bandwidth. These schemes are the snooping cache protocols mentioned
earlier. ~4~ Each cache monitors addresses on the system bus, checking each
reference for a possible cache hit.

There are two major classes of protocols for enforcing cache coherence
with snooping caches. Both use the snooping hardware to dynamically
identify shared writable lines, but they differ in the way in which write
operations to shared lines are handled.

In the first class of protocols, when a processor writes to a shared line,
the address of the line is broadcast on the bus to all other caches,, which
then invalidate the line. Two examples are the Illinois protocol and the
Berkely Ownership Protocol. (4~ We refer to this class of protocols as
invalidation protocols.

In the second class of protocols, when a processor writes to a shared
line, the written data is broadcast on the bus to all other caches, which

Cache Coherence Requirements for Interprocess Rendozvous 41

then update their copies of the line. Cache invalidations are never per-
formed by the cache coherence protocol. Two examples are the protocol in
DEC's Firefly multiprocessor workstation and that in the Xerox Dragon
multiprocessor (6,14,42) We refer to this class of protocols as write-broadcast
protocols.

Each of these two classes of protocol has certain advantages and dis-
advantages, depending on the pattern of references to the shared data. For
a shared data line that tends to be read and written several times in succes-
sion by a single processor before a different processor references the same
line, the invalidation protocols perform better than the write-broadcast
protocols. The invalidation protocols use the bus to invalidate the other
copies each time a new processor makes its first reference to the shared
line, and then no further bus accesses are necessary until a different pro-
cessor accesses the line. Invalidation can be performed in a single bus cycle,
since only the address of the modified line must be transmitted. The write-
broadcast protocols, on the other hand, must use the bus for every write
operation to the shared data, even when a single processor writes to the
data several times consecutively. Furthermore, multiple bus cycles may be
needed for the write, since both an address and data must be transmitted.
For example, the DEC Firefly uses multiple cycles for both reads and
writes in order to simplify the design of the bus as well as support the
write-broadcast protocol. (~4~ On the other hand, write-invalidation on the
Sequent Symmetry can be performed in one bus cycle. (7)

For a shared data line that tends to be read much more than it is
written, with writes occurring from random processors, the write-broadcast
protocols tend to perform better than the invalidation protocols. The write-
broadcast protocols use a single bus operation (which may involve multiple
bus cycles) to update all cached copies of the line, and all read operations
can be handled directly from the caches with no bus traffic. The invalida-
tion protocols, on the other hand, will invalidate all copies of the line each
time it is written, so subsequent cache reads from other processors will miss
until they have reloaded the line.

An adaptive protocol that attempts to incorporate some of the best
features of each of the two schemes is proposed in Ref. 43. This protocol,
called EDWP (Efficient Distributed-Write Protocol), is essentially a write-
broadcast protocol with the following modification: if some processor
issues three writes to a shared line with no intervening references by any
other processors, then all the other cached copies of that line are
invalidated and the processor that issued the writes is given exclusive access
to the line. The particular number of successive writes before invalidating
the line, three, was selected based on a simulated workload model.

42 Clapp, Mudge, and Winsor

4. CACHE COHERENCE PROTOCOL REQUIREMENTS
FOR R U N - T I M E SUPPORT

4.1. Process Schedul ing

A major factor in the protocol requirements for run-time support is
the strategy used by the run-time system for processor scheduling when
synchronization points are reached. For the purposes of brevity, we limit
ourselves to considering two contrasting scheduling strategies that bound
the range of possibilities. The first, run-time scheduling, assumes all run-
nable processes are kept in a run queue and are assigned processors as they
become available. There are no restrictions as to which processes may run
on any processor. Processes may be assigned processors in some priority
order, but there is nothing to prevent a process from migrating between
several processors during its lifetime. The second, compile-time scheduling,
permits processes to be bound to processors so that process migration may
be eliminated or considerably reduced.

The appropriate scheduling strategy for a particular situation should
be influenced by the characteristics of the hardware, which include the bus
bandwidth, the number of processors, the homogeneity of the processors,
and the size of the processor caches. In cases where bus bandwidth is
limited, there are a large number of processors, or special functional units
are connected to only certain processors, compile-time scheduling offers
advantages if the application allows it to be used. Limited bus band-
width discourages process migration, as does a situation where there are
more processors than processes. When all processor configurations are
not homogeneous, process migration may be inhibited by functional
requirements. On the other hand, cases where there are fewer processors,
more bus bandwidth, or large processor caches, run-time scheduling offers
advantages. Additional context-switching with process migration for load
balancing is necessary when there are more processes than processors.
Additional bus bandwidth supports the additional migration while large
caches reduce the burden on the bus by retaining large portions of the
working sets of multiple processes.

In addition to hardware, the characteristics of the software application
must also be considered. Examples of applications that are best served by
run-time scheduling that does not restrict process migration are branch-
and-bound algorithms, parallel make, and parallel compile codes. These
applications create processes dynamically in a way that cannot be predicted
before run-time. The trade-off is between load balancing and bus
bandwidth. In contrast, embedded applications and many CAD and scien-
tific codes can be scheduled off-line, and are best served by compile-time

Cache Coherence Requirements for Interprocess Rendezvous 43

scheduling. Here the load balancing is done a pr ior i and bus bandwidth
requirements can be minimized. In the case of distributed program
development and multi-process simulations, the specific structure of the
application suggests which scheduling strategy should be used. Thus, the
application domain and hardware configuration influences the process
scheduling strategy, which in turn dictates the access patterns to the
run-time system data structures.

4.2. Rendezvous Data Access Pa t te rns

We can now examine the access patterns to the run-time system data
structures described in Section 2 and assess their relationship to the two
basic types of cache coherence protocols described in Section 3, invalida-
tion and write-broadcast. Specifically, we consider the access patterns to
shared data structures of multiple processes wishing to perform a rendez-
vous. We consider these patterns from the point where the rendezvous may
actually begin, i.e., when the later of the two tasks involved requests the
rendezvous. It is only at this point that processors may begin to share data.
In addition to the two cases suggested by considering whether the caller or
the acceptor is the later task to request the rendezvous, the case where
multiple callers are accessing the entry queue must also be considered. This
situation may occur because of the possible asymmetry of the rendezvous:
multiple callers may request the same entry point serviced by a single
acceptor. We consider this latter case when the acceptor begins accepting
a call, but not when the acceptor has no t 'ye t reached the point of the
rendezvous. When the acceptor is not accessing the entry queue, multiple
callers may add entries to the queue without actually sharing data. There-
fore, it is sufficient to consider the following cases:

1) one or more callers are blocked with their calls pending on an
entry queue, and the accepting process begins to accept the first
call (see Fig. 2),

2) a caller issues a call and the accepting process is blocked (Fig. 3
with the possibility of a non-empty queue), and

3) the accepting process is accepting a call while additional callers
are requesting a rendezvous (Fig. 2 with additional callers).

Other cases reduce to one of these three here; for example, in the case
where the accepting process attempts to accept a call but none are pending,
it determines that its entry queue(s) are empty, then blocks and waits for
a call to arrive. When a call does arrive, the situation is described by case 2.
We consider the cases in more detail here.

44 Clapp, Mudge, and Winsor

Blocked Callers. One or more entry calls are queued for a par-
ticular entry and the accepting task begins to accept them. Before accessing
the call records in the entry queue, the run-time system, executing on
behalf of the accepting task, must first acquire a lock to ensure mutual
exclusion. After obtaining the lock for the entry queue, the first call record
is removed from the queue by changing the value of the queue head pointer
to point to the next call record. This value is obtained from the "next-
pointer" field of the first call record (see Fig. 4). After changing this pointer
value, the lock is released and the accepting task is free to execute the
rendezvous with the data available in the call record. The acceptor may
access data in the call record without locking it, since the calling task
is blocked until the rendezvous is completed. The calling task is made
runnable by the run-time system at the completion of the call by inserting
the caller into the run queue. It may then access any return data placed in
the call record by the acceptor.

After the run-time system and accepting task complete the rendezvous,
several data items associated with the call will reside in the cache of the
processor that the accepting task executed on. Some of this data will have
been modified, namely the entry queue head pointer, the state value in the
TCB of the caller, the tail pointer of the run queue, and possibly locations
used for return parameters.

We describe the accessing of this data by the run-time system as
serialized sharing, because the shared data is accessed at synchronization
points in a mutually exclusive fashion by the calling and accepting
processes. Of the shared d a t a structures modified in accepting a call, only
the entry queue head pointer and run queue tail pointer are likely to be
accessed again by the accepting process. The call record will not be
accessed again by the acceptor, because a new call record containing the
parameter space is accessed only in response to each particular instance of
a rendezvous. The caller returns this record to the pool of available
storage, or otherwise deallocates it by moving its stack pointer. It is
possible, however, that a compiler optimization may allow the caller to
reuse the parameter space in conjunction with a later call. An access by the
acceptor to this same space would most likely occur much later in time,
only as part of a different rendezvous. The same can also be said about
the state value stored in the caller's TCB. Situations where this may be
a useful optimization are where the acceptor is part of a server task that
periodically polls its rendezvous entry points.

In examining the effects of cache protocols on the cache hits to shared
data, we must again consider the policy used for processor scheduling. The
key issue to be considered in determining an appropriate coherence
protocol is whether processes are switched out when they become blocked.

Cache Coherence Requirements for Interprocess Rendezvous 45

In the case where processes are switched out, the use of an invalidation
protocol provides the desired effect. When the calling process blocks after
issuing the call, its processor is reassigned to another task, which
presumably is executing with a different working set. When a write is made
to the call record or caller's TCB by the acceptor, any copies of this data
in other caches are invalidated, and thus useless updates are avoided to
cache memory that is not being actively shared.

In the case where processes are suspended and not switched out at
synchronization points (or at least not allowed to migrate), additional
cache hits on both processors will occur if a write-broadcast protocol is
used. This approach woud make the caller's task state and return
parameters available in the caller's cache after the rendezvous, since the
data is accessed by the caller's processor and cached before the rendezvous.
A greater benefit occurs in this situation if the caller and acceptor are
frequently communicating using the same entry point, and the caller
repeatedly reuses the same memory space for the call record (e.g., the com-
piler optimization mentioned previously). In this case, the acceptor has
possession of the call record on its cache the entire time, and it is always
up to date. This is because the initialization by the caller is broadcast to
the acceptor's processor cache. Further, any data items local to the caller
that are modified by the acceptor indirectly through the call record (e.g.,
parameters passed by reference) will also be resident in both caches.

Blocked Receiver. One or more callers are attempting to access
an entry queue in order to place a call record in it while the accepting
process is blocked. The callers simply acquire the lock protecting the entry
data, read the desired queue tail pointer, modify the last call record's next-
pointer to point to the new call record, and modify the tail pointer to also
point to the new call record (see Fig. 4). At this point, the lock is released,
and the calling process blocks awaiting completion or cancellation of the
call. Another calling process may now acquire the lock and perform the
same queue operation.

After queueing a call record, the processor executing on behalf of the
caller has several modified data items in its cache. These items include the
call record, the entry queue's tail pointer, the state value in the TCB of
the caller, and the next-pointer of the next to last call record in the queue
(if there is one). The next accesses to the call record, state value, and the
preceding call record's next-pointer will be the accepting task and run-time
system as described in the blocked callers case. The next access to the entry
queue tail pointer and the call record's next-pointer will be the next calling
task.

In examining the data structure access patterns from the caller's point

828/I9/1 4

46 Clapp, Mudge, and Winsor

of view, we again see that its behavior can be described as serialized
sharing. After constructing a call record, the caller obtains a lock, modifies
an entry queue, releases the lock, and then blocks. The accepting task locks
and modifies data in the same manner. Because the access to shared data
is serialized, the requirements for the cache coherence protocol are based
on the scheduling strategy. As noted above in the blocked caller's case, the
invalidation protocol works best when processes are switched out and
processors reassigned at synchronization points. Since the access patterns
to the shared data in this case are such that no process performs repeated
modifications without blocking, the invalidation protocol is preferred.

In the case of compile-time scheduling, when process migration is
restricted, a processor executing on behalf of the caller will reaccess data
that has been shared and modified, namely the call record, queue tail
pointer, and state value in the TCB. Use of a write-broadcast scheme in
this case will increase cache hits as stated above. If the call records are
reused as described in the blocked callers case, both the parameter space
and the next-pointer will be modified several times over the course of
several calls.

Caller and Receiver Executing. An accepting process attempts
to dequeue a call record while a different calling process is attempting to
enqueue a call record. If the caller gets a lock on the entry queue first, the
situation is similar to the second case earlier. When the acceptor does
obtain the lock, it dequeues the first call record as described in the blocked
callers case mentioned previously. After the acceptor releases the lock on
the queue, it may execute the critical section or be suspended by the
scheduler if it wishes to reassign that processor. At this point, any calling
tasks can access and modify the tail end of the queue as described in the
blocked receiver case.

In considering this case where multiple processes are actively attempt-
ing to modify a single entry queue, the points made above about schedul-
ing and coherence protocols are still valid. They are valid because the
access to the entry queue is serialized through the use of mutual exclusion,
and the patterns of access in relation to synchronization points are
unchanged. A key point to highlight here, though, is that while calling
processes are modifying the tail pointer for the entry queue, the accepting
process is modifying the head pointer. The data that is truly shared
between caller and acceptor (e.g., call record and state value in the TCB)
is done so on a single caller to single acceptor basis. As stated earlier, there
are synchronization points before and after each modification to this
shared data. Therefore, the invalidation protocol appears best for the case

Cache Coherence Requirements for Interprocess Rendezvous 47

of heavy context switching with migration, while the write-broadcast shows
advantages for the case of non-migrating processes.

Timed Call C o n s i d e r a t i o n s . In the case of the timed entry call,
a record must also be inserted into the timed events list. When the timeout
value expires, it is possible that an entry record will have to be removed
from a queue, and that record could be anywhere in the queue. To remove
it, the forward pointer of the previous record in the queue must be changed
to point to the following call record. It may also be necessary to change the
head and tail pointers.

The accesses to the timed events queue and entry queues for call
cancellation is highly random. In the case where any processor may be
processing a timeout, it appears that the use of an invalidation protocol is
best, since it avoids broadcast updates to the timed events list to processors
that are no longer using the data structure. If, however, the timing process-
ing is done in a dedicated processor, it is desirable to keep a current copy
of the timed events list in its cache, and allow it to broadcast entry queue
changes to the other processors, since there is some chance the queue
records in question will be accessed again in those processors.

4.3. The Use of Locks

There are many cases where the run-time system must obtain a lock
in its shared data structures before accessing them. In the case of hardware
locks, this operation is straightforward and does not involve the cache.
Such a hardware lock mechanism is described in Ref. 39. However, in most
cases, synchronization primitives involve access to a word in memory. The
non-interruptible instruction test & set is a common example of a mutual
exclusion primitive that involves a memory access. If many processors are
contending for a lock using test & set, a ping-pong effect can set in where
the lock variable is being written into many caches one after another, with
other copies being unnecessarily invalidated or updated. Bus traffic in this
case can be significantly reduced by using test & test & set to implement
locks in both invalidation and write-broadcast c a s e s . (44'45)

5. CONCLUSION

The data access patterns for rendezvous and other run-time system
data structures, and consequently the cache coherence requirements, are
strongly influenced by the process scheduling strategy used by the run-time
system at rendezvous synchronization points. Based on our examination of
these patterns, we have reached the following conclusions:

48 Clapp, Mudge, and Winsor

�9 Use invalidation with unrestricted migration (run-time scheduling),
especially as it is usually less expensive in bus cycles than write-
broadcast.

�9 Use write-broadcast with restricted migration (compile-time
scheduling) when little context switching is performed.

In some case, however, it may be possible to gain the benefits of write-
broadcast when using run-time scheduling. If the scheduler can be modified
to incorporate processor aff ini ty , (46) a restriction in migration is possible.
When affinity is used, the scheduler attempts to reschedule processes on the
same processor they used previously. Affinity can be used to varying
degrees, including an elimination of migration altogether. In this case, a
write-broadcast protocol would be best suited for rendezvous execution.

It may also be desirable to use multiple coherence protocols. For
example, when multiple heavy weight processes are executing, each of
which is made up of lightweight processes communicating by rendezvous,
and if the number of heavyweight processes is allowed to vary at run-time,
a write-broadcast protocol could be used for data shared between
lightweight processes that generally do not migrate, while an invalidation
protocol would be used for sharing between heavyweight processes. The
design of the IEEE Futurebus (471 is intended to support multiple coherence
protocols simultaneously, including both write-invalidate and write-broad-
cast protocols. It is possible for different processors to observe different
protocols, and for any processor to switch to a different protocol at run-
time. Coherence protocol actions can also be controlled in software, where
the need for coherence actions causes a fault and transfer of control to an
interrupt routine. Such an approach is used in the VMP multiprocessor
prototype. (48) An adaptive protocol such as the EDWP scheme mentioned
in Section 3 may also be appropriate.

Finally, these conclusions are drawn primarily from our experience
with Ada. It may be necessary to employ different approaches when using
other parallel languages. Again, the lack of suitable traces or program
statement frequencies has prevented us from examining the effects of
different semantics for other parallel languages. It is our desire to see that
this situation is rectified in the near future.

R E F E R E N C E S

1. F. Basket and J. L. Hennessy, Small shared-memory multiprocessors, Science 231:963-967
(February 1986).

2. C. G. Bell, Multis: A new class of multiprocessor computers, Science, 228(4698):462-467
(April 1985).

Cache Coherence Requirements for Interprocess Rendezvous 49

3. G. Fielland and D. Rodgers, 32-bit computer system shares load equally among up to 12
processors, Electronics Design, pp. 153-168 (September 1984).

4. E. C. Corporation, Multimax Technical Summary, 257 Cedar Hill Street, Marlboro,
Massachusetts 01752, REV A edition (May 1985).

5. P. Bitar and A. M. Despain, Multiprocessor cache synchronization, issues, innovations,
evolution, in Proc. of the 13th Int'l. Symp. on Computer Arehit., pp. 424~33 (June 1986).

6. J. Archibald and J. L. Baer, Cache coherence protocols: Evaluation using a multiprocessor
simulation model, A C M Transactions on Computer Systems 4(4):273-298 (Novem-
ber 1986).

7. T. Lovett and S. Thakkar, The Symmetry multiprocessor system, in Proc. of the 1988
Int. 'L Conf on Parallel Processing, pp. 303-310 (August 1988).

8. M. Annaratone and R. Rfihl, Performance measurements on a commercial multiprocessor
running parallel code, in Proc. of the 16th Int'l. Symp. on Computer Arch#., pp. 307-314
(June 1989).

9. A. H. Karp and R. G. Babb, A comparison of 12 parallel FORTRAY dialects, IEEE
Software, pp. 52-67 (September 1988).

10. A. Osterhaug, Guide to Parallel Programming, Sequent Computer Systems, Inc. (1985).
11. R. H. Perrott, Parallel Programming, Addison-Wesley (1987).
12. R. G. Babb II, ed., Programming Parallel Processors, Addison-Wesley, Reading,

Massachusetts (1988).
13. M. Kallstrom and S. S. Thakkar, Programming three parallel computers, IEEE Software,

pp. 11-22 (January 1988).
14. C. P. Thacker, L. C. Stewart, and E. H. Satterthwaite, Jr., Firefly: a multiprocessor

workstation, IEEE Transactions on Computers 37(8):909-920 (August 1988).
15. IRIS-4D Series Owner's Guide, Silicon Graphics, Inc., Version 4.0, Document Number

007-320-040 edition (1989).
16. The Series 10000 Personal Supercomputer, Apollo Computer Inc. (1988).
17. T. Diede, C. F. Hagenmaier, G. S. Miranker, J. J. Rubinstein, and W. S. Worley, Jr., The

Titan graphics supercomputer architecture, 1EEE Computer, pp. 13-30 (September 1988).
18. Ada Programming Language (ANSI-MIL-STD-1815A), Department of Defense, OUSD

(R & D) (January 1983).
19. N. H. Gehani and W. D. Roome, Concurrent C, Software Practice and Experience

16(9):821-844 (September 1986).
20. D. May, Occam, A C M SIGPLAN Notices 18(4):69 79 (April 1983).
21. G. R. Andrews, R. A. Olsson, M. Coffin, I. Elshoff, K. Nilson, T. Purdin, and

G. Townsend, An overview of the SR language and implementation, ACM Transactions
on Programming Languages and Systems 10(1):51-86 (January 1988).

22. M. L. Scott, Language support for loosely coupled distributed programs, IEEE Trans-
actions on Software Engineering SE-13(1):88-103 (January 1987).

23. F. N. Parr and R. E. Strom, NIL: A high-level language for distributed systems program-
ming, IBM Systems Journal 22(1, 2) (April 1983).

24. S. J. Eggers and R. H. Katz, A characterization of sharing in parallel programs and its
application to coherency protocol evaluation, in Proc. of the 15th Int'l. Symp. on
Computer Arch#., pp. 373-382 (June 1988).

25. S. J. Eggers and R. H. Katz, The effect of sharing on the cache and bus performance
of parallel programs, in Proc. of the Third Int'l. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS III), pp. 257-270 (April 1989).

26. R. L. Sites and A. Agarwal, Multiprocessor cache analysis using ATUM, in Proc. of the
15th Int'l. Symp. on Computer Archit., pp. 186-195 (June 1988).

50 Clapp, Mudge, and Winsor

27. B. Beck and D. Olien, A parallel-programming process model, IEEE Software, pp. 63-72
(May 1989).

28. R. H. Thomas and W. Crowther, The Uniform System: An approach to runtime support
for large scale shared memory parallel processors, in Proc. of the 1988 Int'l. Conf. on
Parallel Processing, pp. 245-254 (August 1988).

29. M. L. Scott, T. J. LeBlanc, and B. D. Marsh, Design rationale for Psyche, a general-
purpose multiprocessor operating system, in Proc. of the 1988 Int'l. Conf. on Parallel
Processing, pp. 255-262 (August 1988).

30. R. P. Weicker, Dhrystone: A synthetic systems programming benchmark, Communications
of the ACM 27(10):1013-1030 (October 1984).

31. G. Graunke and S. Thakkar, Synchronization algorithms for shared-memory multipro-
cessors, IEEE Computer, pp. 60-69 (June 1990).

32. R. M. Clapp and T. N. Mudge, Ada on a hypercube, in Proc. of The Third Conf. on
Hypercube Concurrent Computers and Applications, pp. 399~408, Pasadena, California
(January 1988).

33. R. A. Volz and T. N. Mudge, Timing issues in the distributed execution of Ada programs,
IEEE Transactions on Computers C-36(4):449-459 (April 1987).

34. R. A. Volz, T. N. Mudge, G. D. Buzzard, and P. Krishnan, Translation and execution of
distributed Ada programs: Is it still Ada?, IEEE Transactions on Software Engineering
SE-15(3):281-292 (March 1989).

35. R.M. Clapp and T. N. Mudge, A parallel language for a distributed-memory multiprocessor,
in Proc. of The Fourth Conf. on Hypercube Concurrent Computers and Applications,
pp. 515-522, Monterey, California (March 1989).

36. J. D. Ichbiah, J. G. P. Barnes, J. C. Heliard, B. Krieg-Breckner, O. Roubine, and
B.A. Wichmann, Rationale for the design of the Ada programming language, ACM
SIGPLAN Notices, Vol 14, No. 6 (June 1979).

37. N. H. Gehani and W. D. Roome, Rendezvous facilities: Concurrent C and the Ada
language, 1EEE Transactions on Software Engineering SE-14(11):1546-1553 (November
1988).

38. R. A. Volz and T. N. Mudge, Instruction level mechanisms for accurate real-time task
scheduling, IEEE Transactions on Computers C-36(8):988-993 (August 1987).

39. B. Beck, B. Kasten, and S. Thakkar, VLSI assist for a multiprocessor, in Proc. of the
Second Int'l. Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS II), pp. 10-20 (October 1987).

40. R. H. Katz, S. J. Eggers, D. Wood, C. L. Perkins, and R. Sheldon, Implementing a cache
consistency protocol, in Proc. of the 12th Int'L Symp. on Computer Archit., pp. 276--283
(June 1985).

41. M. S. Papamarcos and J. H. Patel, A low-overhead coherence solution for multiprocessors
with private cache memories, in Proc. of the l l th Int'l. Symp. on Computer Arehit.,
pp. 348 354 (June 1984).

42. R. R. Atkinson and E. M~ McCreight, The Dragon processor, in Proc. of the Second Int'l.
Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS II), pp. 65-69 (October 1987).

43. J. K. Archibald, A cache coherence approach for large multiprocessor systems, in Proc. of
the 1988 Int'l. Conf. on Supercomputing, pp. 337-345. ACM Press (July 1988).

44. M. Dubois, C. Scheurieh, and F. A. Briggs, Synchronization, coherence, and event order-
ing in multiprocessors, IEEE Computer, pp. 9-21 (February 1988).

45. L. Rudolph and Z. Segall, Dynamic decentralized cache schemes, in Proc. of the l l th Int'l.
Symp. on Computer Arehit., pp. 340-347 (June 1984).

46. S. S. Thakkar and M. Sweiger, Performance of an OLTP application on Symmetry multi-

Cache Coherence Requirements for Interprocess Rendezvous 51

processor system, in Proc. of the 17th lnt'l. Symp. on Computer Archit., pp. 228-238
(June 1990).

47. P. Sweazy and A. J. Smith, A class of compatible cache consistency protocols and their
support by the IEEE Futurebus, in Proe. of the IEEE 13th Annual Int'l. Symp. on
Computer Archit., pp. 414~23 (June 1986).

48. D. R. Cheriton, G. A. Slavenburg, and P. D. Boyle, Software controlled caches in the
VMP multiprocessor, in Proc. of the 13th Int'L Symp. on Computer Arehit., pp. 366-374
(June 1986).

