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PREFACE

Project MICHIGAN is a continuing research and development program for ad-
vancing the Army's long-range combat-surveillance and target acquisition capa-
bilities. The program is carried out by a full-time Willow Run Laboratories staff
of specialists in the fields of physics, engineering, mathematics, and psychology,
by members of the teaching faculty, by graduate students, and by other research
groups and laboratories of The University of Michigan.

The emphasis of the Project is upon basic and applied research in radar, in-
frared, acoustics, seismics, information processing and display, navigation and
guidance for aerial platforms, and systems concepts. Particular attention is given
to all-weather, long-range, high-resolution sensory and location techniques, and to
evaluations of systems and equipments both through simulation and by means of lab-
oratory and field tests.

Project MICHIGAN was established at The University of Michigan in 1953, It
is sponsored by the U. 5. Army Combat Surveillance Agency of the U. S. Army
Signal Corps. The project constitutes a major portion of the diversified program
of research conducted by Willow Run Laboratories in order to make available to
government and industry the resources of The University of Michigan and to broaden
the educational opportunities for students in the scientific and engineering disciplines.

Progress and results described in reports are continually reassessed by Pro-
ject MICHIGAN. Comments and suggestions from readers are invited.

The work reported herein was conducted by the Radar Laboratory of Willow
Run Laboratories, under the joint sponsorship of the U. S. Army Signal Corps and

the U. S. Air Force, Wright Air Development Division.

Robert L.. Hess
Technical Director
Project MICHIGAN
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Optical Data-Processing and Filtering Systems

ABSTRACT

Optical systems, which inherently possess two degrees of freedom rather than

the single degree of freedom available in a single electronic channel, offer some ad-

vantages over their electronic counterparts for certain applications. Coherent op-

tical systems have the added property that one may easily obtain many successive

two-dimensional Fourier transforms of any given light amplitude distribution, or,

by using astigmatic optics, one may obtain one-dimensional transforms, Therefore,

most linear operations of an integral-transform nature are easily implemented. The

optical implementation of integral transforms which are of importance to communi-

cation theory is discussed; the general problems of optical-filter synthesis and

multichannel computation and data processing are introduced, followed by a discus-

sion of potential applications. Astigmatic systems, which permit multichannel op-

eration in lieu of two-dimensional processing, are treated as a special case of gen-

eral two-dimensional processors. Complex input functions are discussed with

reference to their role in coherent optical systems.

1
INTRODUCTION

Optical images inherently possess two degrees of freedom, as represented by the two in-

dependent variables which define a point on a surface. In this respect, optical systems differ

basically from electronic systems, which possess only time as an independent variable.

Optical systems have the additional property that a Fourier transform relation exists

between the light amplitude distributions at the front and back focal planes of a lens used in

such a system. This property may be put to use in coherent optical systems. An optical ar-

rangement which presents a space-domain function and successive Fourier transforms iseasily

implemented. As a result, integral-transform operations may often be carried out more con-

veniently in an optical system than in an equivalent electronic channel. Because of this Fourier

transform relation, coherent optical systems behave, in many ways, analogously to electrical

filters.

The ease of synthesis of these optical filters has recently made them useful in some

areas where only electrical filter networks were previously used.



The University of Michigan Willow Run Laboratories

In many problems arising in the field of communication engineering, a piece of electronic
equipment is required to operate on an incoming signal so as to evalute an integral of either of
the general forms.

b(y)

I(xo, y) = J flx, y) glx-xg, ¥) dx (1)
a(y)

where x , a, and b may be functions of time, or
o

d pb(y)
I(xo, yo) = '[ j f(x, y) g(X—XO, y—yo) dxdy (2)
c Yaly)

where Xo’ yo, a, b, ¢, and d may be functions of time.

Processes such as those of cross-correlation, autocorrelation, convolution, spectral anal-
ysis, and antenna-pattern analysis are special cases of the integrals in Equations 1 and 2, as
are also various linear integral transforms., The integral in Equation 2, which includes a sec-
ond integration over the y-variable, allows the generation of two-dimensional transformations.

Electronic computation and evaluation systems for performing the above integrations exist,
but they suffer from disadvantages inherent in systems possessing only one degree of freedom.
In the electronic case, time is the only available independent variable. This is a severe re-
striction if either (1) the integral is to be evaluated for a large number of different values of
the parameter y, or (2) an integration over y is also required. In such cases, scanning, time-

sharing, or time-sequencing procedures must be employed.

In an optical system, however, two independent variables are available. Thus, the optical
system can readily handle the two-dimensional operation without resort to scanning. Alter-
natively, for a one-dimensional process with a varying parameter, the second dimension can
be used to provide a number of independent computing channels for various incremental values
of the unused variable. In the optical system, the number of independent one-dimensional
channels is limited only by the number of positions which can be resolved across the system
aperture, The two-dimensional nature of an optical channel may therefore be exploited either
to provide a true two-dimensional processor or to provide a multichannel filter bank. For
certain types of operations, the second degree of freedom may permit a considerable equip-
ment simplification; partly for this reason, interest in optical processing has been growing
for the past several years.

The basic optical theory which permits a filter-theoretic description of an optical data-
handling channel is by no means new. The Fourier transform relations upon which the spatial

filtering is based are essentially the relations established by Huygens, Fresnel, and Kirchoff
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(Reference 1), while the spatial filtering is essentially that proposed by Abbe in his theory of
image formation in the microscope (Reference 1). In the past decade, optical systems have
been extensively discussed in terms of communication theory (References 2-9), The present
authors have made use of astigmatic optical systems to achieve multichannel operation, as
described in Section 2. 4, and have synthesized complex filter functions of two variables. In
addition, bipolar and complex signals have been recorded as transparencies with positive trans-
mittance by use of a carrier frequency, and then optically converted back into bipolar or com-
plex form by appropriate spatial filtering.

This report outlines some of the fundamental principles and techniques useful in under-

standing and designing coherent optical systems and indicates areas of potential applications,

2
THEORY of COHERENT OPTICAL SYSTEMS

2.1, ELEMENTARY OPTICAL SYSTEMS
Consider a piece of film having a transmittance function T; in general, T = T(x, y), a
function of the two variables which define the film plane Pl. If this transparency is illuminated

with light of intensity IO (Figure 1), the emergent intensity distribution is
Ix, y) =1 T(x, y)
o

Suppose that a second transparency is overlaid on the first, or that the first transparency is
imaged on the second (with unity magnification, for the sake of simplicity). The intensity dis-

tribution of the beam which is emergent from the second transparency is then
Iz, y) = 1T G, T, )

1
Integration over a plane could be accomplished by imaging the region of integration onto

where T and T2 are the transmittance functions of planes Pl and P().

a detector whose resolution elemental size is greater than the image of the region. The de-

tector might, for example, be a photocell or a small region of photographic film. Figure 2

ood”

FIGURE 1. OPTICAL MULTIPLICATION
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(%, y) g(x,y) v \‘1%

O -0 0~

FIGURE 2. OPTICAL SYSTEM FOR TWO-DIMENSIONAL INTEGRATION

shows a simple optical system that evaluates the integral

bl b2
I-= _[ J- f(x, y)g(x, y)dxdy (3)
4 %
Alternatively, the integration is accomplished if the detector samples equally the light emerg-
ing from all parts of the plane of integration. The second technique is in general the more
practical.

In the event integration in only one dimension is required, and the remaining dimension is
to be used to achieve multichannel operation, a method must be found to limit the integration
to only one dimension. Astigmatic optical systems, in which the focal properties are different
for the two dimensions, can achieve this result. The integral evaluated is then of the form

b(y)

I(y) = f f(x, y)glx, y) dx (4)
a(y)

The astigmatic optical system shown in Figure 3 differs from that of Figure 2 only through
the presence of the cylindrical lens which counteracts, for the y-dimension only, the inherent

tendency of lens L2 to integrate the light emerging from the plane P,.

f(x, y) g(x, y)

- ofjoogor)

FIGURE 3. OPTICAL SYSTEM FOR ONE-DIMENSIONAL INTEGRATION
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The more general case of evaluating

b(y)
Iy, xo) :f f(x, y)g(x-xo, y) dx (5)

a(y)
is easily handled by merely transporting the g-transparency across the aperture in the x-
dimension, This is achieved by recording g(x) on a strip of film which is then translated
across the optical aperture while all other elements remain stationary.

The optical systems discussed thus far impose the constraint that f and g must be every-

where positive. This arises because the transmission functions are merely energy ratios and

are therefore always positive numbers.

0 < T(x, y)glifT=I(%l)
0
In general, the {'s and g's of interest are bipolar in nature. The representation of these f's
and g's requires the use of a scaling factor k and a bias level B. Then T(x, y) = B + kf(x, y),
where B and k are chosen such that 0 < T < 1 for all x, y, and yet the term kf must not be neg-
ligible compared to Bl. If one tries to evaluate an integral of the form 1, the integral gen-

erated is of the form

b(y, t)
Iy, t) - B, +k 1, y)] [132 * kgl y)] dx (6)
a(y, t)

Error terms arise because of the presence of the bias levels. Even though the B's and k's
are known, the removal of these errors or their exact calculation depends on the nature of f and
g. The use of a "coherent" optical system will often eliminate certain of these difficulties which

arise in the elementary systems described above,
2.2, COHERENT OPTICAL SYSTEMS

A coherent optical system is one in which the relative phases of the light waves in various
parts of the system are invariant with time. For coherence to be achieved, a point source of

light is required. Any two points in an optical system utilizing a point source have a relative

phase which is time invariant.

1If kf << B, the kf term may become obscured by grain noise, stray light, and so forth,
On the other hand, if kf is fairly large, clipping may occur on signal peaks. An optimization
process which determines the best choice of B and k for a particular set of signal and noise
statistics and tolerable distortions is therefore necessary in some cases.
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The analysis of an optical system can in principle always proceed from the field equations.
However, if only physical dimensions that are much greater than the light wavelength are con-
sidered, the analysis is simplified to the application of Huygens' principle. In this report,
the signals take the form of transparencies, the detail of which is sufficiently coarse that
Huygens' principle can be applied.

A monochromatic electromagnetic wave is described by giving its magnitude and phase as

a function of the three space variables. For example,
Ex = A(x, y, z) cosfwt + ¢(x, y, 2)]

where A is an amplitude factor, ¢ is a phase factor, and w is the radian frequency of the wave,
represents one component of the electric field vector, Since polarization effects are not of
interest, any field vector can be denoted by E. Since only a few values of Z (where the optic
axis is taken in the Z direction) are of concern, the field at Zl is denoted by El’ rather than
E(2).

Coherent optical systems have three fundamental properties which allow these systems to
be analyzed by Fourier methods. Before the analysis is begun, two conventions will be adopted
which will simplify the later discussions.

The first convention is that a wave of the form

El = A%, y) cos [wt + ¢(x, ¥)]

will be written as

]/51\1 = A(x, y)ew(x’ y)

(Whenever a letter appears with a "A'" it is a complex function.) The motivation for adopting
this representation is that all the significant features of the optical system are time invariant
and that w, the temporal radian frequency, acts, in a sense, like a carrier frequency.

The second convention relates to the description of transparencies. Consider a thin trans-
a(x, y)

2m(n - 1)
(in wavelengths). Note that 0 <t <1, and n is the index of refraction of the transparency.

2 . .
parency described by a transmission function t (x, y) and by a thickness function

One can say that this transparency represents a signal function, S(x, y), given by

S(x, y) = tx, y)ejoz(x,y)

One derives the first property by noting that a light wave,

El = A(x, y) cos [wt + ¢(x, ¥)]

incident on a transparency with transmission t~ and thickness 5 , yields an emergent

%
2r(n - 1)
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wave
E, = Alx, y)t(x, y) cos [wt + ¢(x, y) + oAx, y)]
or,
A AA
E2 = SEl (7)

The second basic property is related to the energy of the wave. The energy, £, of a light
wave, E, is proportional to the time average of E2. Thus the second property of coherent
optical systems is

£ - kBB (8)
where * denotes conjugate. Since the only possible outputs of optical systems are in the form
of energy-sensitive detectors (films, photoelectric cells, etc.), the complex representation
gains added significance. In fact, the complex representation is sufficient for analyzing op-
tical systems as '"black boxes. "

Consider the optical system shown in Figure 4. The following statements, which are dem -
onstrated in Appendix A, summarize the third and most significant property of the complex
representation. If the light waves at planes Pl’ P2, and P3 are denoted by ﬁl(xl, yl),

A A
E2(x2, yz), and E3(x3, yS), respectively, then E3 and El form a Fourier pair to within a

phase factor ejﬁ(XB’YS), or

Blx,,y,)
A 3 [a 3773
- B (x . 9
g y5) [ 15 yl)J € (%a)
where F denotes the Fourier transform. Plane Pl is anywhere between Ll and L2, and B is a
A A
function of Zl. An exact Fourier transform exists between E3 and E2.
X =0f =
;3(\3, y3) 0 for Zl Z2 (9b)
an exact Fourier transform does not exist anywhere else (with respect to lens L_).
‘ 7 f *
B(XS,}B);&O or Zl Z2 (9¢)

Plane P, Plane P, Plane Pgq4
L, Ly !

Light Source
®

E;f“‘__’__

l
I
|
|
|
[
|
[
|

Z,

FIGURE 4. FOURIER TRANSFORMS IN AN OPTICAL SYSTEM



The University of Michigan Willow Run Laboratories

A comment is perhaps in order at this point, to avoid confusion in some of the optical di-
agrams to follow. In conventional Fourier transform theory, the transformation from the time
domain (the analog of the spatial domain) to the frequency domain requires the kernel function

_‘iwt, and the transformation from frequency to time employs the conjugate kernel ejwt. A
lens always introduces the kernel exp j%r(xnanq + ynyn+l) in passing from plane Pn to plane
P .. Therefore, in an optical system one takes only successive transforms rather than a

n+l
transform followed by its inverse. The effect of using a kernel of the wrong polarity, however,
is simply to reverse the coordinate system of the transformed function. Therefore, by re-
versing the coordinate system of the appropriate planes of Figure 5, it is possible, in effect,
to take inverse transforms, and make the optical system consistent with the conventions of
Fourier transform theory.

The selection of the appropriate labeling may be considered with the aid of Figure 5.

Arbitrarily call Pl a spatial-domain plane, and consider the direction of propagation of the

2
light wave to be from left to right. Lens Ll introduces the kernel function exp ]K_f(‘{ X +y2yl).

By defining

L

YT a2
and

_2m

Yy T a2

the kernel becomes exp —j(wxx +w ,y), which is in accord with convention.
y

T
GAGhLAGA

FIGURE 5. SUCCESSIVE OPTICAL TRANSFORMS

Recalling that 3 {j[f(x)]} = f(-x), one then observes that X is mapped into X, as a result

of the two successive transforms. In other words, the image at P3 is reversed. If the coor-
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dinate system of P3 is reversed,

f«:\(PS) -3 ‘l[ﬁ(Pz)] - ‘1{3’ []/E\(Pl)]} = I/E\(Pl),

to within bandwidth limitation.

The resultant coordinate systems for successive planes is shown in Figure 6. By adopt-
ing this scheme of labeling, each frequency domain is represented by the Fourier transform
of the spatial domain to its left, and each spatial domain is represented by the inverse Fourier
transform of the frequency plane to its left. Note, however, that this scheme of coordinate

assignment is valid only for the case of the light wave traveling from left to right.
Y Y
x » x
Wy X
Wy y

FIGURE 6. STANDARD COORDINATES
The properties of coherent optical systems thus presented permit the synthesis of a wide

2.3. FILTER SYNTHESIS

range of optical filters. Such an optical filter consists of a transparency inserted at some
appropriate position in the optical system,

In the optical system of Figure 7, a signal s(x, y) is inserted at plane Pl. At plane P2,
the spectrum S(wx, wy) is displayed. Suppose a transparency R(wx, wy) to be inserted also

at plane P Such a transparency modifies the spectral content of the signal, effecting the

9
operation

A A N
Viw ,w)=Sw, w)Rw, w)
Xy Xy X'y

P, L, P, L, Py

Bogog

‘ | |
—f—»ﬁ f ——&———f >{

FIGURE 7. THE TWO-DIMENSIONAL FILTER
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10

v

A .
The transparency in general has a complex transmittance R = IR | e’ . The amplitude
portion is obtained by varying the optical density and the phase portion is obtained by varying
the thickness, which in turn varies the phase retardation.

At plane PS’ the signal is transformed back to the spatial domain, and is given by

S, ) - “s(x—a, y-B) M, B)dads (10)

where
Bs, 5) = F ‘l[\% L w >]
N

and

This is a convolution integral.

The transparency ﬁ in its simplest form might be a slit or other aperture. Such apertures
are low-pass or bandpass spatial filters. A stop becomes a band-rejection filter, The inclu-
sion of a phase plate causes a phase shift of one portion of the spectrum with respect to the
remainder. Complex filter functions are possible; because it appears that one has independent
control over both phase and amplitude, a wide variety of filter functions can be synthesized.

As an alternative to inserting a transparency in the plane P2 (the frequency domain), a
transparency ?\(x, y), also with complex transmittance, can be introduced into the spatial do-
main at Pl. If provision is made for translating @(x, y) (in the x-y plane) relative to ?(x, y),
the signal at plane P2 becomes <\7' (x', y") = [/s\(x—x' , y-y')?(x, y)| . Here x' and y' meas-

ure the lateral displacement between s and r. At the position w = wy = 0, the integral becomes
{\/"(X’, y') = J.J/s\(x-x', y-y')’r\(x, y)dxdy (11)

which has the form of a cross-correlation., By reversing the coordinate system of A prior to
recording, i.e.,

X =Xx' — x' -x

y-y' ' —y' -y

one obtains the convolution integral

Vi(x', y') = st(x'—x, y'-y)r(x, y)dxdy

This is identical in form with Equation 10, Therefore, two methods are available for syn-

thesizing a required transfer function:
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(1) The frequency-domain synthesis, in which a complex transmittance function (called
a filter) is introduced into the frequency domain, plane PZ’ and operates directly on the fre-
quency spectrum; and

(2) The spatial-domain synthesis, in which a complex transmittance function (called a
reference function) is introduced into the spatial domain, plane Pl’ and operates directly upon
the signal function.

The two techniques produce the same result, as indeed they should. The display is differ-

ent, however. With the frequency-domain operation of Equation 10, an area display is pro-

duced in which the variables, x, y, are the coordinates of the plane PS' With the spatial-
domain operation, the output display is only a point (namely W= wy = 0) and the coordinates
x', y' are generated as functions of time by physically displacing S with respect to £. The
spatial-domain instrumentation requires a scanning mechanism; the filter technique does not.
It is possible and often advantageous to divide a required operation on ¢ into two portions,

one carried out in the spatial domain and the other in the frequency domain. The output at

plane P3 then becomes

3/“1{R2(wx, wy) F [@(x, y)?l(x, y)]} (12)

where /1}1 is a reference function inserted in plane Pl (the spatial-domain plane), and R, is a
filter function inserted in plane P2 (the frequency-domain plane).

A class of filters that has received considerable attention in communication theory is the
matched filter, which has a transfer that is the complex conjugate of the signal spectrum to
which the filter is matched. Such filter maximizes the ratio of the signal squared to the root-
mean-square noise when the noise is white gaussian. The signals of concern here are two-
dimensional and can also be complex. However, the above criterion for thes matched filter
still remains valid.

For the time-domain signals of electronics, the matched-filter criterion
A Nt
R(w) = S (w)
implies the time-domain relationship for the impulse response is
r(t) = s(-t)

For the optical case, since complex signals are possible, the corresponding relations are

A
R(w , w)
Xy
and

Tx, y) =8 (=%, -y)

11
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The construction of the matched filter may be carried out by successive operations in the

spatial and frequency domains, as suggested by Equation 12. At plane Pl of Figure 7 a function

A A

hl(x, y) is inserted. A filter H2(w , W) is inserted at plane P2 and the output is taken from
Xy

PB' The operation at Pl produces

A( h (s, y)
stx-x, y-y )h (x, y

A
and the filter Hz(wx, w ) produces, at plane PS’ the result
<Y

A
jjé\(a-x, B-y)ﬁl(a, B)hz(x3 - a, Yq " B) dadfB

where

A 1A
hy(x, y) =P [szx, wy)}

If the observation in plane P3 is confined to the position x3 = y3 = 0, the above expression re-

duces to

A( -y )/f\l ( ")/F\l (- - B) d
IJS a-x_, B a, B o B) dadp
The matched-filter condition is

B (e, Bh-e, -0) =47, B)

or
A 287, -B
NCR wy) ¥ ——

In most cases, the signal introduced into the optical system will be written as a real
function, i.e., written as a density variation on photographic film. However, it is often ad-
vantageous to use complex transparencies (phase control) for the synthesis of a required trans-

fer function. For such a transparency /I\‘(X, y) there are three cases of interest:

(a) ,ﬁ(x, y) is a varying-density transparency with uniform phase retardation over the
aperture.
(b) P(x, y) has uniform density over the aperture, but with phase retardation, ¢(x, y).

(c) r(x, y) has both varying density and varying phase retardation over the aperture.
The transparency in each case has, respectively, the form

(a) T(x, y) = Alx, y).
(b) ?‘(x, y) = Aem(x’y); A = constant.
() Mx, y) = Alx, y)el®Y),

In each case, A(x, y) is a real number 0 £ A(x, y) <1, and ¢(x, y) is real.

12
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Consider the complex plane of Figure 8. All values of r(x, y) may be represented by a
set of points within or on the unit circle. The functions /r\‘(x, y) of case (a) lie on the real line
OA. The functions r(x, y) of case (b) lie on some circle within the unit circle ABCDA, where-

. A . s . .
as the functions r(x, y) of case (c) may occupy any set of points within or on the unit circle,

Im f\(x, y)

Unit Circle

FIGURE 8. COMPLEX AMPLITUDE-TRANSMISSION PLANE

A special case of (b) is worth noting: when ¢(x, y) assumes only two values, differing
by = (as, for example, 0 and 7). This is a binary code. In terms of Figure 8, the function
is confined to two points lying on COA. Such a phase function is comparatively easy to gen-
erate since techniques for producing phase gratings are well developed. When this is com-
bined with case (a), the entire line COA is utilized. Thus real functions of positive and neg-
ative values can be used, as in the case of the electronic channel. In this case, however, no
bias level is required.

The ability to process complex functions finds practical application in certain problems
arising in radar and communication systems. In the most general case, one has a carrier
signal which may be both amplitude- and phase-modulated. The modulated signal then takes
the form

f(t) = A(t) cos [wct + a(t)]

which may be represented by the complex function

£t) = Ayl

In a coherent system, one can make use of the phase function as well as the amplitude function.

A A
Generally, f(t) is to be subjected to some form of filter operation, For example, it f(t)

represents a coded pulse, the operation of interest might be a cross-correlation against a

13
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14

reference signal /s\(t). The operation can be performed optically if the complex functions A and
/f\are appropriately recorded.

Within the present state of the art it is difficult, however, to record simultaneously the
modulus and argument of/f\in the form of a transmissivity and thickness variation. If the com-
plex function /f\(t) is shifted in frequency by W (where W is greater than the highest significant
frequency contributing to Ae‘ia), an alternative method becomes available. Only the real part

A
of the frequency-translated f(t), i.e.,

Re {A(t)ej falt) + Wt]}

need be recorded, and this is displayed solely as a transmission variation. The frequency
shift is effected using a rotary phase shifter or equivalent device, while the real part is ob-
tained through the use of a synchronous detector operating at the carrier frequency. Let r(t)
be the resulting function. The spectral display of the optical system is such that the positive
and negative frequency components of a signal are independently available for attenuation and/
or phase shifting, If the negative frequencies of r(t) are then removed in an optical system,

j [a(t) + Wt
the resulting function is A(t)eJ [alt) + W] )

(This is shown in Appendix B.)

Two observations deserve mention at this point. First, the presence of the radian fre-
quency W should be taken into consideration in the optical filter. Second, the simplification
in recording which is provided by the above technique exacts a price. One must double the

bandwidth of the electronic channel at all points following the synchronous detector.

2.4. ASTIGMATIC OPTICAL SYSTEMS

The optical systems discussed thus far perform two-dimensional operations. This fea-
ture is useful if the signal to be processed is a function of two variables, for then the signal
can be displayed as a two-dimensional function and processed simultaneously in both variables.
An electronic system, having time as its only available independent variable, would require
a scanning technique to perform the two-variable operation.

More often the signal is one-dimensional in nature and the additional variable is not re-
quired. In such a case, the second variable can be used to provide a multiplicity of indepent-
ent channels so that many one-dimensional signals can be processed simultaneously. The
signals to be processed are written as /s}y(x) and are stacked on the transparency with respect
to the y-variable. The resultant transparency is of the form g(x, y) as before, except that
now y is a parameter which takes on as many values as there are independent channels to
process, The limit on this number is, of course, the number of resolvable elements availa-

ble across the y-dimension of the optical-system aperture.
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The processing is to be done with respect to the x-variable only. The y-dimension chan-
nels must remain separated, The optical system of Figure 7 when modified as shown in

Figure 9, performs in the required manner.

L, P1 L'cy(l) Lz Pz Lcy(2) La Py
Y wy s
X
26 O
y

FIGURE 9. MULTICHANNEL OPTICAL SYSTEM

The plane P_, as before, has the coordinate system (x, y). At the Fourier transform

1’
plane PZ’ a display of (wx, y) is desired; i.e., one wishes to effect a Fourier transform with
respect to x only, while preserving the y-dimension. A cylindrical lens, which has focal
power in one dimension only, can effect a one-dimensional Fourier transformation. To dis-
play the y-dimension at P2, plane Plis imaged at P2, i.e., a double Fourier transformation
with respect to the y-variable is instituted between Pl and P2.
A cylindrical lens Lcy(l) in combination with a spherical lens L2
P1 and P2. The cylindrical lens exerts focal power in the y-dimension only and by itself pro-

is placed between planes

duces a Fourier transformation with respect to y. The lens L2, by itself, introduces a two-
dimensional Fourier transformation. The two lenses in combination produce a double trans-
formation with respect to y and a single transformation with respect to x. Plane P_,

therefore, has wX and y as its coordinates. Ideally, of course, one would like to transfer the

y-dimension of Pl directly on plane P_. This is possible only by imaging Pl onto P, which,

2
of course, implies a double Fourier transformation.

At the plane P2 a filter element, R(wx, y), is inserted. This function is interpreted as a
multichannel one-dimensional filter which processes each channel independently. A similar
cylindrical-spherical lens combination between planes P2 and P3 results in the inverse trans-
formation with respect to v - Thus, the output plane P3 with coordinates x, y displays the
input function after modification by the filter,

A simplification is possible if the signals in all channels are processed identically. Sep-
aration of the channels at the plane P2, or frequency plane, is no longer necessary. In this
event, the cylindrical lenses are not required and the optical system reverts to that of Figure 6.

The function displayed at the frequency plane P_ is, asearlier, S(v , w}). The filter element,
< ;

2
being independent of wy, takes the form H(w\{). The function displayed at P3 is modified with
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respect to the x-dimension frequencies only. The operation can be written as
-1 A A A
Q(x, y) -3 [S(wx, wy)R(wX)i\ = fs(x-a, y)r(a) da

As in the two-dimensional processor, the required transfer function can be synthesized
in the spatial domain. The optical system of Figure 9 suffices, except that the output is taken

from plane P_ and the portion of the system beyond this plane is not required (Figure 10).

2
The integral evaluated when a slit is placed along the line w, = 0 is

Q‘(x‘, y) =j’s\(x-x', y) ?(x, y) dx

where, as before, y is a parameter providing multichannel operation.

Instrumentations which require only one-dimensional processing need be coherent in one
dimension only, Therefore, in the optical systems described in this section, the point source
of illumination can be replaced by a line source oriented parallel to the y-dimension. This is
of practical advantage because the available light flux can be increased by several orders of

magnitude.

L P L P

1 1

-Opof

FIGURE 10. SPATIAL-DOMAIN FILTERING

3
POTENTIAL APPLICATIONS

The first part of this report has been devoted to an exposition of the theory of coherent
optical systems in a framework convenient for the purpose of filter design or the design of
data-handling systems. Emphasis has been placed on a filter -theoretic approach with no loss
of generality, since all the integral-transform operations of interest in the field of communica-
tion theory can be described as filtering operations.

With the theory thus far presented, it is possible to discuss some potential applications of
coherent optical systems. Innovations which are useful in particular problems would be in-

corporated into the simple optical systems already discussed. Amplitude and phase control is
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available over two-dimensional regions in both the space and spatial-frequency domains; this
permits great flexibility of filter configurations.

However, many of the problems of interest at present are inherently one-dimensional but
have a varying parameter, If an optical configuration is sought, one is naturally led to an
astigmatic arrangement. It is useful to consider an alternative approach to astigmatic optical
systems; they may be viewed as multichannel data-handling (or computing) systems. This
alternative viewpoint is developed in Section 3.1, and a discussion of possible applications
appears in Section 3. 2. The treatment in Section 3. 1 will not involve any new theoretical con-
cepts and may be omitted in a first reading; however, it is intended to give some additional

insight into the application of astigmatic systems.

3.1, A MULTICHANNEL OPTICAL COMPUTER
The astigmatic systems of Section 2.4 can be instrumented as a multichannel optical com-

puter with broad capabilities. The optical system can evaluate integrals of the form:

b(g) -ijx
I(wx, X s y) :J f(x-xo, yglx, ye dx (13)
a(y)

The usefulness of an optical technique which evaluates integrals of this form will become evi-
dent when some potential applications are discussed in Section 3. 2. However, the ease with

which optical computations of the above form can be made warrants a few remarks at this point.

(1) The functions f(x, y) and g(x, y) can be recorded readily. The photographing of
intensity-modulated cathode-ray-tube presentations, or their equivalent, is a direct means for
converting signal waveforms of very large bandwidths into static form. While care is required
in the design of the camera and film-transport mechanisms when multichannel operation is in-
corporated, the process is essentially straightforward. Moreover, the staticizing of the sig-
nals means that signals with bandwidths of the order of 100 mcs can be recorded,

(2) The Fourier-transformation capability of the coherent optical system permits simple
sorting of spectra and easy processing in the frequency domain.

(3) The number of independent channels which can be handled simultaneously is limited
only by the resolution of the photographic film and the resolving power of the lenses. Gen-

erally, at least 20 channels per millimeter of film can be accommodated.

The multichannel capability is readily demonstrated by placing an opaque obstacle with
sides parallel to the x-axis in the plane Pl of Figure 9. This removes light from the corre-

sponding interval in planes P, and Pq. Moving this obstacle in the y-direction in Pl (while
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keeping its edges parallel to the x-axis) causes a corresponding image motion in planes P2 and
P3. The edges of these corresponding image regions have a sharpness determined by the res-
olution of the optical system in the y-direction.

Equipment in laboratory use employing commercially available components is capable of
providing about 20 channels per millimeter. Approximately 500 to 1000 channels may there-
fore be obtained using 35-mm-size optical components.

A further demonstration of the multichannel capability follows. Let a transparency A(x, y)
be inserted into the plane Pl of Figure 9. This transparency consists of a number of grating
strips with varying spatial frequency, the various gratings being stacked in the y-dimension.
Each grating is, in effect, a square wave written about a bias level (see Figure 11).

In the plane P_, a spectral analysis of A(x, y) with respect to x will be found in each in-

2:

crement of y. The result of photographing the light distribution in P_ is given in Figure 12.

2
It will be noted that all channels have a recorded signal at the center. This corresponds,
channel by channel, to the average level of illumination emergent from that channel in plane Pl'
The images in each strip show several lines on each side of the central image; these lines

correspond to the fundamental and harmonics comprising the square wave in each y increment.

T
I

L
M

FIGURE 11. MULTICHANNEL FIGURE 12. SPECTRAL ANALYSIS OF
DIFFRACTION GRATING THE MULTICHANNEL DIFFRACTION
GRATING

In some instances, for example, in taking a Fourier transform and making a frequency
analysis, the output is taken from plane P2. Alternatively, the spectrum at 1—’9 can be mod-

ified by means of stops, phase plates, or density filters, and the modified signal displayed at
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plane PS' A photograph of the output at P3 is shown in Figure 13 for one channel only. If an
obstacle is placed on the optical axis in plane P2, the central image (i. e., the d-c or "bias"
term) is removed and the contrast between the dark and light regions disappears, as shown in
Figure 13(b). This interesting behavior can be understood when one recalls that the eye (like
any photographic recorder) responds to light intensity, the square of the light amplitude. Be-
fore removal of the bias level, the total light amplitude (bias plus square wave) was everywhere
positive. Removal of the central image (the d-c or average level) causes the amplitude of the
light reaching P3 to be bipolar; both positive and negative amplitudes appear. Since the eye
and /or photographic recorders can only sense the square of this amplitude, positive and neg-
ative amplitudes cannot be distinguished from each other. Therefore, the contrast in P_ van-
ishes when the d-c component is removed through filtering. Imperfect symmetry of the positive
and negative half-cycles, and the loss of high-frequency components which accentuate the
corners, tend to cause the residual effects. In particular, these are the dark lines between

the half-cycles and the remaining slight contrast between positive and negative half—cyclcs.2

Il

(a) Square-wave diffraction grating

(b) Image of (a) after bias is removed

FIGURE 13. OUTPUT AT P3 FOR ONE CHANNEL

2 . L :
A useful operation closely related to the above discussion is performed in the phase-
contrast microscope. Here contrast is improved by retarding the d-c component by a quarter

wavelength of the illumination. A quarter-wave plate placed on the axis of the system in the
transform plane Py effects the retardation.
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If the central image and first sideband on each side of the central image are allowed to
pass plane P2, another interesting feature may be demonstrated. If all higher-order images
are removed at P2, the image in plane P3 resembles the pattern of P1 except that the amplitude
variation is now sinusoidal rather than square. The optical filter has passed the d-c and the
fundamental frequency, but rejected all harmonics. Figure 14(a) shows the distribution in
plane Pl’ and Figure 14(b) shows the resulting image in P2.
and the second sideband on each side (but not the first) were accepted, the image again would

If, instead, the central image

be sinusoidal, with twice as many lines/unit length present in P_ as in Pl (Figure 14 c¢). This

3
corresponds to selection of the average value and the second harmonic. Any frequencies present
in the spectral decomposition of A(x, y) (which is usually not completely symmetric in practice),
may be selected and passed by the filter to form a resultant image in PS’ which is the transform

of the spectrum in P2.

(a) Square-wave diffraction grating

|

|

{

l

(b) Image of (a) when filter transmits
d-c and fundamental only

(c) Image of (a) when filter transmits
d-c and second harmonic only

FIGURE 14. FILTERING OF SQUARE WAVE
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In the process of evaluating an integral in the form of Equation 13, it is often useful to per-
form a filtering operation on f or g before taking the product fg. The optical configuration of
Figure 9 is modified to that of Figure 15. Here, lens L4 and cylindrical lens LC have been

y(3)

added. A transparency,

Al(X’ y) =B, + f(x, y)

f
is placed in Pl’ and a second transparency,

Az(x, y) Bg + g(x, y)

is placed in PB’ with the coordinate axis properly chosen to correct for image-inversion effects.

Bf and Bg are bias levels for the two transparencies.

L P L

1 1
A xy)
y
X

o egod o

FIGURE 15. MODIFIED MULTICHANNEL OPTICAL SYSTEM

ey (1) Lo P2 Loy (@) L Ley(a) L4

In the absence of filtering in plane P2, an image of Pl would be formed in PS' This would
illuminate Az(x, y) such that the amplitude emergent to the right of P3 would be the product

A G, y) = AL Gx, DAL ) = [Bf i, y)] [Bg + glx, y)]

therefore,

A3(x, )

BfBg + Bgf(x, y) + Bfg(x, y) + £(x, y)g(x, y) (14)

The presence of the bias terms results in three extranous terms which in general inter-
fere with the carrying out of the desired operation. In particular, if a cross-correlation is to

be performed, the output is taken from plane P, at the position w, = 0. Unfortunately, the

4

term BfBg’ being a constant, puts energy into P4 at W= 0. This seriously reduces the

contrast in the output. Some advantages of filtering in plane P2 are now apparent. If an ob-

stacle is placed in P2 at x2 = 0, the d-c component, Bf,

ed. This makes the light amplitude incident on plane P3 proportional to f(x, y) without the bias

of the function Al(x, y) may be remov-
level. Phase information is present and the bipolar function f(x, y) has its positive and neg-

ative peaks 180° out of phase with each other. Thus the first and third terms of the right-hand

side of Equation 14 vanish.
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A question now arises concerning the possible error in evaluating Equation 13 caused by
the second term of the right-hand side of Equation 14. The term Bgf(x, y) can only be trouble-
some if f(x, y) has a d-c component (i. e., if it contains spatial frequency zero in the x-
direction). In this case, a component due to this d-c level will appear at W = 0 in plane P4,
The error caused by this term can, however, be removed from the system output by recording
both f(x, y) and g(x, y) on a common carrier frequency. If the functions resulting from writing
f(x, y) and g(x, y) as a modulation on a common carrier are designated as

Allx, y) = B, +1'(x, y)
and L f
Aé(x, y) = Bg +g'(x, y)

then Bgf’ (x, y) will produce no output at wx = 0, and it can be shown that

¢ X
Jw Jw

(e x o - J _ X :
'[f (x Xo’ yg (x, ye dx W 0 f(x XO, y)glx, ye dx W, 0 (15)

A proof of this equality is given in Appendix B.

3.2. APPLICATIONS TO COMMUNICATION THEORY

In preparing to discuss some possible applications of optical data-processing techniques,
it is useful to list some well-known mathematical operations which can be expressed in the
form of Equation 13. All the operations are taken as one-dimensional, but all except the
Laplace transform permit a varying parameter. It is obvious that integration cannot be per-
formed over an infinite interval, as some of the general expressions demand. However, in
most practical cases f(x, y) and g(x, y) will vanish outside some interval, In Table I, L
represents the achievable aperture limits of the optical system.

A few realistic problems will now be discussed in terms of optical data processing and

presentation.

TABLE I. SOME AREAS OF APPLICATION

Mo, x . y) fex, y) gk, y) ¥ aly)  bly)
Fourier Transform  f(x) 1 e-wXX -L +L
Laplace Transform  f(x - xo) g(x) W, = 0 -L +L
Cross-Correlation f(x - xo) f(x) w s 0 -L +L
Auto-Correlation f(xo - X) g(x) W = 0 -L +L
Convolution f(x) eV e-jwXX 0 +L
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3.2.1. FOURIER TRANSFORMS. The Fourier transform provides the foundation for such
areas as filter theory, spectral analysis, antenna-pattern analysis, and modulation theory, all
of which are essential to the general field of electronics.

An optical spectrum analyzer is easily constructed to accommodate input signals in the
form of a film record of a cathode-ray-tube display. The technique of optically displaying the
spectrum may be particularly useful in applications where one may wish to alter the spectrum
in a prescribed manner, as in speech transmission and coding.

The study of antenna patterns also presents some interesting possibilities. It is well known
that the far-field power pattern of an antenna can be determined from the squared modulus of
the Fourier transform of the current distribution at the antenna aperture. In cases where one
is interested in the effects of various illumination errors on the power pattern, the Fourier
transform properties of coherent optical systems permit visual observation of the resulting
patterns as the optical aperture illumination is appropriately varied to correspond to antenna
illumination errors.

One interesting mechanization is of particular interest to the filter designer. If a matched
filter is to be designed for a signal of pulsed form with a constant repetition rate, the neces-
sary filter is a comb filter. An electronic comb filter frequently is constructed using re-
circulating delay lines, a fairly complex mechanization. An optical comb filter, however, is
merely a diffraction grating whose spacing, for a pulsed input signal, would be determined
by the pulse-repetition frequency of the signal.

The following experiments demonstrate some additional capabilities of optical processors.

First optical modulation and demodulation will be demonstrated. A transparency having in

one channel an amplitude function of the form
= +
Al(x) Bl 0, COS W X

is multiplied by a second transparency

‘e COS W X
2 2|coswx|

n

A2(x) B

The first function, Al(X)’ is the carrier, together with a bias term Sl’ again required so that
positive and negative values of the carrier can be represented as density variations on photo-
graphic film. The second function, AZ(X), is a square wave, along with a bias term Sz. For
convenience in carrying out the experiment and in displaying the result, a relatively low car-
rier frequency has been chosen. The square-wave function is shown in Figure 16(a) and the

carrier in Figure 16(b). The experimental results are shown in Figure 17,
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(A) Original signal (B) Carrier

AW

(C) Modulated signal (D) sSynchronous demodulation
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(E) Full-wave rectification (F) Full-wave rectification with filtering

FIGURE 16. MODULATION AND DEMODULATION

i

(A) Original signal (B) Carrier

I

(C) Modulated signal (D) Synchronous demodulation

(E) Full wave rectification (F) Full wave rectification
with filtering

FIGURE 17, EXPERIMENTAL RESULTS

The modulation process consists of a multiplication and a filtering operation. The former
is carried out in the spatial domain., After the multiplication, frequencies are generated which
are not part of the modulation function; these are the cross-product terms resulting from the

bias Sl' Appropriately positioned stops act as stop-band filters and remove these components.
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The resulting function can be written as

COS W X
BB, +Bo |l +——mm CoSs W X
12 21 |Coswx| ¢

which is in the standard form of an amplitude-modulated carrier. Again, a bias 5152 is re-
quired in order to be able to record the result. The modulated wave is shown in Figure 16(c).
To demodulate the wave, two methods are available, each having an electronic analog.

The first is a linear operation, somewhat analogous to synchronous demodulation. The spectral
display at the frequency plane produces two spectral images for each frequency, symmetrically
positioned about zero frequency. These can be regarded as produced from the exp (jwct) and
exp (—jwct) portions of the function cos wct, i.e., from the positive and negative frequencies.
Suppose, now, that only half of the frequency spectrum is transmitted (either the left or right

half-plane). Also, let the zero frequency be eliminated. The modulated wave becomes

(O .

2 coswx jw X
B, o P — e’ ¢
21 B‘) |coswx|

A recording device, being insensitive to phase, records

(B + cos W X
o G, —
172 2 |cos w x|

as shown in Figure 16(d). This is the original function before modulation.

Alternatively, by removal of the bias term, the modulated wave becomes full-wave rec-
tified when recorded, as in Figure 16(e). Additional filtering to remove the carrier-frequency
terms produces the result in Figure 16(f). The analogy of this operation to the detection opera-
tion of electronics is quite apparent.

A second experiment demonstrates the use of independent phase and amplitude control over
portions of the spectrum. The coherent optical system is used to obtain the derivative of a
function. This is done in the frequency domain, Differentiation of a spatial-domain function
corresponds to multiplication of the transform by w. Therefore, the appropriate filter for
differentiation consists of the superposition of: (1) a transparency that is opaque at the center
or zero-frequency region and that becomes more transparent at higher frequencies; and (2) a
half-wave phase plate needed to produce a reversal of sign for negative frequencies. Figurel8
shows a pulse and its first two derivatives. The second derivative is obtained by use of a trans-

2
parency with transmittance proportional to w .
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FIGURE 18. DIFFERENTIATION

3.2.2, LAPLACE TRANSFORMS. The Laplace transform is given by

o0
F(s) :jf(x)e_sxdx
0
where s is a complex variable, Let s = a + jB; then,

F(s) = F(a, B) j e e ¥ |
0

which has the form of a Fourier transform of the product of two functions (except for the lower
limit on the integral). Here B plays the role of a spatial frequency while one of the two func-
tions contains a parameter o, The optical configuration to be used now follows from the dis-
cussion of astigmatic systems. The planes Pl’ P2, P3, and P4 in Figure 15 are successive

Fourier transform pairs with respect to the variable x. At plane P_, therefore, one inserts

1’

an f(x), which is uniform over all values of y. At plane P3, Pl is imaged onto the function
-ax

e , where the y-dimension is used to provide the various values of @, Finally, the function

F(a, B) is displayed at plane P4, where @ and 3 correspond to the y- and x-directions, respec-

tively.

3.2.3. CROSS-CORRELATION. The principles of optical cross-correlation have already
been described; however, the simplicity of the mechanization in certain cases is so extreme

as to deserve special mention.
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Suppose f(x) and g(x) are two real-valued, narrow-band functions which are to be cross-
correlated, (The narrow-band condition, bandwidth < center frequency, can be satisfied hy
proper modulation). The following arrangement then yields the cross-correlation of f(x) and
g(x):

(a) The multichannel optical system of Figure 9 is extended to have successive transform
planes (in the x-dimension) Pl’ ey P4.

(b) At Pl the function Bf + f(x) is placed in one channel. (For Bf sufficiently large, no
thickness modulation is necessary and the function is purely a varying-transmission trans-
parency. )

(c) Plane P2 has a stop at zero frequency (on axis) which serves as a high-pass filter to

reject Bf and accept f(x).

(d) At plane PS’ the resulting function f(x) is imaged onto Bg + g(x), thus forming the
product f(x) [Bg + g(x+xo):’ , where X = XO(T), a displacement, may be a function of time,

(e) Plane P4 then contains the zero-frequency component of the integral of the above pro-

duct on the system axis. Therefore, for each value xo('r), the output h(r) is given by

n(r) =ff(x>g [x + xom]dx

It is simple to reject Bgf because f(x) is a narrowband function.

One possible immediate application of optical cross-correlation as described above is in
the reduction of data on atmospheric turbulence, where phase records are correlated to meas-
ure scale of turbulence, effective wind velocities, etc.

The extension of the technique to autocorrelation and convolution is obvious from the above

discussion.

3.2.4. DISPLAY OF THE AMBIGUITY FUNCTION. The ambiguity function is ausefultoolin
the analysis of radar and communication systems, Thus far there hasbeen little success in the
area of synthesis. Though one would like to specify the characteristics of the ambiguity func-
tion and then derive the signal function which yields these characteristics, the synthesis pro-
cedure is undeveloped and one generally resorts to a trial-and-error method utilizing computer
techniques.

As an example of the principles of coherent optical systems, three methods of displaying
the ambiguity function will be given.

The ambiguity function, ?\\(t, w), associated with the function /f\(x) is given by

¢ ‘j(/.)
Alr, w) =J?(x)? (x + e “dx
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Generally, one is concerned with the modulus squared of A(t, w) rather than with A(t, w) itself.
It has been shown that in an optical system there exist planes, Pl’PZ .. Pr,that are
successive transform planes. These planes may be used in either a two-dimensional sense

or in a multichannel sense. In order to make use of these concepts, one makes the following

observations.

(1) The ambiguity function, A, is the Fourier transform of the product of two functions,
A Ak
f(x) and f(x+7);
or
. . nx
(2) The ambiguity function, A, is the cross-correlation of two functions, f(x) and
A .
f(x)e 7%,
or
A A . .
(3) If F(w) is the Fourier transform of f(x), then A(t, w) is the Fourier transform of the

product F(§ - W)F (£)(where * denotes conjugate).
Each of these observations leads to a different implementation.

(1) In the first case, the function f(x) is placed at plane Pl (i. e., for each value of y, the
same function, f(x), is displayed). The function f(x+7) is placed at plane PS’ and the
y-dimension is used to get various values of 7. The product of f(x) and f(x+7) has now
been completed by use of the multichannel capability. Finally, at plane P4 the am-
biguity function is displayed.

(2) The function f(x)e-juJX is placed at plane Pl and the y-dimension is utilized for w. The
function f(x+7) is passed through plane P3, thereby utilizing real time for 7. The
output is taken from a vertical slit placed on the optical axis at plane P4. At any in-
stant of time, A(w, 7-0) is displayed.

(3) The third implementation is similar to the first except that the spectra F(w—wo) and
F(w) are placed at planes Pl and PS’ respectively, and the y-dimension corresponds
to w.

4
CONCLUSIONS and COMMENTS
The treatment of optical systems, primarily coherent optical systems, which has been
presented in this report shows that optical data-processing and filtering systems may often
present advantages over their electronic counterparts. The chief advantages stem from the

following properties,

(a) Optical systems are inherently two-dimensional.

(b) Coherent systems inherently generate successive Fourier transform pairs,
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(c) Independent control over phase and amplitude of special components can be easily

effected.

(d) Multiplication can be effected by a simple imaging process.

Many other interesting properties then follow from these four.

However, many practical difficulties may arise to offset the possible advantages of a data-
handling system. These, in general, originate from the use of photographic film as a medium
for generating the function transparencies. The noise-like effects of film grain, perturbations
in emulsion thickness, and the effect of spurious scattering of light, all bear further investiga-
tion and in some cases present serious limitations, The question of complete independence
between phase and amplitude control in optical filters is treated in a manner which attributes
ray properties to the light wave and therefore bypasses the question of field phenomena when
very small objects are allowed to intercept the wave; a scattering analysis is probably in order
for this problem. Lens systems limit resolution and hence channel capacity and channel den-
sity. The delay time involved in developing photographic film may be intolerable for some
applications. Investigations which will dictate the ultimate limitations and practicability
of optical computing or data-handling systems are far from complete, However, the flexibil-
ity and inherent simplicity of optical channels appear to assure this technique a promising

role in forthcoming filtering and data-handling problems.
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Appendix A
TRANSFORM RELATIONS in COHERENT SYSTEMS

In Section 2. 2 of this report the following three properties of coherent optical systems

are given:
/E\B(XB, Ys) o, ﬁl(x, yl)ejB(XSJyB) (9a)
B(XS, y3) = 0 for Z1 = 22 (Sb)
B(XB’ y3)¢0 for Zlat 22 (9¢)

These properties are demonstrated with the aid of Figure 4. Suppose lens L1 to form a

A A
collimated beam of monochromatic light., Calculation of E3 at Xgs Vg given El’ requires
to x

finding the optical-path length from x E_ is then the integral, over plane P

12 Y 0¥y Y3 By

lJ
A
of El properly delayed in phase according to the distance r:

_j27rr
A 1 1+ cos 6A Y
E =—||—=Z
3 ” aa LBy ye Tdxdyy

where A = wavelength of light
d = amplitude attenuation factor resulting from distance between planes Pl and P’3
1 +cos 6 o
— the obliquity factor

r = the distance between the points (x

I

1 yl) and(XB, y3)

1
In the systems to be considered, T}: is dropped because absolute phase and amplitude are
of no consequence, the d in the denominator is dropped because the distance attenuation is
negligible, and the obliquity factor is dropped because 6 is always sufficiently small that cos

0 = 1. The above expression becomes
g, -8 L dx, d
3 'J L &P [ e vy Xgs yg) Ay dy)
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To calculate r(xl, ¥y X ), consider the configuration of Diagram 1.

3 73

| —— g —
‘Xl x3
To
6

DIAGRAM 1

A plane wave, Pl’ making an angle 6 with the normal (as shown) is brought to a focus at

x3, where

x3=fsin9

This implies that the optical distance between Xg and any point on plane Pl‘ is a constant, c.

This constant is

2
X
2 2 2 2 2 g\ 3
=r +r_= - + + sg+f+ (1l -2)—
c=r, +r, \lg X, cos 6 \lf Xg g+f < ¢ )5
Xo XB
for small 6, and usingE T The distance from plane P1 to X3 is obtained by adding the
term
XX
) 13
-xl sin 6 = T
the total distance from Xl to x3 then becomes
X 2 X, X X
g\ 3 17 73 2 1
= - =) —— = + —_—
rlxy) %) g+f+<l f) of f By T B T T

This approach can be carried out in two dimensions to yield

<2+ 2) .
Y3 TY3 ) XYy iV

g
= +1i1 -2
r(x_, Yo XS, y3) constant [1 f] 57 7 R

1
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Finally,
-jw X, -jw y Blw ,w)
A A x 1 vyl X'y
= d
E3 JEle e dxl Yy e
where
21X
Yy T T Af
2
7ry3
W = -
Yy

™
1

Af
(22
(1_§> 3 73
f of

this demonstrates Equation 9a. Equation 9b follows immediately when one sets g = f.
Equation 9b can be obtained subject to weaker conditions than those required in the above
analysis, It is assumed only that the lenses are aberration-free and together serve to image

plane Pl onto plane P3 (Diagram 2). It is readily shown that each Fourier component

- X W y)
e % Y oat Pl produces a plane wave which is brought to a focus on plane P2 at position
uxh w TA
= - f— R
X2 2m Y9 2T
P, L, Py Ly P3
y Y2 Y3
X1 Xa X3

DIAGRAM 2

This implies that plane P2 displays properly the two-dimensional power spectrum of the Pl

signal, but implies nothing about the relative phase of the spectral components. Thus, at plane
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P2, one has

B (x

)
A A 1797 Y9
E2:3' [El] ¢

. A
where /31 is the difference between the actual phase of E9 and the phase required by the trans-
form relationship. Similarly,

B

oXgs X3)

A A
=9
E3 E2e

If a real function is placed at plane Pl’ i.e.,

Sl(xl, yl) = t(Xl, yl)

then at plane P3 an image of plane Pl is observed, i.e.,

= S - -
S3(X3’ y3) l( X, yl)

'(Fhe minus signs appear because successive Fourier transforms are taken with the kernel

-ijx
e . One then has

jBl JB2
t(-x, -y) =F le e “Flix, y)]

which implies

Bl = a constant

[32 = a constant

hence Equation 9b is proved to within a constant phase factor. Since phase is measured re-
lative to the phase at XS Yy T 0, this constant is zero.

That only the planes Pl and P2 can be Fourier transform planes is implied by the previous
analysis. Again, however, this can be proved on the basis of a weaker assumption, namely
that an aberration-free lens of arbitrary f-number is used. Let a point source of illumination
be placed in plane Pl' The Fourier transform of the point (a spatial impulse function) is a
uniform amplitude function with linear phase shift.? Therefore, if P1 and P2 constitute a
Fourier transform pair, the light at plane P2 must be collimated. Therefore, Pl must be in
the focal plane of the lens. Similarly, the point source may be placed in plane P‘), in which

case it is obvious that P2 must be a focal plane for the transfrom relation to hold. Therefore

the inequality 9c is proved.

3
The linear phase shift is, in fact, a constant if the point source is on the optic axis,
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Appendix B
RECORDING of COMPLEX FUNCTIONS

It is the purpose of this appendix to show how complex functions may be recorded as real
functions and yet retain the essential features of the complex function. Equation 15 of the text
will be derived.

Suppose {f\(t) is a complex function having no frequencies higher than wo. Denote the Fourier
transform of /f\(t) as /F\‘(w). Let /f\(t) modulate a carrier and call the resulting function é(t); i.e.,
ju t

B =T e ©

The spectrum of @(t), namely E’\(w), is given by
A A\
t(w) = Flw+w)
o
A
Instead of recording f(t), a complex function, the Re [g(t)] is recorded

Re[/g\(t)] = fo(t) cos [a(t) + w1l
if

1 =t el
(o]

A
Note that if f(t) represents an electronic signal, then the Re[g(t)] can be obtained directly

A
by first offsetting £(t) with a rotary phase shifter, thereby performing the operation

fo(t) cos [wt + a(t)] —— fo(t) cos{(wﬂuo)t + a(t)}

and then synchronously detecting the signal, producing

f (t) cos [(w+w yt+ oz(t)] — f (t)l:cos a(t) +w t]
o o (e} o

For positive frequencies, the spectrum of Re[g(t)] is the same as that for /g\(t). (Recall
¢(w) =0 for w < 0.) Therefore, if the negative frequencies are rejected optically, the resulting
function is {g\(t) to within a constant multiplier,

Suppose one would like to perform the following operation on the two complex functions /f\l(t)
and fz(t):

* jwt
ffl(t)fz e dt

and suppose further that one would like not to record complex functions. It has been shown

. A jwot L . .
above that one can make available fl(t)eJ ©" under the restriction of recording real functions.

. * -jwot . . . .
In a similar manner f2 (t)e JWo can be obtained, and since the optics introduces the kernel
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. jwt . . S .
function e automatically, the following operation is carried out:

jw t -jw i .
Jw Wy . jut

N W jwt _J'/\ A
J'fl(t)e f2 (t)e e’ dt = fl(t)f2 (t)e' dt

which is the desired operation. Equation 15 of the text is obtained by letting fl and f? be real.
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