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Thermal effects in high density polyethylene 
and low density polyethylene at high 
hydrostatic pressures 
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The temperature changes as a result of rapid hydrostatic pressure applications are reported for 
high density polyethylene (HDPE) and low density polyethylene (LDPE) in the reference tem- 
perature range from 298 to 423 K and in the pressure range from 13.8 to 200 MN m -2. The 
adiabatic temperature changes were found to be a function of pressure and temperature. A 
curve fitting analysis showed that the empirical curve (#T/#P) = ab(AP) b-1 described the 
experimental thermoelastic coefficients obtained from the experiments. The data were analyzed 
by determining the predicted thermoelastic coefficients derived from the Thomson equation 
(#T/OP)e = ~To/QC p, The experimental and predicted GrLineisen parameter 7T were also 
determined. 

1. Introduction 
Polyethylene thermoplastics have been widely studied 
in many aspects because of their large number of 
industrial applications [1, 2]. Pressure and tempera- 
ture are usually required for molding these materials. 
For example, in injection molding a pressure range 
from 55.16 to 207MNm -2 is employed and a tem- 
perature range from 149 to 315°C is in general 
required [3]. 

Two methods could be used during these pressure 
applications. First, the isothermal method where 
the specimen is maintained in equilibrium with the 
surroundings by slowly deforming it. Second, the 
adiabatic method where the rapid application of 
pressure results in a temperature change in the speci- 
men. In an injection or compression moulding oper- 
ation it is most likely that the process is conducted 
adiabatically, where the rapid applications of pressure 
are required to achieve the desired production rate. 
Another interesting observation is that most of the 
pressure-volume-temperature relationship necessary 
to characterize any thermoplastics are usually done 
isothermally. 

Recently we have been studying the adiabatic 
method where the rapid applications of hydrostatic 
pressures result in temperature changes in the material. 
This adiabatic method is found to be a function on the 
type of deformation which may be tensile, compression, 
or hydrostatic pressure (volumetric). The classical 
example for adiabatic heating can be found in rubber 
and steel. For instance, the sudden stretching of a strip 
of rubber results in a rise of temperature whereas a 
sudden stretching of a steel bar results in a decrease in 
temperature [4 6]. 
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Thermoelastic measurements (adiabatic heating) 
have been reported in glassy polymers during rapid 
uniaxial tension and rapid uniaxial compression [7-9]. 
We have also measured the thermoelastic effect in 
polymethylmethacrylate using hydrostatic pressures 
at different temperatures [10, 11]. One of the benefits 
obtained from the thermoelastic measurements is 
that important thermodynamic variables such as the 
Grfineisen parameter could be estimated. The use of 
hydrostatic pressure deformation is a very attractive 
tool to study thermal effects, because other important 
factors, such as shear or plastic deformation, can be 
substantially minimized in the material [12]. 

This work reports the finding of an experimental 
investigation on the temperature changes occurring 
during rapid applications of hydrostatic pressure in 
low density polyethylene (LDPE) and high density 
polyethylene (HDPE). Temperature changes were 
measured at different reference temperature and for 
different pressure applications. 

2. Experimental procedure 
The HDPE and LDPE samples were obtained from the 
Cadillac Plastic and Chemical Company, Detroit, 
Michigan, as cylindrical rods of average dimensions 
0.25 inches o.d. and 3.6 inches long (0.635 cm o.d. and 
9.14cm long). The HDPE and LDPE samples were 
used as received. The molecular weight and molecular 
distribution were unknown. The values of the heat 
capacity, the thermal expansion coefficient and the 
density were obtained from Cadillac Plastics [13]. 
These values were reconfirmed from data available in 
the literature [3]. 

The apparatus and evaluation procedure for 
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Figure 1 Temperature changes as a function of applied pressures for 
HDPE at different reference temperatures. (A) 389.0 K, (e)  373.0 K, 
(A) 358.0 K, (D) 334.0K, (O) 295.0K. 

obtaining the temperature changes resulting from the 
rapid application of pressure were described pre- 
viously [10, 14]. Liquid mercury was used to transmit 
the pressure to the sample. Hydrostatic pressures were 
achieved by using a one horsepower air compressor 
and an air driven, high pressure reciprocating pump. 
The pressure was measured with two Bourdon gauges, 
each with a maximum of 345 MNm -2 and sensitivity 
of 3.45MNm -2. The temperature changes were 
recorded using two iron-constantan thermocouples. 
The measuring junction was located in the geometric 
centre of the thermoplastic samples whereas the 
reference junction was located outside the high pressure 
unit. This arrangement allowed us to measure directly 
only the pressure variations and with maximum sensi- 
tivity, since when both junctions were at atmospheric 
pressure, the output of the differential thermocouple 
was virtually zero. 

To record the adiabatic temperature changes, the 
system was allowed to equilibrate to atmospheric 
pressure and to the reference temperature. Pressure 
was rapidly applied by opening a high pressure valve 
which caused the selected pressure to be transmitted 
instantaneously to the sample. An increase in tem- 
perature was recorded. The pressure was released by 
the rapid opening of a second high pressure valve to 
atmospheric pressure which resulted in a decrease in 
temperature in the polyethylene samples. 

3. Resumts and discussion 
Figs 1 and 2 show the temperature changes as a 
function of the applied pressure at different tempera- 
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Figure 2 Temperature changes as a function of applied pressures for 
LDPE at different reference temperatures. ( I )  387.0 K, (O) 377.0 K, 
(zx) 360.0K, ([]) 338.0K, (o) 297.0K. 

tures for HDPE and LDPE, respectively. The data is 
presented only for positive AP's and thus positive tem- 
perature changes. The magnitude of the temperature 
changes were found to be significant for both HDPE 
and LDPE. The magnitude of the temperature changes 
increased with the pressure applied and with the 
reference temperature. 

Figs 3 and 4 show the dependence of the temperature 
changes on the reference temperature at selected 
pressure for HDPE and LDPE, respectively. Figs 1 
to 4 clearly show that the adiabatic temperature 
changes were a function of both pressure applied and 
the reference temperature. A curve fitting analysis 
showed that the adiabatic temperature changes as a 
function of pressure could be described through the 
empirical equation AT = a(&P) b, where a and b are 
constants. Table I shows the results of the curve 
analysis: AT = T - To and AP --- P - P0 where To 
is the reference temperature and P0 is the atmospheric 
pressure. The experimental thermoelastic coefficients 
(OT/OP)o were determined by differentiating on 

T A B L E  I Values for a and b in the empirical equation 
AT = a(&P) b obtained from the curve fitting analysis 

Reference a b Coefficient of 
temperature (K) determination R 2 

HDPE 
299.5 0.1005 0,8409 0.99 
334.0 0.1521 0~8040 0.99 
358.0 0.1837 0.7993 1.00 
373.0 0.2269 0.7830 1.00 
389.0 0.2826 0,7725 1.00 

LDPE 
297.0 0.1232 0.7827 1.00 
338.0 0.123t 0.8419 1.00 
360.0 0.2168 0.747l 1.00 
377.0 0.2611 0.7363 1.00 
387.0 0.2986 0.7220 1.00 

t 9 3 5  
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Figure 3 Temperature changes as a function of the reference 
temperature for HDPE at selected applied pressures (A) 
151.7 MNm -2, ( I )  124.1MNm -2, (e) 96.5 MNm -2, (zx) 
69.0 MN m -2, (c]) 41.4MNm -2, (o) 13.8 MNm -2. 

both sides the above empirical equation to obtain 
(OT/~P)o = ab(AP) b '. 

This equation shows a dependence of the thermo- 
elastic coefficients on the pressure applied. This 
equation is purely empirical and further evaluation 
was not conducted to correlate it with thermodynamic 
variables. Table II gives the numerical expressions for 
(#T/#P)o at certain reference temperatures and shows 
the thermoelastic coefficients determined from selected 
pressures at the same reference temperature. 

Thomson (Lord Kelvin) formulated the dynamic 
theory of heat [15]. A general expression describing 
the thermal effects associated with elastic deformations 
was derived from that theory. He also [16] proposed a 
general thermodynamic formula which describes the 
change in temperature as the result of the rapid 
application of pressure on fluids and observed that the 
adiabatic compression of a fluid (water and mercury) 
resulted in a rise in temperature. 

Later Joule [17, 18] verified Thomson's equation 
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Figure 4 Temperature changes as a function of the reference 
temperature for LDPE at selected applied pressures. (A) 
124.1MNm -2, (B) 96.5MNm 2 ( t )  69.0MNm 2, (zx) 
41.4MNm -z, (D) 27.6, (o) 13.8 MNm -2. 
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T A B L E  II  Experimental thermoelastic coefficients (c~T/SP) 

determined for H D P E  and LDPE at selected pressures 

Reference (OT/c?P)o = ab(AP) b 1 ~ p  ((~r/(~p)o 
temperature ( M N m  -2) ( K / M N m - 2 )  

(K) 

H D P E  
295 0.08451 (AP) -0'1591 0.1013 0.1217 

4.0 0.0678 
20 0.0525 

100 0.0406 

334 0.1223 (AP) -°196° 0.1013 0.1916 
4.0 0.0932 

20 0.0680 
100 0.0500 

358 0.1468 x (AP) -°2°1° 0.1013 0.2325 
4.0 0.1112 

20 0.0805 
100 0.0583 

373 0.1777 (AP) -°217° 0.1013 0.2920 
4.0 0.1315 

20 0.0927 
100 0.0654 

389 0.21831 (AP) -°228 0.1013 0.3680 
4.0 0.1593 

20 0.1104 
100 0.0766 

LDPE 
297 0.0964 (AP) -°2173 0.1013 0.1580 

4.0 0.0714 
20 0.0503 

100 0.O355 

338 0.1021 (AP) -°'1581 0.1013 0.1470 
4.0 0.0820 

20 0.0636 
100 0.0493 

360 0.t620 (AP) o2s3o 0.1013 0.2890 
4.0 0.1141 

20 0.0759 
100 0.0505 

377 0.1923 (AP) -°'2637 0.1013 0.3516 
4.0 0.1334 

20 0.0873 
100 0.0571 

387 0.2156 (AP) 0.2780 0.1013 0.4075 
4.0 0.1470 

20 0.0937 
100 0.0599 

by measuring the temperature changes produced 
by suddenly stretching or compressing a variety of 
materials including various liquids, metals, and rubber. 
Joule found that for low stresses, the measured tem- 
perature changes agreed with the predicted ones from 
the Thomson equation. Swallin [19] has shown a recent 
and modern derivation of the Thomson equation to 
describe the thermoelastic effect. For hydrostatic 
pressures, the Thomson equation can be written as: 

(1) 

where c~ is the volume thermal expansion coefficient, 
Cp is tile specific heat at constant pressure, and O 
is the density. Usually the volume thermal expansion 
coefficient is approximate to c~ = 3~L where ~L is the 
linear thermal expansion coefficient. The term (ST/OP)o 
is usually defined as the thermoelastic coefficient. 

T A B L E  I I I  Physical data  for HDPE and LDPE 

Specific Specific Volumetric* Thermoetast ict  
gravity heat thermal coefficient (#T/SP)o 

( kgm 3) (J /kgK) expansion ( K / M N m  -2) 

(l/K) 

H D P E  
0.953 x 103 2.303 x 103 3.6 x 10 -4 T O = 295K 0.0484 
[20] [21, 22, 23] [24] T O = 334K 0.0548 

T O = 358K 0~0587 
T O = 373K 0.0612 
r 0 = 389K 0.0638 

LDPE 
0.918 x 103 1.916 x 103 5.1 x 10 4 To = 297K 0.086 
[2O] [23] [241 To = 338 K 0.098 

T O = 360K 0,104 
T O = 377K 0A09 
T O = 387K 0.112 

:~C(  v = 3~X L . 

tCalculated from (ST/SP)o = c~vTo/QC r, at atmospheric pressure. 

To compare our experimental thermoelastic coef- 
ficient with the ones predicted using the Thomson 
equation, the values of the thermal expansion coef- 
ficient, the specific gravity, and the heat capacity for 
HDPE and LDPE were taken from different sources 
and they are shown in Table Ill. This data was con- 
firmed by the table of physical properties provided by 
Cadillac Plastics Company [24], and others [25]. 

From Table II and Table III, the experimental and 
predicted thermoelastic coefficients (~T/SP) were 
found to be slightly higher for LDPE than for HDPE. 
This is associated to the contribution from the thermal 
expansion coefficient where av,LDPE > av, HDPE' Thus 
the adiabatic temperature changes were found to be 
slightly higher for LDPE than for HDPEo 

For materials of low molecular weight, it is fre- 
quently assumed that the volume thermal expansion 
coefficient, av, the density, Q, and the heat capacity, Cp, 
are not strongly dependent on pressure. In polymers 
the opposite has been found [26-29]. Two recent 
reviews [30, 31] have summarized the effects of hydro- 
static pressures on the specific volume, glass and 
melting transitions, crystallization, and mechanical 
properties of polymers. Zoller [32] found that the 
specific volume increases with temperature and 
decreases with an increase in hydrostatic pressure 
for LDPE. Heylemann and Houck [33] measured the 
density and the isothermal bulk modulus of a LDPE 
at 23°C and at different hydrostatic pressures. They 
found that the density and the isothermal bulk modu- 
lus increase with pressure. The thermal expansion 
coefficient of polymers was found to increase with 
temperature and to decrease with pressure [34]. 

The pressure and temperature dependence found on 
the experimental (~T/SP) values suggest that the term 
:tv/oC p in the Thomson equation is a function of both 
pressure and temperature. Similar results were found 
by other authors [7] in polymethylmethacrylate where 
the thermoelastic coefficients obtained from uniaxial 
tension and compression measurements were used to 
evaluate the pressure and temperature dependence on 
the C~v and Cp parameters. 
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T A B L E  IV Values of the Griineisen constant for HDPE 

Temperature From experimental 
(K) thermoelastic 

coefficients 

AP 7T 
(MNm 2) 

T A B L E  V Values of the Griineisen constant for LDPE 

Predicted values Temperature 
from the Thomson (K) 
equation 

7T 

295 0.1013 2.06 0.75 
4 1.15 

20 0.89 
100 0.67 

334 0.1013 2.87 0.74 
4 1.40 

20 1.02 
100 0.75 

358 0.I013 3.25 0.73 
4 1.56 

20 1.12 
lO0 0.81 

373 0.1013 3.91 0.72 
4 1.76 

20 1.24 
i00 0.87 

389 0.1013 4.73 0.72 
4 2.05 

20 1.42 
100 0.98 

From experimental Predicted values 
thermoelastic from the Thomson 
coefficients equation 

AP YT 
(MNm -2) 

YT 

297 0.1013 1.81 0.831 
4 0.82 

20 0.58 
100 0.4l 

338 0.1013 1.48 0.815 
4 0.83 

20 0.64 
100 0.49 

360 0.1013 2.73 0.813 
4 1.08 

20 0.72 
100 0.48 

377 O. lOl3 3.17 0.797 
4 1.20 

20 0.79 
100 0.52 

387 0.1013 3.60 0.798 
4 1.30 

20 0.82 
100 0.53 

Examining Tables II and III, differences were found 
between the predicted thermoelastic coefficients and 
the experimental ones at different temperatures and 
pressures. This indicates that care should be taken 
in applying thermodynamic variables that are well 
established for non-viscoelastic materials on reversible 
thermodynamics. 

Several authors have used the thermoelastic method 
(adiabatic heating) to determine important thermo- 
dynamic properties. Kennedy et al. [35, 36] determined 
the pressure dependence of the Griineisen parameter in 
different inorganic materials. Bottani et aI., [37, 38] 
measured the Grfineisen parameter and the thermal 
diffusivity coefficient of titanium and steel using the 
temperature increments obtained from rapid com- 
pression. Haward et al., [7] reported values of the 
linear coefficient of expansion and the Grfineisen 
coefficient at different stresses and temperatures in 
poly(methyl methacrylate) from thermoelastic experi- 
ments during uniaxial tension and compression. Similar 
calculations have been done for glassy polymers [8, 9]. 

The macroscopic or the thermodynamic Grfineisen 
relationship 7r can be estimated from the thermoelastic 
coefficient (aT/OP)o through the equation: 

2r = ~ ---f = ~-p -~ B r ~ (2) 

where B S is the adiabatic bulk modulus, By is the 
isothermal bulk modulus, Cv is the specific heat at 
constant volume and Cp is the specific heat at constant 
pressure. The derivation of these relationships can be 
found in the literature [19]. The ratio Cv/Cp can 
be determined from reversing the thermodynamics 
equation, 

Cv = C p -  T~2BT/o (3) 
v 
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therefore allowing the determination of the Griineisen 
coefficient. 

For HDPE the isothermal bulk modulus reported in 
the literature is 5.0 x 103MNm -2 whereas for LDPE 
the isothermal bulk modulus is 3.4 x 103MNm -2 
[39-41]. Using the experimental values and the pre- 
dicted values from the Thomson equation for the 
thermoelastic coefficients, the Grfineisen parameter 
was calculated and the results are shown in Table IV 
and Table V for HDPE and LDPE respectively. The 
Griineisen parameter was found to be a function of 
pressure and temperature. Fig. 5 illustrates the tem- 
perature dependence on the 7T values determined from 
the thermoelastic coefficients at selected pressures, and 
the predicted ones. 

In addition, the value of the Grfineisen parameters 
decreased with pressure at constant temperature and 
increases with temperature at constant pressure. The 
predicted 7r from the Thomson equation were almost 
independent on the reference temperature. It is well 
established that the Grfineisen coefficient gives an 
estimation between the mechanical and heat effects in 
the material during deformation [19]. 

Warfield [42] reported the Grfineisen constant 
of polymers using pressure dependence of the bulk 
modulus. The lattice Grfineisen constant 7L is usually 
measured in these types of experiments which relate 
to the polymer chains moving in relation to each 
other (interchain motion). In our case the thermo- 
elastic experiments are related to the thermodynamic 
Griineisen constant ~r which is an average over 
all vibrations. Warfield [42] reported 7L = 4.1 and 
7r = 6.4 for HDPE and LDPE respectively. He also 
determined the 7r values for HDPE (Tr = 0.52) and 
LDPE (Tr = 0.38). Thus, differences were found 
between our experimental values for 7r and the ones 
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Figure 5 The macroscopic Griineisen 
constant ~'r as a function of the reference 
temperature for HDPE ( - • - )  and LDPE 
(-  zx-). Experimental values ( - - )  
obtained from the thermoelastic coefficients 
and predicted values ( - - )  determined 
from the Thomson equation. 

reported by Warfield [42]. These differences may be 
related to the ~v, Cp and ~ parameters used in the 
calculations and in the different materials used in the 
experiments. Other authors have reported a 7r = 1.1 
for HDPE [43-45] which are closer to our experimental 
values. 

4. Conclusion 
To conclude, the thermoelastic method (adiabatic 
heating), during rapid application of pressures, affords 
a new method to determine important thermodynamic 
variables for viscoelastic materials. The simplicity of 
the experiment reported here may suggest a quick way 
to evaluate the pressure and temperature dependence 
of an important physical parameter for polymers. 
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