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NOMENCLATURE

Symbols are defined when they appear in the text. Those symbols

which are frequently used are collected here for reference.

i,u subscript identifying Jjoints in the truss

ﬁj position vector to joint

iﬁi length vector directed from joint j to joint i

Eji unit vector directed from joint Jj to joint i

dji elongation of the bar connecting joints j and i

ex unit coordinate vectors (k = 1,2,3)

Vi arbitrary linearly independent vectors (k = 1,2,3)
Zj, Y3 displacement vectors

E% corrective displacement vector

H rotation vector

n vector normal to a fixed plane

u vector normal to a fixed direction in a fixed plane
a?i components of Eji relative to the unit coordinate vectors
y? components of Yj relative to the unit coordinate vectors
[A] in Chapter III a third-order geometric matrix
v{y} in Chapter III a third-order column vector

(G], [A] in Chapter IV a geometric matrix of order 3J

{y} in Chapter IV a column vector of order 3J

[G]ji’ [A]ji third-order submatrix in [G] or [A]

{y}j third-order column vector in {y}

{d} column vector of bar elongations of order 3J

{d}j third-order column vector in {d}

vi



NOMENCLATURE (CONT'D)

transformation matrix

load vector

bar force vector

bar flexibility matrix

joint flexibility matrix

appearing before a quantity denotes the error in that quantity
matrix derived from calculated displacements (dimension L)

a column vector containing the errors in the components of
the unit vectors uji

error in the displacement vector

uniform error in bar elongations

uniform error in components of the unit vectors
column vector with unity in every position

standard deviation

standard deviation of the calculated displacements
matrix derived from the bar force vector (dimension F)
transpose of a matrix

inverse of a matrix

determinant

matrix containing the absolute value of the elements in another
matrix

matrix containing the squared elements from another matrix
transpose of a column vector

column vector containing absolute values of the elements in
another column vector

vii



CHAPTER I

INTRODUCTION

The bothersome problem of calculating truss displacements has
been given considerable attention in textbooks as well as in published
papers.(l'8> Most of the standard texts present at least two methods
for calculating truss displacements. One of the classical methods,
for example, virtual work or Castigliano's theorem, is usually discussed
first.

The classical methods can be used to calculate displacements
whether the truss is a space or plane truss. When the displacement of
but one or at most a few joints is required, these methods can be
applied without great inconvenience. However, more often than not one
is interested in the displacements of several or all the Joints. It is
well known that in such cases the classical methods are not practical
because of the excessive numerical work involved.

The Williot-Mohr construction, the second method which is
invariably discussed, yields the displacements of all joints in the
truss. The main objection to the Williot-Mohr cbnstruction is that,
because it is graphical, the accuracy of the solution is limited and
depends on the care taken in making the construction. Because of the
.additional constructions involved, the problem of accuracy is probably
much more acute in the graphical solution for space trusses.(u) Chu(5)
and Cornish(é) have proposed algebraic solutions of the graphical con-
struction for plane trusses. Use of the algebraic methods is compli-
cated by multiple-sign conventions and the virtually necessary condition

that the graphical construction be made first.



In the case of plane trusses, a number of special methods or
variations on methods for particular cases are available. For example,
the method of elastic weights(l) is intended primarily for the calcula-
tion of the vertical components of the joint displacements. The method
can be adjusted to obtain horizontal displacements; however, the addi-
tional work involved may require as much time as the method of virtual
work.

Aside from the classical methods and the graphical solution
proposed by Ewell,(”) the displacement problem for space trusses has
apparently remained untouched.

This dissertation presents a vector method for analyzing dis-
placements in simple, compound, and complex trusses. Although the
method is presented for space trusses, it is also applicable to plane
trusses. The method of solution is such that the displacements are
obtained in a step-by-step fashion, and in each step one has to solve
but three equations in three unknowns. Thus, numerical solution for
the displacements poses no problem. That the proposed method offers a
practical solution of the problem is demonstrated by means of non-
trivial examples.

A step-by-step solution for the displacements is possible only
because the displacements, considered as a whole, are governed by a
special system of simultaneous equations. When the displacements are
needed for several sets of bar elongations, it is sometimes convenient

n

to obtain a general or "matrix," solution of the special system of equa-

tions. Thus the matrix formulation and solution of the problem is also



considered in detail. The matrix version of the displacement problem
explains the marked similarities which exist between the methods of
displacement and stress analysis for trusses.

In general, an exact solution for the displacements is possi-
ble only in principle. This is true not only for the methods presented
in this report but also for any of the so-called exact methods (e.g.,
virtual work). The accuracy of the calculated displacements is limited
due to the effect of rounding-off errors, which arise in the process of
solving the equations. The initial or inherent errors, which arise
when approximate numbers are used to represent the constants in the
problem, also limit the accuracy of the solution. Both types of errors
are consldered. Round-off errors are discussed only with respect to
minimizing their effect. The inherent errors, which, in general, deter-
mine the accuracy of the solution, are discussed in considerable detail,

and methods for estimating bounds on the inherent errors are presented.



CHAPTER II

DISPLACEMENT ANALYSIS

The truss-displacement problem as it is considered here, is
purely geometric. The problem can be stated as follows: Given a com-
patible set of elongations of the truss members, find the displacements.

The initial step in solving the problem is to develop the re-
lationship between the displacements at the ends of a member and the
elongation of the member. In this study it is assumed that the elonga-
tion of a bar is small compared to the length of the member. The effect
of the assumption is to linearize the displacement problem. The assump-
tion is Jjustified for the materials and truss proportions used in con-
ventional construction.

The displacement problem, especially in the case of space
trusses, is well suited for analysis by the methods of vector algebra.
The vector analysls approach to the problem is employed in this study.(9)
The displacement elongation relationship 1s obtained from a consideration
of a typical member in the truss. With reference to Figure 1 let:

Rj position vector of Joint j relative to a

convenient pole.

?j = displacement vector at joint j.

Lji = length vector directed from joint j to joint i
when the truss is in the undistorted configu-

ration.
i%i = length vector directed from joint j to Joint i
when the truss is in the distorted configuration.
-Eji = g unit vector directed from Jjoint j to Jjoint i.

e
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Figure 1. Joint Displacements.



ey, k=1,2,3 = a right-handed triad of unit coordinate vectors.
Vt, t=1,2,3 = a set of three linearly independent vectors.
dji = change in length of the member connecting Joint

J and 1i.
dji is positive if the length of the member
increases.
The displacement and length vectors are connected by the relationship

Y, - Y, = -(’3. -L..) (2.1)

Since the change in length of the member is assumed to be small compared

to the length of the member, the elongation is

(iji - Lji) -"uji = dji , (2.2)

Combining Equations (2.1) and (2.2), one obtains

Equation (2.3) expresses the relationship between the elon-
gation of the member and the displacement at each end of the member,
and is the fundamental equation used in the analysis of truss displace-
ments. When the vector quantities are expressed in terms of their com-
‘ponents relative to the unit coordinate vectors, Equation (2.3) reduces
to the deformation equation used in the analysis of statically indeter-
minate trusses by the displacement method,(lo)

It should be noted that Equation (2.3) is symmetric, that is,
the roles of Yj and Yi are interchanged simply by interchanging the
subscripts J and i, and that Equation (2.3) can be used to determine the

increase. in the length of a line connecting any two points in the truss,

when the displacement of each point is known.



Figure 2. Simple Truss.



In the truss-deflection problem the bar elongations are given
and the problem is to determine the Joint displacements. The Joint dis-
placements must be such that: (a) Equation (2.3) is satisfied for every
bar of the truss, and (b) the conditions of constraint at Joints connect-
ing the truss to its foundation are satisfied. For a stable truss, con-
ditions (a) and (b), are both necessary, and sufficient to guarantee that
the displacements are unique.

Anticipating the results presented in Chapter IV, it may be
noted here that the displacement and stress-analysis problems are virtu-
aily identical. Thus, it is convenient to consider the various types
of trusses in the order in which they are discussed in the stress-

analysis problem. Simple trusses are considered first.

Simple Trusses

Consider a typical portion of a simple truss as shown in
Figure 2. The displacements at joints k, 4, and m are assumed to be
known, and one wants to find the displacement at joint n. To find the
‘displacement at joint n, it should first be recalled that the rule for
forming a simple space truss éxcludes the possibility that joint n lies
in the plane of joints k, £, and m, so that the unit vectors upe, upg,
and upp are linearly independent.

Applying Equation (2.3) to bars nk, nf, and nm, one obtains

?n * Upk = Yk . Eﬁk - dpk = bpk
Ty Uy =Yy “upy - dpp =byy (2.4)
ﬁ%.‘ Eﬁm = Yﬁ : Eﬁm - dpm = byp

Equations (2.4) are three independent equations involving Yp. One can

express Y.

n @8 & linear combination of any three nonzero linearly independent

_ )
.vectors as Yy = ¥n1V1 + YnoV2 + ¥n3v3 (2.5)



In Equation ( 2.5) the vectors vy (t=1,2,3) are assumed to be
known and the ypt are unknown scalars to be determined. The details of
the procedures for determining the y . are discussed in Chapter IIT;
however, it is apparent that by combining Equations (2.4) and (2.5) one
obtains three simultaneous equations from which the y,. and therefore

Y

can be determined. With Y, now known, Equation (2.3) can be applied
n n

to bars pn, pm, and pt to determine Yﬁ. This process can be repeated
to obtain all the remaining unknown joint displacements, as long as the
truss is a simple truss.

Frequently the displacements of the three joints required to
start the solution are not known in advance. Virtual work or other
methods could be used to obtain these displacements. However, if the
truss contains a great number of Jjoints, application of the classical
methods can be quite tedious and time-consuming.

In an alternative approach, the Joint displacement problem
is broken down into two separate problems as in the graphical determina-
tion of Jjoint displacements for plane trusses. The advantage in this
approach is that the actual displacements of the joints required to
start the solution do not have to be known in advance.

The first problem consists of finding a set of displacements
such that Equation (2.3) is satisfied for every pair of joints in the
truss. These displacements completely define the distorted configura-
tion of the truss. These displacements are the relative Jjoint displace-
ments and correspond to those obtained from the Williot diagram for

plane trusses.
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It is not required that the relative Jjoint displacements sat-
isfy the conditions of constraint at joints connecting the truss to its
foundation. Thus, the second problem consists of determining a correc-
tion to each relative displacement such that Equation (2.3) is still
satisfied for every pair of Jjoints, and such that the restraining condi-
tions are satisfied. In effect, the second problem consists of deter-
mining a rigid-body displacement for the distorted truss such that the
restraining conditions are satisfied. The corrective displacements
correspond to those obtained from the Mohr correction diagram for plane

trusses.

Relative Displacements

The most general type of displacement which can be given to
a rigid body is equivalent to a pure translation of a point in the
body, and a rotation about a line passing through the point. Six
quantities, are required to determine the displacement, three to de-
termine the translation, and three to determine the rotation. Thus if
the procedure is to yield the correct solution, one can introduce at
most six assumptions in the determination of the relative displacements.
Furthermore these assumptions must be such that Equation (2.3) can be
'satisfied for every pair of Joints. A logical way to introduce the
assumptions is to proceed in a manner similar to that used in the con-
struction of the Williot diagram for plane trusses. First, it is as-
sumed that joints k, £, and m are constrained to remain in the plane
defined by these Jjoints in the undistorted truss. Second, it is assumed
that Jjoints k and /4 are constrained to remain on the line connecting

these joints in the undistorted truss. Finally, it is assumed that the

position of Jjoint k is fixed.



With these assumptions,
Zk =0 ) (2.6)

where Z is used to designate the relative displacement. The relative

displacement of joint /4 is

Z, = - d i gie ' (2.7)

1]

Taking

kaamk + ngl_lmg (2.8)

N
g
]

and using Equation (2.3) for bars mk and mf, one obtains the following

simultaneous equations to determine zp and zp,
Zuk *+ Zng (dmp * Vi) = - Gk

Zoe (Upg * Upk) *+ Zpg = Zp * gy - dpy (2.9)

The relative displacement of the remaining joints are determined by the

procedure given for the actual displacements.

Corrective Displacements

The actual displacement of joint 1 is
Y. =7, +Cs , (2.10)

where C; is the corrective displacement vector. Since the relative dis-
placements are such that Equation (2.3) is satisfied for every pair of

joints in the truss, the corrective displacements must be such that

<63 - El) . aji =0 (2.11)
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for every palr of Jjoints in the truss. If Cj is regarded as given, then

all possible Ei which can satisfy Equation (2.11) are given by

Ci = EJ + H x (ﬁl - ﬁJ), (2-12)

where H is an arbitrary vector with dimensionless components. Equation
(2.12) is general and is applicable between any pair of Jjoints in the
truss. Thus, if a particular value is assigned to j, say Jj = q, and

Eq and H are determined, then the remaining cofrections are completely
determined from Equation (2.12). Equation (2.12) is linear in Ej and H,
and it follows that the correction at i due to each of these terms can
be determined separately and the results added to obtain Ci. It should
be noted that the portion of Ei, dve to Ej, is a pure translation. That
portion of Ei due to H x (ﬁi - ﬁj) is also a translation, but is due to

a pure infinitesimal rotation of the truss about a line in the direction

passing through joint j.

ax] W R==]

There are no restrictions on the way that a truss can be
attached to its foundation, as long as the reactions provided by the
constraints are such that the equations of equilibrium can be satisfied
for arbitrary loading of the truss. Full constraint of a truss to its
_foundation is guaranteed if the assumptions introduced in determining
the relative displacements are true for three of the joints connecting
the truss to its foundation. That is, the truss if fully constrained
to its foundation if:

(1) At least three joints, not all on the same line, remain

in the same plane regardless of the distortion of the

truss.
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(2) One of these joints is constrained to move in a fixed
direction in the plane.

(3) One of the joints is fixed in position.

It is to be noted that the first condition must be satisfied
regardless of how the truss is attached to its foundation, that is,
this is a necessary condition. The second and third conditions are
sufficient, but not necessary to complete the constraint; however, these
are the conditions which are frequently imposed in conventional construc-
tion.

If j =0 is the fixed point and the pole for the position

vector of the remaining joints, then from Equation (2,10) and (2.12),

Y; =Z; + Co+ Hx Ry (2.13)

Eb is determined by setting i = 0 .
Thus

Co = - Z0 (2.14)
For the determination of ﬁ, let

r designate the joint constrained to move in the fixed

.
L]

direction.
i = s designate the third joint constrained to remain in

the fixed plane.

n = the unit vector normal to the plane containing joints
0, r, and s.
u = the unit vector in the plane O, r, s normal to the

fixed direction.
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From conditions (2) and (3) in the foregoing discussion,

Yr ‘ H = O
r - u=0 (2.15)
Yo+ n=0

From Equations (2.13), (2.14), and (2.15)
H-R.xn-= (Zb -Z,) 1
H Rpxu=(Zp-2Z) "1 (2.16)
" §5X5=(ZO-25> E

Equations (2.16) are three independent equations involving H. One can
expand H as

E =hyjv] + hovp + hBVs (2.17)

When Equations (2.16) and (2.17) are combined, one obtains three simul-
taneous equations from which the hy (t=l,2,5) and therefore H can be
determined. The geometry of the corrective displacements, at joints

0, r, and s, is shown in Figure 3.

Compound and Complex_Trusses
Compound and complex trusses are distinguished from the simple
truss by the fact that one eventually comes to a point, where the availa-
ble information is insufficient to continue with the solution for the
remaining unknown Jjoint displacements. One possible simple situation is
shown in Figure 4. The displacements of joints a, b, and c and all bar

elongations are assumed to be given and the remaining joint displacements
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are to be determined. With the given information one can find, in order,
the displacements of Jjoints 4, e, f, g, h, n, and m. Beyond this point
the available information is insufficient to continue with the solution.

The compound truss as a transition between the simple and
complex trusses possesses neither the simplicity of the former nor the
generality of the latter. Because of its transitional nature, it is
convenient to treat a given compound truss as a special problem. In
the general case the compound truss is considered and treated as a com-
plex truss.

The truss shown in Figure 4 is chosen as a special‘case to
illustrate one way of computing the displacements of a compound truss.
The truss is broken up into two parts as shown in Figure 5. Using the
procedure outlined for the determination of relative joint displacements,
one calculates relative displacements for the right half of the truss.
Unless an extremely fortunate guess is made, the relative displacements
of joints m, n, and p will not be such that Equation (2.3) is satis-
fied for bars ph, mg, and md, and Z, = Y. Therefore, corrective dis-
placements must be determined for the right-hand section of the truss.
Since the relative displacements of the right-hand section of the truss
.already satisfy Equation (2.3), the correction is a rigid-body displace-

ment. With joint n as the pole, the correction displacements are
ES = En + ﬁ X ﬁs ) (2.18)

where the subscript s applies only to the Jjoints of the right-hand sec-
tion of the truss. One determines C, from the condition that

Y, =Z, + Cy | (2.19)
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Figure 5. Compound Truss of Figure 4 Separated into Two Parts.
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The .displacement of Joints m and p are

Ty =Ty + Gy + T x By

Yp = Zp + Ty + H x Ry (2.20)

Combining Equations (2.20) and (2.3) for bars ph, mg, and md, one :obtains

R T TR

‘ ﬁ.m X Emg = - dmg - (Zm - ?g + En) ‘ amg (2.21)

=]

H Ry X upg = - dpg - (Zm - Yq + Cp) - Umg,

Equations (2.21) are three simultaneous equations involving H. Thus, H
can be determined as indicated for the case of simple trusses.

In treating the truss of Figure 4 as a compound truss, one
makes use of the fact that the Jjoint displacement vectors are linear
functions of the bar elongations. With reference to Figure L4, it is
seen that if the elongation of a fictitious bar connecting Jjoints m
and p were known, it would be possible to determine the displacements
of joints p, 4, a4, i, k and j, in that order, by the procedure for
simple trusses. These displacements could be determined without know-
ing the elongation of bar j/. Furthermore, the displacements of Jjoints
Jj and 4 would be such that Equation (2.3) is satisfied for the bar j4.
For an arbitrarily assumed value of x, the elongation of the ' ficti-
tious bar mp, the displacements of the Jjoints p, 4, q, 1, k, and j
would not be correct. However, because the displacements of these joints
are linear functions of the bar elongations, one can write for the dis-

placement of any joint s

Yg = (_Y—s>x=0 + XYé (2.22)
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In Equation (2.22) the prime is used to denote differentiation

with respect to x,

el
1

actual but as yet unknown elongation of the
fictitious bar connecting Jjoints m and p,

Y = (Ys)X=l - (Ys)x=o’ the constant rate of

change of Yg with respect to x.

It is to be noted that since the actual bar elongations are
held constant their contribution to ?s is the same for x =1 and x = 0
Therefore Yg is simply the displacement at s for x = 1 and zero elonga-
tion for all other bars.

The displacements given in Equation (2.22) will satisfy Equa-
tion (2.3) for every value of x, and for every bar except bar j4. The
requirement that Equation (2.3) be satisfied for bar J4& is used to de-

termine x. Thus

[Ty - Tadyso + x(T3 - TPT .0y, = - a5, (2.23)

The actual displacements are found by solving Equation (2.23) for x and
substituting the result into Equation (2.22).

The idea of using the elongation of a fictitious or substitute
bar can be extended to the general case of a complex truss where more
than one substitute bar is introduced. Before generalizing the method,
it 1s convenient to restate some of the well-known facts about space
trusses.

Consider a general space truss which is stable and statically

determinate. A number of Joints, a minimum of three, connect the truss
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to its foundation. Without loss of generality it can be assumed that
all the foundation Joints are completely constrained, that is, the dis-
placement at each of these joints is zero for an arbitrary load applied
to the joint. For the statically determinate truss, the number of bars
is given by

B =3J, (2.24)
where J is the number of Joints excluding the Jjoints connecting the
truss to its foundation.

If some of the foundation joints are supported on rollers as
shown in Figure 6, then Equation (2.24) is not correct. The equation
would underestimate the number of bars, by two for each roller with two
degrees of freedom, and by one for each roller with one degree of free-
dom. However, as far as either the stress or displacement gnalysis is
concerned, one can consider Equation (2.24) valid.

The effect of a two-degree-of-freedom roller can be duplicated,
in every respect, by a rigid bar of finite length, which is pin-connected
to a second foundation. Similarly, the action of a single-degree-of-
freedom roller can be duplicated by two rigid bars. If the roller sup-
ports are replaced by the equivalent rigid bars, and for the analysis
-the rigid bars are conéidered to be members of the truss, then all joints
connecting the truss to its foundation would be fully constrained. By
adding the rigid bars, the number of Joints not directly connected to
the foundation is increased by one for each roller joint. When the de-
ficit indicated by Equation (2.24) is taken into account along with the
number of (rigid) bars and joints added to the truss, it is seen that

the equation is valid.
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Since the truss is assumed to be stable, one can always find
three different foundation Jjoints, which do not all lie on the same line.
Using the three joints one can always construct at a second truss, which
has the same number of Joints J, and the same geometric layout as the
given truss. Furthermore, we know that the second truss can be a simple
and statically determinate truss since Equation (2.2L4) also applies to
any simple truss which is pin-connected to its foundation.

With the foregoing information in mind, one can now proceed
to obtain the Jjoint displacements of complex trusses in the following
way. The given truss is replaced by a substitute truss, which is a
simple truss and has the same geometric layout as the given truss. The
substitute truss contains as many bars as possible from the given truss
(this is desirable only from a computational point of view). Each of
the remaining bars is a substitute bar having an unknown elongation.

Let

i,k = subscripts referring to the substitute bars
k=1,2,...,N
Xk = elongation of the k1 substitute bar
4 = index referring to an actual bar in the sub-
stitute truss 4=1,2,...,3d-N
x, = elongation of the 450 actual bar in the sub-
stitute truss
s = index referring to a general Joint

7. = displacement of joint s of the substitute truss

N

5,0 displacement of joint s of the substitute truss

for all X = 0 and all Xy = dz
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&
1]

displacement of Jjoint s in the given truss

i

pq = paired values of s designating a bar from the given
truss which is not among the bars in the substitute

truss. ALl together there are N such bars.

It is assumed that the Jjoints in the substitute truss are numbered in
the same way as in the given truss.

The displacements in the substitute truss can be calculated
by the method for simple trusses for any assumed values of the xi. One
encounters no difficulties in calculating the displacements in the sub-
stitute truss since all its foundation Jjoints have zero displacement.
Since the displacements are linear functions of the bar elongations,

one can write for the substitute truss

N
Zs =Zs,0 * L Ttk (2.25)
where
z —a—zﬁ—(z- = =0 f j #k, and all x) = 0
Sk T g | ekg =1 Xy 7O for 7k andall g =

The displacements given by Equation (2.25) are such that
Equation (2.3) is satisfied for every bar of the substitute truss, and
for every bar, except the bars pq, of the given truss, for all values
of xp. Furthermore, since xy is nothing more than the change of the
distance between certain pairs of Joints in the given truss, the dis-
placements in the two trusses will be the same, i.e., Zg = Yg, when

the correct values are assigned to Xx. The requirement that Equation

(2.3) be satisfied for the bars pg is used to determine xi. Substituting
b k
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Equation (2.25) into Equation (2.3) one obtains for each of the bars pg
N
L B - Zq i) Upgrk = - Apg - (Tp,0 - Zq,0)" upg  (2.26)
Since pq takes on N different combinations, Equation (2.26)
actually represents a set of N simultaneous linear equations in N un-
knowns.

Applications of the methods presented in this chapter are

demonstrated by means of examples given in Appendix A.



CHAPTER III

SOLUTION OF THE EQUATIONS

In Chapter II it was shown how the displacement problem can
be solved in a step-by-step fashion. In each step of the solution three
equations are written, which involve but one unknown displacement vector.
The three equations may easily be solved for the components of the dis-
placement vector, but it is worthwhile to discuss briefly how the solu-
tion of the equations may be obtained.

In Equations (2.4) the letter subscripts serve no other use-
ful purpose than to identify the joints being considered. If this is
kept in mind, no confusion arises when these equations are written in

the simpler form:

Y'ulzyl'al'dl‘—'bl
Y' Up = Y2 ¢ Eé - d2 = b2

Y- u5 = Y3 ‘ u3 - d5 = b3 (3.1)

Similarly, no confusion arises by dropping the subscript n in Equation
(2.5). Thus,

Y = y1v] + yovo + y3§3 (3.2)

Equations (3.1) have to be solved as many times as there are
unknown Jjoint displacements. It is in no way difficult to solve the
equations for any given case, but for computation it is desirable to
have a general solution or "plug-in" type of formula. Since there are
only three equations to be solved at one time, the general solution may

easily be obtained.

-25-
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In most instances one wants the displacement vector in terms

of the unit coordinate vectors. Thus

V.t = et (5‘5)
The unit vectors 3. (1 =1,2,3) in terms of unit coordinate vectors are
i
U, = 8a,,€ ) e b
Uy = 8498t 8508 T 8y303 (3.4)
where ajq, &40, a3 are the direction cosines of U; relative to the unit

coordinate vectors.
When Equations (3.1), (3.2), (3.3), and (3.4) are combined, one
obtains the set of equations

b

81191 t 810¥p * 813z¥3 = Dy

Bp1¥y + 8pp t Bpg¥s = b, (3.5)

a5lyl + 352y2 + 8.55:}’5 = b3 3

(11)

which are written more compactly in matrix form as

w1 {} = {o} (5.6)

The solution of Equation (3.6) is
[} = @t o, (3.7)

where

T(aggaBB - a52a23), (315332 - a12a33), (alza25 - a22a15)
-1 1

[A] = HAI (3513‘23 - 8.2_]_8.35), (alla35 - aBlalB), (315321 - alla25)

(a21a52 B a51a22): (aBlalE - a11a52)’ (ag180p - a51a12)

I —

and ||A|| is the determinate of [A].

In many cases the foregping solution is satisfactory; however, a

direct solution is not necessary, and sometimes not the most desirable, since

in the direct solution it is not usually possible to take advantage of any

special relationship which may exist among the unit vectors uj. The follow-

ing solution permits special geometric relationships among the T; to be taken

into account.



The displacement vector Y, is expressed in terms of the

The cosine of the angle between two unit vectors is denoted as
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Y = wjul + woup + W3u3

U] * uUp = COS Q&E = ﬂlg

= Ccos a25 = £23

c
\)

[
W
|

= COS a5l = ﬂBl

=

W

e
|

U.i as

(3.9)

(3.10)

Combining Equations (3.1), (3.9), and (3.10), and taking into account

the fact that uy

. ﬁi =1, one obtains

I

w1 + fyowp + £31W3 bl

biowp + w2 + f23W3 = b2

431wy + bpzWp + w3z = b3

In matrix notation, Equation (3.11) can be written as

The solution is

where

(L] 1} = {v}

{W} = [L]-l{b} )
(l-ﬂg3); <ﬂ3lﬂg5 - ﬂlg): (£12£25 - ﬂBl)

2
(431005 - £12), (1 - 431), (410431 - 423)

(410405 - 451)5 (12831 - Ip3), (1 - £5p)

(3.11)

(3.12)

(3.13)

(3.14)

The components of Y in the direction of the unit coordinate vectors are

obtained by substituting uj from Equation (3.4), and w; from Equation

(3.13) into Equation (3.9).
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To illustrate the advantage of this method when there is a
special geometric condition, consider a case in which the unit vectors
Ei are mutually perpendicular, but not parallel to the unit coordinate
vectors.* In the first solution [A]™l will, in general, have all non-
zero elements. On the other hand, [L]'l reduces to the identity matrix
since fyp = z25 = 43 = 0.

The second method of solution is also quite useful if the truss
has a series of joints wherein the unit vectors have the same relative
orientation. In this case the matrix of the coefficients in Equation
(5.11) will be the same at these joints regardless of the orientation
of the unit vectors with respect to the unit coordinate vectors. As a
result, the inverse of the matrix can be established for the first of
the series of joints, and then be treated as a constant matrix in solv-
ing for the displacements at the remaining joints in the series.

In a third method of solution the displacement vector is ex-

panded in terms of cross products of the unit vectors as

Y = %xﬁk : (3.15)
k=1
where
VI =T x 3
Ve = U3 X U]
V5= T x B

When Equations (3.15) and (3.1) are combined, one obtains

b b b
Xl;gl-;x2=U—2:X5=ﬁz (3.16)

Actually for the case cited here [A]"L = [A]T and [L] = [L]'l = [I].
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where

U=—l"1;2X53
The components of the displacement vector relative to the
unit coordinate vectors are obtained by replacing the Gk in Equation
(3.15) by their expansions in terms of the unit coordinate vectors.

In terms of the unit coordinate vectors, the Vk can be written as

b _
Vi = ,e§1 Ck g€y (3.17)

The components of the displacement vector in the directions

of the unit coordinate vectors are then given by

3
yp = L Crpxk (3.18)
k=1



CHAPTER IV

MATRIX VERSION OF THE DISPLACEMENT PROBLEM

For the most part the vector methods outlined in Chapter II,
and the methods of solution given in Chapter III, are satisfactory when
the displacements are wanted for a few different sets of bar elongations.
When the displacements are wanted for several or many sets of bar elongea-
tions, it is sometimes convenient to formulate and solve the problem in
terms of matrices.

In many examples of linear systems, the mgjrix solution of the
problem is simple in principle but difficult in application. The difficulty
usqally arises because one 1s interested in the general solution of the
linear system, and this inveriably involves the inversion of a matrix.

Generally the matrix to be inverted does not possess properties
which can be used to reduce the number of arithmetic operations involved
in inverting the matrix. For large matrices the number of operations
performed in the inversion process is proportional to the cube of the

(12)

order of the matrix. In contrast to the general case, the matrix
associated with the displacement problem takes a form which substantially
reduces the number of arithmetlc operations in the inversion process,

The matrix version of the displacement problem cén take different
forms according to the formulation of the problem. The simplicity of the
vector method suggests that a matrix formulation of the displacement pro-
blem along the same lines would be appropriate. As it turns out, the

matrix equivalent of the vector method, which is considered here, leads

to a particularly simple system of equations.,

-30-
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The matrix method can be developed for any truss, regardless
of the arrangement of the truss members. However, in general, variations
in the method may be required when complex arrangements of members are
encountered. No particular classification of such structures will be
used here, but the reader should be able to make his own adaptation from
the following discussion.

The matrix and vector methods are very closely related. In
fact, the two are identical except that in the matrix approach numerical
solution of the problem is postponed until the displacement equations have
been written for every joint (bar) in the truss.

We consider first the case of a simple statically determinate
truss which is pin-connected to its foundation.

Let j and i e indices which identify the Jjoints in the truss.
Let j =1, 2, ..., m identity the Joints connecting the truss to its
foundation. ILet j=m+ 1, m+ 2, m+ 3, ..., m+ J identify the remain-
ing Joints in the truss according to the order in which they would be
considered in using the vector method. In general, the order in which
the joints are considered is not unigue. For convenience the displacement-

elongation equation [Equation (2.5)] is rewritten as
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For systematic use of Equation (4.1), let j apply to the joint at
which the displacement vector would be unknown in using the vector method.
Let o < B < 7 be the three values of i(i < j) that define the joints and
bars which must be considered to find ij by the vector method. The equa-

tions for the three bars at any joint are then given as

¥, e us, + Y. ous, = -ds
o o o a
_J _J _J ! J = mtl,m+2,...m+J
Y.ocu., + Y., -u., =-d, (4.2)
B B 7 Jp Jp A<B<y<]

y Uyt vy = Yy
To eliminate the possibility of identifying a bar in more than
one way, we require that the paired indices identifying the bar and its
elongation always be taken in the order indicated in Equation (4.2). We
also require that the three equations at any joint always be written
according to the natyral order of the indices identifying the bars.

Expanding the displacement and unit vectors in terms of the unit

coordinate vectors, one obtains

- VA

Yj = Z YJ ) (4.3)

—-— 5 m - .

uji =m§l aJlem 1=0,B,7 (4.k)
Substituting into Equation (4.2) one gets

3

- ]’ 4 = =d

& et A 230 jo

% 2 4yt 4

Py sza - B (4.5)

5 b

L4 LoL
2, - vy, + Y, a% N = djy

=1 TRy Ta %

J =mtl, mt2,,.. mtd a<p«y<yj
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In general Equations (L4.5) are three equations in twelve unknowns.
Matrix notation will be used to facilitate treatment of the equations.

Let the matrix

2 a0
B B &3
[A]jo: = |0 0 0
0 0 0 J
0 0 0
= 1 2 3
A = |-a -a4 -
(A5 “B %/ %3
0 0 0
0 0 0 ]
Al,, =10 0 0
[ ]JJ
1 3
e Ty TRy
Al.. = =-[A]. -[A].. -[A].
A1y, = -[Aly, -[alyg -1y,
Let the displacement vectors be
) 1 1 1
Y g Ty Y
= 2 = = {2 ={ 2
{s},=4{%) {y}6 —;Vg > Aty = v > v} = 50
3 3 3 3
I5 Ya Ty Yj
and let the bar elongation vector be
dja
dp. =<4,
d

J7
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Equations (4.5) can then be written as

(a1, {v}g + Allotg + (815 {3}, + (15,0} ={a}; (+.6)
J =ml, m2,...m+J
a<B<y<j
Recalling that o, B, 7 are only the specific values of i associated

with the displacement at joint j we define a set of matrices [A]., 1 =1,2,

Ji
«...J such that
[A]ji = 0 if i # a, B, 7 J
= [A]ja i= «
= [A]jﬁ i=058
=[5, i=17
= [A]jj i= ]
Equation (4.6) can then be written as
1%1 [A]ji{y}i = —{d}j 5 = mntl,mt2; .. .mkd (4.7)

.The ‘ector {d}j defines fully the bars to be considered at any
joint. Since the truss is pinned to its foundation {y}i =0 for 1 <1< m.
If we keep this information in mind, no confusion arises when we replace Jj

by t, where t = 1,2,...J. Equation (4.7) then becomes

t
iél [A]ti{y}i = -{d}, t =1,2,...J (4.8)

and the complete system of matrix equations governing the displacements

takes the particularly simple form
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—[A]ll [O] - . [O] ] _{y}l— —{d}lq

(Aly [Aly O]+ o {v}, {a},

Al - [l - : {vhe] = - [ {dhe| 9
. [0] . g

Bl e Bl [ {ds

It should be observed that the form of the matrix equation as
indicated in Equation (4.9) occurs only in the case of a simple truss
which is pin-connected to its foundation.

Equation (4.9) can also be written as

(a1 {s} = -{d} (4.10)

Let the inverse of [A] be [C] so that the solution of Equation

(4.10) is

{s} = - [c1{a (k.11)
The matrix [C] has the same form as [A], that is, [C] is essentially a
lower triangle matrix. If [C] is partitioned in exactly the same way as

[A], then the submatrices of [C] are

(€, = [Algy =12,

t-1
[Clyy, = -[Clgg zgm (A1, [Cl g ;: 5,5,...&1 (k.12)
[Clgy = O m>t

In general none of the submatrices [C]tm (m < t) is identically zero.
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It is to be noted that the order in which the joints and bars
are considered is such that all the [A]tt are nonsingular. Thus we are
assured that the matrix [C] exists and is unique. It is also important
to note that, in any one row of submatrices in [A], there are at most
four submatrices which are not identically zero, and that three of the
nonzero submatrices have but one row different from zero. Therefore the
actual arithmetic operations to be carried out in calculating [C] is far
less than is implied by Equetion (4,12). If all the submatrices in [A]
were nonzero and J is large, then the number of arithmetical operations
would be on the order of 1hJ2,

In a haphazard formulation of the displacement problem where
the bars are considered in an arbitrary order, which is different from

the foregoing development, Equation (4.10) would be transformed to

[al{y} = {a}* (4.13)
in which the asterisk signifies that the elements in {d}, and the corres-
ponding rows of [A] have been deranged. Knowing that [A]* (and {d}*) can
be converted to [A] (and {d}) by rearranging its rows, one recognizes
immediately that inverting [A]¥ should involve no more arithmetic than
‘inverting [A]. In fact, [A]*—l would differ from [A] only in the
arrangement of the columns. On the other hand, if one did not know
that the difference between [A]* and [A] is only superficial, one could

very easily and falsely conclude from the appearance of [A]¥ that inver-

sion of [A]* is a hopeless tasl«:jé and that a general matrix solution for

# [A]* would have the appearance of a general matrix except that it would
have a large number of zero elements. However, the logical conclusion

drawn from the appearance of [A]¥ would, nevertheless, be that the number
of grithmetic operations required to invert the matrix is on the order of
27J3 when J is large.
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the displacements is not practical. Thus, while the fact that the displace-
ment problem can be put into matrix form is not in itself particularly signi-
ficant, the fact that the matrix involved can be made to take a simple form
which is readily inverted is of significance.

In general, a matrix solution for the relative displacements in a
simple truss is not very satisfactory if one is interested in the actual
displacements. The reason for this is that the relative displacements
would have to be corrected for each set of bar elongations for which the
displacements are desired. There are, however, two cases where a matrix
solution for the relative displacements is worthwhile: (1) when one i1s
interested in the relative displacements ohly, as in an investigation of
secondary stresses in trusses; and (2) when the elements in the inverse
of the geometric matrix, which governs the relative displacements, can
be given in a general analytical form. For the most part analytic inversion
of the geometric matrix is practical only for certain specialized types of
plane trusses.

In the matrix solution for the relative displacements, rigid
bars, as described in Chapter II, can be used to simulate the artificial
rigid constraints of the fixed point, fixed line, and fixed plane. The
rigid bars are considered to be actual members of the truss. The problem
is then identical to that of finding the actual displacements in a simple
truss, which is pin-connected to its foundation.

In the following discussion complex trusses are treated almost
solely from a matrix point of view. Where possible, the features which tie

the matrix and vector approaches together are pointed out.
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A development of the matrix method for complex trusses does not
follow readily from a direct consideration of the vector method. The diffi-
culties which arise can be traced to the fact that in the vector method we
are interested in particular solutions, whereas in thematrix approach a
general solution is desired.

A matrix solution would not be of practical significance unless
the matrix relating the displacements and bar elongations is such that it
can be inverted readily. In the preceding discussion it was shown that
the matrix associated with a simple truss could be made to take a form
such that inversion was not difficult. In Chapter II it was shown how the
displacements in a complex truss could be obtained by finding the displace-
ment in a simple substitute truss in which the elongation of certain bars
were unknown. A compatibility relation [Equation (2.26)] was then set up
to determine what the unknown bar elongations had to be, so that the dis-
placements in the substitute and given truss would be the same, The
approach used in Chapter II‘was based on the fact that the displacements
and bar elongations are linearly related. The use of the substitute
truss, a compatibility relation, and the linearity property suggests
that the matrix solution of the problem would be simplified by the use
of a linear transformation.

Consider a general truss which is stable, statically determinate,
and pin-connected to its foundation. If we apply Equation (h.l) only once
to each bar in the truss and replace the vectors by their scalar equival-

ents there results a system of equations:

Gl {y} = -{da (4,1h)

For a stable truss [G] is nonsingular and

[y} = -6 {a (4,15)

In general, [G] will be such that direct inversion of the matrix is not
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We next consider a simple truss which is pin-connected to its
foundation. Let the number of joints in the simple truss be the same as
for the general truss. Let the disposition of the joints in a simple truss
be identical to that of the general truss. Let the joints and bars in the
simple truss be identified in the manner outlined in the development of the
matrix method for simple trusses. For the simple truss we have that

[A] {z} = - {d}* (4.16)
and

{2} = - (a1 {d}x (%.17)
in which {z} is the displacement vector and {d}* is the bar elongation
vector,

Means of identifing the joints and bars in the general truss were
not stipulated. It is now convenient to number the joints in the general
truss in the same way as the simple truss, i.,e., j' =j =1,2,...m, m+l,...
m+J identifies the same joint in both trusses.

Any joint j,(j > m) in the general truss is connected to several
(at least three) other joints. Of the several bars at any joint we want
to consider only the three bars jo', jplJ7'where o' < pB' < y' are the three
smallest numbers identifying the joints connected to joint j by a bar. In
general o', B', or y' may be either greater or smaller than j.

In applying Equation (4.1) to bars ja', jB', jy' (in that order),
the unit vectors must be directed from joint j to joints a', B', 7', res-
pectively, We also stipulate that Equation (4.1) be applied to each bar
in the natural order indicated by the paired indices identifying the bars.
The effect of the foregoing conditions is to limit to one the number of

acceptable ways in which the expanded form of Equation (L4,14) can be written.



For convenience it 1s assumed that the unit coordinate vectors have the
same origin and orientation for both trusses. None of the conditions
restricts the form of the general truss.

The system for identifying and ordering the Jjoints and bars in
the two trusses is such that, if a bar connects joints j and o in the
general truss,/and a bar connects the same joints in the simple truss,
then that row of [G] and that row of [A], which result from applying
Equation (4.1) to ﬁhe bar jo in the general and simple trusses, respectively,
are identical. Furthermore, if the row is the kth row in [G], it is also
the kth row in [A].

For each truss the bar elongation vectors are, in general,
arbitrary; however, if we require that the displacement vector for the
two trusses be identical, then by setting {z} = {y} one obtains from Equa-
tioms (4.15) and (L4.17)

{a}* = [A][G]'l {a} (4.18)
{a} = [G1[AT {a}x (4.19)
Define [B] = [A][G]™! as the matrix which transforms {d} into {d}*; then

{d}* = [B] {d} (4.20)

If the two btrusses have no bars in common, that is, if we cannot

or

find a pair of joints ji such éhat there is a bar connecting these Jjoints
in both trusses, then we can say very little about the matrix [B], or what
{d}* is in terms of {d}. On the other hand, if the arrangement of the bars
in the two trusses is identical, then [G] = [A] so that [B] is the identity

matrix and {d}* = {d}.
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Between the two extreme cases one can expect that the two trusses
may have a certain number of bars in common. For each such bar a row in [G]
and the same row in [A] are identical. If one of the bars is bar Ja, as in
the previous discussion, then the kth row in [G] and [A] are identical, and
from the definition of [G]-l, it is concluded that the kth row in [B] has
zero in every position except for the diagonal element which is one. From

Equation (4.20) one would then have that dga =4 Knowing what the rows

Jar
of [B] must be when the two trusses have bars in common, and knowing that
[A]'l can be computed with comparative ease, one can find the solution for
the general truss in the following way, which avoids direct inversion of [G].

Given the general truss, we construct a simple truss through the
same joints and in such a way that it has as many bars as possible in common
with the general truss. Combining Equations (4.17) and (4.20), one obtains
for the displacements of the general truss

[} = -1t Bl {a} = -[e1Ha} (4.21)

From Equation (4.21) it is seen that we can find [G]-l (which is

m

what we really want) if [B] is known. Fortunately, it is already known
that, for every bar which the two trusses have in common, there is a row
in [B] which is a row from the identity matrix. The total number of Tovs,
N, in [B] which are not rows of the identity matrix, is the same as the
number of substitute bars which would be used in finding the displacements
by the vector method. It is assumed that N is small compared to 3J, which
is the order of the matrices involved in analyzing the truss. To find the
remaining elements of [B], premultiply Equation (4.21) by [G] and take
into account Equation (4.14)., The result is

(11 {a} = [cI[al™(B] {a} (4.22)
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Since {d} is an arbitrary displacement vector, Equation (4.22) is valid only

17 1] = [6]lA]"}[B]

(4.23)

It is already known what the rows of [B] will be for each row of

[G] which is identical to the same row in [A]. Thus it is

consider only the case where the corresponding rows of [G]

necessary to

and [A] are

different, and the same rows of [B] which contain unknown elements.,

For simplicity in showing how the unknown elements in [B] are

determined, we assume a special case where all but the first, second, and

fourth rows of [G] are identical to the rows of [A]. We also ignore the

facts that [A]_l is essentially a lower triangle matrix, and that any one

row in [G] can have at most six nonzero elements. It is known that we can

delete from [G] all but the first second and fourth rows,

of Equation (%.23), with [C] replacing [A]'l, would appear

-

g1 &p &3 - -+ Eyller 2 o - e | [P
81 8pp 823 -+ - Bop||Co1 Cpp -+ Cop | [Py

€1 Bup Bus ¢ ¢ Eunl|%s1 C32 ¢ ¢ O3y 0
Cy1 Cho o+ + Cly D)y

e Ll [ L O

°nl ®n2 ¢ ¢ Cnp | 0

1 0 0 0 0 )

The expanslon

as follows.

by 5 bl3 . .
boo b25 o e
0 1

Ph2 Puz
0 0

0 0
0

0

0

In the expansion the customary method of identifying the elements in

a matrix has been used. This was done only to conserve space. It should be




-43-

kept in mind that from the numbering system set up for the bars and joints,
the first three elements in the first row of [G] are the components of the
unit vector from the first joint (j = m+l or t = 1) to some other joint in
the general truss. If the first, joint happened to be connected to, say, the
fifth joint (t = 5), then the actual expansion of the first row is
[g1] = [[e15 55 825,00 0 01,00 0 01,[0 0 0J, [-a75 -aT5 -a751,[000]..[000]]
Similarly, the first three elements in the second row of [G] are
the components of the unit vector from the first joint to some other join%
in the truss beyond the fifth., If the second joint (j =mt+2 or t = 2) were
connected to the first joint in the general truss, then
le),,] = [F-ab; -a3; -a3;1,[0 0 01,0 0 0], [a3; a5y 82;1,[0 0 0...[0 0 0]]
Let the elements in the product of the first two matrices in the
expansion be defined by the letter h with appropriate subscripts; then the

expansion becomes

by By %5. .« by by Do @5 Dyy o oo bhj 1 00 0..,.0
hgl h22 h25 e o & h2n bgl b22 b25 b2L|- s e a b2n = O l O O '] O
hll'l hll.2 hll'5 .« 8 . hll' O O l O O O O O l o a. O_.
by Puz Pyz Puk Phn
0 0 0 0 0
o 0o o0 0 1]

Multiplying each row of [H] by the first column of [B], and setting

the product equal to the first column of the reduced identity matrix, one obtains

hy1byy + hygbpy + hyjbyy =1
hypPyp + hogboy + hpybyy =0
hypPqq + hygboy + hysby =0,
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which can be solved for by, by, b);. The remaining elements in [B] are
determined in a like manner,

In the development of the methods for analyzing displacements no
consideration was given to the possible sources which cause the bars to
elongate. The most probable source, of course, is a system of loads which
may be applied to the truss. In this case the bar forces must be found
first. . It is now convenient to consider the problem of stress analysis
and its relation to the problem of displacement analysis.

It can be observed that there are some marked similarities between
the methods of analyzing joint displacements, and the methods of analyzing
stresses in statically determinate trusses. For example, in a simple truss
one usually finds the bar forces by the method of joints. In parallel with
this, a method of joints is used to find the displacements in simple trusses.
Similarly, in a compound truss, one usually uses the method of sections and
Jjoints to find the bar forces, and here again a method of sections and
joints is used to find the displacements., To analyze the stresses in
complex trusses one may be forced to use Henneberg's method, which, in
parallel with the method outlined for complex trusses, involves a con-
sideration of the stresses in substitute bars.(l)

The displacement and stress analysis problems are much more
intimately related than one would suspect from the superficial parallel
existing in the methods of analysis.

To show the relation between the displacement and stress problems,

define:
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load vector (dimension F),

——
2,
]

bar force vector (dimension F). An element in {p} is

-*d
—~
I

positive if the bar 1s in tension.

[R] = dimensionless matrix which transforms the loads into
bar forces.

[f] = diagonal matrix, with positive elements, whiich transforms
bar forces into bar elongations (dimension LF'l)

The arrgngement -of the elements in the load vector is the same as

the arrangement of the elements in the displacement vector, that is

{‘1} = [Cl%)

for a general truss,

qf, qf,..., q%, qf, qg, ceey qg] . In the displacement problem

[GHy} = -{d} : (4.14)
Collectively the equations of equilibrium for each joint in the truss are

RNp} +{d} =0 (k.2L)
80 that the bar forces are |

{s} = -R1™ {d (k.25)
The matrix [f] transforms the bar forces into bar elongations and therefore

{a} = £1 {s} (4.26)

Compining Equations (4.14), (L4.24), and (4.25) and solving for

{y}, one obtains
{y} = e )R (k.27)
or ~{y} = [F] {q} (4,28)

where [F] is the flexibility, or deflection-force, for the joints in the

il

truss. Since the vectorsv{y} and {q} are of the same dimension, it is

known that [F] must be a square matrix. It is also known that, if the
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truss exhibits linear elastic behavior, then [F] is also symmetric and non-
singular. The nonsingularity of [F] requires that [G] as well as [R] be non-
singular and therefore a square matrix.* It has been shown that [F] is also
given by:(IB)

[F] = [R]7Ie)R]™ (4.29)
Inverting [F] in Equation (4.29), and premultiplying by [F] as defined by
Equations (4.27) and (4.28) one obtains

1] = (617 R (1.50)
or [¢] = [R]F (h.31)
Thus, the stress analysis problem given by Equation (4.24) can also be
written as

61" {5} = - {d}, (4.32)
and the solution as

{5} = -1617"a} (4.33)

Since the displacement and stress analysis problems differ only

in that the former is governed by [G] and the latter by [G]T, the two pro-

blems are virtually identical. Therefore it should not be surprising that

the methods of analysis are closely related.

* The nonsinghlarity of [G] was, of course, tacitly assumed throughout
this chapter.



CHAPTER V

ERROR ANALYSIS

It 1s not generally possible to obtaln an exact solution of the
displacement problem, even 1n the linearized form considered here,
because in the numerical work rounded numbers are used which are only
approximations of the actual numbers which they represent. Recognizing
that the solution is not exact, one cannot avold asking how large the
errors are. In general, the question cannot be answered exactly, but.
by means of an error analysis 1t 1s possible to estimate the expected

error,

In the error analysis it i1s assumed that the displacement-
elongation relationship, Equation (2,5), is exact. The problem then
becomes one of investigating the errors in the solution of a system of
simultaneous linear equations. General discussions of the problem of
errors, error analysils, and the improvement of approximate solutions are
available in the literature.(ll’lu’lS) In the following discussion
the more general methods are adapted to the displacement problem.

Two kinds of errors must be consldered. First, there is
the inherent error which arises when the constants in the problem are
 replaced by approximate numbers, which are then used in the numerical
solution. In the displacement problem, rounded, and therefore approxi-
mate, numbers are almost invariably used to represent the components

of the unilt vectors. Inherent errors are considered in greater detall
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later in this chapter. Secondly, there 1s the roundef error which
occurs in the numerical solution.

In the proposed method of solving the displacement problem,
the joints are considered in a particular sequence., The sequence is
such that the calculated displacements at three jolnts are used in
solving for the displacement at a fourth joint. The method is,
therefore, essentially a marching or step-by-step method of solution.
The advantage in solving only three simultaneous equations at each
step 1ls partially offset by the faet that errors in the caleulated
displacement at one Jolnt are carried over to succeeding joints. The
alarming feature here is not so much that the errors are carried for-
ward, but that their effects may be magnified and in extreme cases
may go unnoticed. It therefore becomes important to minimize the
accumulatlon of errors. In the error analysis which follows, the
approximate numbers which represent the components of the unit vectors
and the bar elongations used in the process of computing the displace-
ments are consldered to be exact. The errors generated in the solu-
tion are considered due solely to the process of rounding-off,

Round-off errors accumulate algebralcally. It may be expected
that these errors will, in part, cancel one another; however, it can-
not be taken for granted that this will actually occurs

The existence of errors due to roundoff 1s apparent when
the computed solution fails to satilsfy the original equations, At each
stage in the displacement analysis the system of equations to be

solved (in the direct solution) is

(A {y} = {o} (3.5)
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The thfeé elements in {b} depend on the calculated displace-
ments at other jolnts., Thus it 1s clear that past errors will be
carried over, even if an exact solution of the equations is possible
in the current step. Little can be done to remedy thils situation, but
the errors can be reduced in the current step,(lu)

Let {;} be the calculated displacement which 1s in error
due to round-off. lLet {B} be such ﬁhat, when the calculated displace-

ment vector 1s substituted into Equation (5.6), there results

(a1 {5} = {o} (5.1)

Let the error {by}_in the calculated displacement vector be such that
Tyt = {5} + {ort (5.2)
and let the residual {sb} be such that
fo} = {6} + {ov} (5.3)
Substituting these quantities into Equation (3.6) and sub-
tracting Equation (5.1), one obtains
(4] {oyt = {ov} (5.4)
An exact solution of this system of equatlons would yield
éorrections such that all computational errors are eliminated,
Usually this cannot be done so that the calculated corrections are in
error. In general, however, the calculated corrections together with
the original solution yleld an improved displacement vector. If the
residual for the improved displacement vector is not sufficiently small,

the process can be repeated. One cannot be assured that this process
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converges, elther rapidly or at all; however, the method 1s usually

satisfactory.(lh)

An alternative to this pqocedure is to retaln as
many significant figures as possible in going through the initial
solution. Since only three equations in thiee uhknowhscareibeing
solved at any one time, 1t appears that the alternative procedure is
preferable.

The computed displacements are based on approximate input
data. The accuracy of the solution depends, therefore, on the initial
or inherent error incufred in using approximate numbers, An in-
vestigation of the inherent errors permits one to estimate the errors
which can be expected as the result of the initial approximation.

The customary approach is used in investigating the inherent

(1

errors. Tet EJi and d‘I be the approximate quantities used in

J
solving for the displacement vector Yj' Let Aaji’ Adji and Afj be

the errors such that

uji + Auji = true unlt wvector
+ =
dji Adji true bar elongation
?j '+-/_\§J = true displacement vector

For the true quantities the displacement-elongation relation-

ship is

i + M, )

(@ - T) * (@ +83,) + O, - &T,) * (3, + 40,

= - dji - Adji (535)
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whereas for the error quantities, the displacement-elongation relation-

ship 1is

(YJ. -1 - 531 = -4y (2.3)

Expanding Equation (5.5), subtracting Equation (2.3), and

rearranging terms, one gets
ATy - A%y) “up =-2ay - @y -%) &y (5.6)

In obtaining Equation (5,6), the second-order error term
Cﬁfj - A&}) ¢ Aﬁji was assumed to be negligible compared to the remaining
terms on the right-hand side of the equation. This i1s the assumption
customarily used in investigating the inherent errors in a linear
system. It should be kept in mind that any error computed on the
basis of Equation (5.6) is itself in error to a degree consistent with
the assumption used in obtaining the equation.

The error equation 1s basically the same as the original
displacement-elongation equation, and if Aﬁji and Adji were known,
one could consider the right-hand side of Equation (5.6) as being
equlvalent to a bar elongation, and use the methods of Chapter II to
‘find AEJ. Unfortunately, the Aﬁdi and.AdJi are not known exactly.

In fact, about all that can be sald about Au 1 is that the absolute

J
value of each of its components does not exceed a certaln positive
t
number aﬁi, Similarly, it is usually known only that Adji i1s less

than a positive number & In general, the positive number is taken

e

to be the error incurred in rounding-off the elements in the input data

to the significant figures used in solving the problem., Because of
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the variability of these terms, it is possible to determine A§j,only
to within certain limits.

Matrix notation is used in the discussion of error limits.
The métrix formulation of the error equations in this problem differs
somewhat from the usual case. Because of this, it is convenient to

consider the matrix form of a set of simultaneous equations. Let

the set of equations be given by

K1 {x} = {v} (5.7)

The error equation is obtained by the same process used to
obtain Equation (5.6). When the higher-order terms are neglected, the
error equation is

k] {a} = {ao} - (] {x} (5.8)

If the foregoing procedure is applied to the equations for

a general truss, the error equation becomes

6] {&y} = - {ad} - [ac] {s} (5.9)

In obtaining Equation (5.8) it is assumed that the elements in
[ ] are independent of one another, and that each element can be and is
varied by a small amount. This is not the case in the displacement pro-
blem. From the matrix formulation of the displacement problem, it 1s known
that in any one row of third-order submatrices in [G] there are at most
four submatrices which are not identically zero., Therefore, the
elements in these submatrices cannot be varied. In addition, it

is also known that any one row in the submatrix [G]tt
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is always 1ldentical to the same row in one of the other submatrices,
which 1s not identically zero., Thus it 1s clear, that the simple error
equation, Equation'(5.9), cannot be applied to the problem at hand. The
fact that the matrix formulation of the error problem does not take the
form of Equation (5.9) is also indicated by the basic equation,
Equation (5.6), which governs the errors in the displacement problem..
The correct error equation (in terms of matrices) for the
truss problem is found from a consideration of Equation (5.6} and of
how the matrix version of the dlsplacement problem was formulated.
Consider joint j and the three connecting joints «, B, 7, as defined

in Chapter IV, Temporarily assume that Au 1 1s identically zero

J
for all bars in the truss. Equation (5.6) is then identical to
Equation (2.3) except that AYJ and Adji replece ?j and djia When
Equation (5.7) (with Aﬁ'ji = 0) is written for the three bars jo, JB,

Jy, one obtalns the matrix equation

[G]yy {Aw}j + [G]ja {Aw}a + [G]JB {Ay}ﬁ + [G]jy {Ay}y = -{Ad}j(5,1o)

where the matrices are as defined in Chapter IV, and the elements in
the vector {Aw}j are the components of the er?or vector Aﬁj in the
directions of the unit coordinate vectors. The elements in the vector
{Ad}j are the errors in the bar elongations of bars jo, jB, jy. Since
Aaji actually has some value, the right-hand side of Equation (5010)
must be modified to take this into account. Let the difference between
Y. and Y& be defined by the vector ?Ji‘ Then the terms to be added to

J
the right-hand side of Equation (5.10) for bars Jo, By and Jy,
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respectively, are

"~ Vi Aujoz ‘ "’Aujcx Y,joc

- YjB My, or eguivalently- AujB YJB

— . [— — s

- -

T Mgy Ty

It is convenient to set these terms up in matrix form., As

in Chapter IV, we define matrices

i ) 5] — —
taiy, .Aaja Aaja 0 0 0
1 2 3
[AU]ja =l 0 0 0|, [AU]Ja AaJB AaJB Aa;]ﬁ
0 0 0 | 0 0 0_]
0 0 0|
0 0 0
Aot 2’ re>
B J7 J7 37 |

in which the non-zero elements are the components of the errors in the

unit veetors, and vectors
yja Y N

{7 o %5, B L) Bt -

5 z |
y
€ & )
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With the foregoing definitions, the terms to be added to the

right-hand side of Equation (5.10) are

(0], {y% + {y} 5 + (A0, {y}

By defining additional matrixes [AU]Ji such that

[AU] =0 i%a,B;y, i=l,2,«”m,m+l,.u‘m+;{f,

Ji
and noting that {y} is zero, one can write the complete error equation

at Jjoint j as
1y Ay = - faahy - 2iso, At (5.11)

The error equation for the entire system is derived by
extending Equation (5.11) to include every joint:in the truss. Thus,
we obtain
o] {ayt = - {ag} - [av] {n), (5.12)
where [AU] is a matrix of order 3J by 9J which is formed from the

[AU]s7. In expanded form the product [AU] {n} is
Ji

(], L], [0l [o]  [o] R (O e

o] [0 [o] (a0, (AW, (&0, ||y

[0] 1y} o

[0] o - o) 80, (o] tan] (o
_ — ks
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An alternate and more useful form of Equation (5.12) is
derived by noting that the individual products [AU]ji {y}ji can also

be written as (for 1 = )

/ \
— 1 2 3 , Aal
Jo y,joc yJOt jo
_ 2
[AU] Ja{y};ja- o 0 o0 <Aaja
o 0 0 pe’

Thus, by defining matrices [H]$1 and vectors {Aa}ja, etc., in the

same general way as [AU], and {y}ja were defined, one obtalns for the

Jo
alternate form of Equation (5.11)

;-Z‘ [G]ji {Ay}i == {Ad}j - %’ [H]ji {Aa}ji, (5,15)

and the final equation for the whole truss becomes

(el {ay} = - {aa} - (7] {aw}, (5.14)

where {Am} is the column vector formed from the {Aa}ji’ The advantage

in the formulation given by Equation (5.14) 1s that the components of

the errors in the unit vectors appear as a column vector, and is pre-
multiplied by a matrix which is constant for a glven set of displacements.
This mekes the problem of investigating the errors for different values

of the elements in {Au}, if desired, relatively simple. The solution

for the errors in the displacement vector is

[} = - 1e1™ {aa} - 1617 18] s} (5.15)
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The customary approach in error analysis is to investigate the
upper-bound or extreme-limit error. To obtaln the upper bound, one

L1 vy

replaces all negative signs in [G] and in the product [G]
positive signs. The absolute values of the maximum errors in the bar
elongations and in the components of the unit vectors are used in the

{Ad} and {ﬁm} vectors. Thus the extreme limitsfor the errors in the

displacement vector are given by

{avl} = tlelr™ {jaal} +[Jim17 [HJ] {laul}, (5.16)

which in view of the nature of the matrix [H] is identical to

{lay(} = tlel1™ [{laal} + ]zl {jau)}] | (5.17)

In Equations (5.16) and (5.17) the bars are used to signify that one

is to use the absolute values of the elements in the matrices and
vectors., Equation (5.16) is used when the errors in {ra} and {Au},
respectively, are different for each bar in the truss. If every
elemeht in the error vector {Ad} has the same absolute value €a > 0,
and if every element in the vector {Au} has the same value eu > 0, some
labor can be saved in evaluating the extreme limits of {Ag}. In this

case the extreme-limit error is given by

fovl} = el e e + & ta1 {e |, ' (5.18)

where {ed} and {eu} are column vectors with unity in every position. It

should be noted that the only function of {ed} and {eu} is to sum the
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elements in the rows of the matrices. If it is further assumed that

€y and €, are numerically equal, then the extreme limit becomes

{lay|} = ella|1 {egt + C1E[1 {eyt] (5.19)

From the definition of [H], it follows that Equation (5.19) can be

reduced to

{1871} = et]e)17 {7}, (5.20)

where the three consecutive elements in {ﬁ} corresponding to any Jjoint, J,

in the truss are

1

[

+
N

7 %
Ly 7

- 2
gp = 1+ & [y
2

l

=l+%]yjy

Ny

In investigating the extreme limits one should use whichever
of the three error-estimate equations 1s most appropriate for the par-
ticular problem, However, in most investigations one generally uses
Equation (5.20), whether or not it is appropriate, because it affords
én estimate with the least amount of labor. In such cases € 1s taken
to be the largest error in {Ad} or {Au}, as the case may be. In this
application one obtaing an estimate which is in excess of the more

preclse extreme error computed from Equation (5.17).
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The extreme-limit approach provides an estimate of the inherent
errors 1n the system. However, the errors in {Ad} and {Au} are combined
in the most unfavordble way, and the possibility that the errors may be
at least partially self-canceling is automatically excluded, Thus, it
is to be expected that the extreme-limit error {Iéy|} will in general
overestimate the expected error. A more realistic error estimate is
made by using the methods of the theory of probability.

For the problem at hand, investigating error bounds on the basis of
the theory of probability involves only slightly more of computation
than that required in the investigation of the extreme errors.

Those results from the theory of probability which are pertinent
to the problem at hand are summarized as follows. Iet F = F(Xl, X5 °°”Xn)
be a function of n independent varilables Xs Let Axi be a small variation
such that the second number and higher-order terms in a Taylor series

expansion of F can be neglected; then

OF
AF = z. -g};j—-AXl (5.,21)
or
N = % kylx; (5.22)

where k; = BF/éxi.
In neglecting the higher-order terms, AF becomes a linear

function of the independent variables. If the X; are assumed to be

measured quantities, and the error distribution law for Ax; is known,

it 1s possible to compute the standard deviation c(xi), and variance,

dg(xi), for errors in x;. If the mean value of each Xy is used to
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calculate the function F and the partial derivatives, the standard

deviation, o(F), for errors in F is related to the o(x ) by the formula(l6)

D

e ) = T () o) (5.23)

i
If the Axi are normally distributed (i.e,, if the error

distribution follows the normal distribution law) and the errors Axi
are small, the errors in F are also normally distributed., It has
been observed that, when 1 is sufficiently large, the errors in F fre-
quently follow the normal distribution law very closely, even if the
errors in the x; do not,(l6)

In applying the foregoing information to the truss-displacement
problem, it is assumed that the bar elongations and the components of
the unit vectors are independent variables. It 1s also assumed that
errors in the components of the displacement vector are normally dis-
tributed. In this case the probable error is approximately 2 0/5, there
is a 95% probability that the error lies within : 20, and a 99,7%
probability that the error lies within M 30« From the previous discussion
it appears that the assumption of a normal distribution law for errors
in the displacement vector is more than justified in this case since
i=12 7,

It should be observed that the coefficients appearing in
Equation (5.23) are the square of the coefficients, which relate AF to

the Axi in Equation (5.,22), The foregoing relationships apply in the

case of a set of simultaneous equations. However, in this case, the
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coefficients corresponding to the ki are not easily obtained. To show

this, consider Equation (5.8), the solution of which is

{ad = - 1t ) - 7 ) fd (5,2L)

To compute the varlance of the solution vector éne must first
find the coefficients corresponding to ki for each element of {Ab} and
of {AK}. The coefficients for the elements in {Ab} are simply the
elements of [K]"l. On the other hand, because [AK] is premultiplied
by [K]"l and postmultiplied by {x}, a complete expansion of the product
1s required to find the coeffilclent for each element in [AK]. Further-
more, the elements in [AK] would have to be considered in a general
form to obtain the correct results.

In contrast to the more general case of a linear system, the

equation for the errors in the displacement vector takes the simple form

{avt = - (017 {aa} - 1617t {a}, (5.15)

in which the error elements in [G] appear in the vector {Au}. Because
of this, the coefficients for the elements in {Au} are simply the
elements in the product [G]“l[H]g

Let [G*] and [H¥] be maﬁrices the elements of which are the
squares of the elements in [G] and [H], respectively, Iet the variance
vectors be {05}, {oi}, and {oﬁ}. Taking into account the properties

of the matrix [H], one obtains the variance equation

{y} e ({} + (84 {1 (5.25)
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It should be noted that the labor required to calculate {0?} is about the

same as thap required to compute the extreme-limit error by Equation (5.16).
In a problem, where the only "factual" information about the

errors in the input data consists of knowing the round-off error, one

must assume a distribution law to compute the standard deviations of

the input data. Fox(l7) assumes that the error is uniformly distributed

in the interval enclosed by the round-off error in the input data. On

the other hand, McCalley(lB) assumes that the errors are normally

distributed, and that the round-off error is twice the standard deviation.
Let € designate the round-off error; then

€ .
o by Fox's assumption
Fo 43

%

% by McCalley's assumption

Under the same conditions Fox's assumption will lead to a
slightly greater standard deviation for errors in the displacement
vector, Experience indicates that the normal distribution assumption
is more realistic; however, neither the uniform or normal distribution
assumption is based on factual data, Since Fox's assumption leads to
a slightly greater standard deviation, it is used here,

If the round-off error for each bar elongation has the same
value, €37 and the round-off error for each component of the unit vectors

has the constant value €,, then

(G - 5l <
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and
2 1 2
(@ -2 2,
and Equation (5.25) reduces to
o} = 1o et &+ 1] e} 1. (5.26)

If € =€, =€ this result becomes -

s{d} = Slen™ e} + (mxi{e 1, (5.27)
which reduces to
oA} - 1% (5.28)

where the three consecutive elements in ® corresponding to any joint,

Jy in the truss are

42
wja—l+z.yja
b2

B =Lty
. L2
w37‘1+%y37

In the foregoing analysis it was assumed that errors in the bar
elongations are independent of errors in the components of the unit
vectors. If the bar deformations are due to loads on the truss, this

is not true. The reason is that the same approximate components of
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the unit vectors, used in calculating the displacements, would also be

used to calculate the bar forces, and then the bar elongations. A

separate analysis can be made to take this into account, However, the

result would be a speclal case of the followlng analysis 1n which it 1is

considered that the loads and flexibilities of the members as well as

the components of the unlt vectors are represented by approximate members.
We must first find the errors in the bar forces due to errors

in the applied loads and geometry. In Chapter IV it was shown that for

a statically determinate truss, the bar forces are related to the loads

by the equation

()Mo} = - {a} (+.32)

Let
{2}
{aa}

Eok

error in bar force vector

Il

error in load-vector

error in geometry matrix

From the discussion dealing with the elements in [G] it is
clear that only the independent elements in [G]T can be varied arbitrarily.
It should also be noted that the error in the non-zero element g, of

[G]T is the error in the element 8oy of [G]. To indicate this situation,
we have used the symbol & to define the errors in the geometry matrix..

Neglecting the higher-order error term [SG]{AP}, one finds that

(61 Mao} = - {aa} - [oc1™p} (5.29)



-65-

In Appendix B it is shown that the second product on the right-hand side
of Equation (5.29) can be replaced by [M] {Au} so that Equation (5.29)

becomes

1o} = - {aa} - ] {a}, (5.30)

where [M] is a matrix formed from the vector {p}, and {Au} is the
same as in the previous discussion. The dimension of the matrix [M]

is 3J x 9J. The solution of Equation (5.30) is

{ro} = - 61 agt - 16172 [m1{Au) (5.31)

Let [L] = [G]“lT[M];.then

{ro} = 1617 aq} - [m1{au} (5.32)

By analogy with the previous error analysis, we have for the extreme-

limit errors

{laol} = t]el17 ] |aal} + []z]{]ul} (5.33)

For a uniform error, eq’ in the applied loads, and a uniform error,

€y in the components of the unit vectors
-1T
Llapl} = e l]e[17 Hegh + e l]z[He } (5.34)

The variance relationships for errors in {p} are

{oi} - [G*]“lT{oi} + (1] {A}, (5.35)



and for uniform errors
AL} = lox eyt + gl ) (5.36)
The bar elongations are given by
{at = 121 {o} (4.26)
and the first-order error relationship is readily found to be
{na} = 1ae1{p} + [21{an} (5.37)
When Equation (5.31) is used to eliminate {Ap}, the result is
{na} = (ae1{o} - Le10617Had} - (21101710 {au} (5.38)

[Af] 1ike [f] is a diagonal matrix. Because of this, the product [Af]{p}
can be replaced by [P]{Af} where [P] is diagonal. The diagonal elements
in [P] are the corresponding elements of {p} and the elements in {Af}

are the corresponding diagpnal elements of [Af]. Let

] = [£][a]"T

[R] = [N][M];
‘then the extreme-limit error is given by
{1aal} = 1)2]1{|ae |} + [|w]2{joal} + []R]1{|ou]} (5.39)
For uniform errors €g, €,, €y, Ve have

{laa]} = ect]2|Heet + egl[n[He} + e [[R] eyt (5.40)



The variance relationship is

{A} = tea{a} + tva{e} + m{ ), (5.5)
and for uniform errors

{ L} = Srenifegt + qmxife } + Elrmife ) (5.42)

The flexibility matrix for the truss:is, from Equations (4.29)

and (4.30),
[F] = 617 el 1T (5.43)

Combining Equations (5.38) and (5.15) to eliminate {Ad}, and taking

into account the foregoing relationship, one gets the result
{} = - tertremac + teifea) + [II0) -t ENA, (500)

which is correct for first-order errors. It i1s important to note that
possible errors in the geometry of the tfuss have a twofold effect

on the displacements. The first term in the brackets, 1.e., [F][M]{pu},

is the error induced by an equivalent error [M]{Au} in the loads. Similarly,
the second term is the error induced by an equivalent error [H]{Au} in

the bar elongations. ILet

|
1
[ep]
e
!
[
v
—_

[T] =
(8]

i
)
=
—t
1
Lo |
(]
—
L
[a]
—
==
R
-

then

{ay} = - toM{ae} + (P1{aa} + [s){mm} (5.45)
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The extreme-limit error 1is

{lav[} = tiz(i{lac |} + Clz(lealt + C1s]1{ 1o} (5.46)
For uniform errors €p, €y and €,

{layl} = ezl teet + egl[F|Hed + g,l]s]Hegt (5.47)
The variance equation is

{5} = ol + {2} + 199}, 5.18)

which for uniform errors becomes

ALY = Eirstleet + ey} + e ) (5.49)

By setting € = € = 0, one obtains the result for the inherent

q
errors when the components of the unit vectors are represented by approxi-
mate numbers and the elongations are due to applied loads.

A1l the formulas for estimating the inherent errors use the
inverse of the matrix [G]. In a practical application inversion of
the matrix ﬁéy,noﬁﬂbe warranted.. Whén this situation occurs in the more
general case of a system of simultaneous equations, Miline's method(l9)
1s often used to obtain an estimate of the bounds for the inherent errors.
In the Milne procedure each element in the right-hand side of the error

equation, Equation (5~7), is replaced by its maximum posible value,

that 1s, in Equation (5.7) the term

{o} - [ax){x}



is replaced by
{eb = {lml} + rjex]1 {Jx[}

The system of equations
(K{axt = {e} (5.50)

is then solved as a new problem., The only difference is that in solving
these equations the signs of the elements in the {e} vector are adjusted
so that, in the solution process, all subtractlions are replaced by
additions (or vice versa), Solution of the equations yields the inherent
error bounds. Solution for the error bounds in this way is relatively
simple; however, the bounds so obtained are usually greater than the
more precise bounds which use the inverse of the matrix [X].

The feature of the Milne process which makes its use desirable
is that solution of the main problem and solution for the errors can
be obtalned simultaneously.

Milne's procedure can always be used to estimate bounds for
the errors in the truss-displacement problem, However, the advantage
of solving for the displacements by the methods described in Chapter II
and estimating the errors simultaneously is realized only 1n the case
of a simple truss which is pin-connected to its foundation. In general
the process of computing relative and corrective displacements cannot
be used in estimating error bounds. Thus, with the exception’'of the
foregoing special case, one would have to solve the error equatilons
for the truss, that is, the system of equations

leHayt = {ef, (5.51)

by one of the standard methods such as the Gauss-Doolittle method, Crout's
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method, etc.
Example

The simple plane truss shown in Figure 7 is used to provide
a numerical example of the error calculations. The plane truss is used
to avoid a large amount of arithmetlc which adds nothing to an understanding
of the ideas presented in this chapter or Chapter IV. For a plane truss
all quantities in the direction of 53 are zero, and the order of the
matrices involved are correspondingly reduced. In this example it is
assumed. that {Aq} and [Af] = 0. The dimensions of the truss are such
that the elements in the matrix [G] are exact numbers. However, for
illustrative purposes it i1s assumed that the elements are subject to

small errors. For this truss

T _ 1 2 1 2 1 2
= [0 -2h 0 0 0 -2l] kips
[£] = 16 x 107 [I] in kip™*
-5 0 0 0 0 E;__
-l -3 0 0 0 0
[l =% | .0 0 -5 0 0 0
2 0o -5 0 5 0 0
5 0 0 0 -5 0
0 0 L b -4 -3
3 0 0 0 0 o |
1| b -5 0 0 0 0
[c]™ =3| O 0 -3 0 0 0
L -5 0 3 0 0
-3 0 0 0 -3 0
8 -5 - 3 b -5
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24 k 24 k
3L 51)

12—

y

2

/

/ -

L 16’ - 16’
L/A=48 in"* FOR ALL MEMBERS
E =30 XI0° ksi
Figure 7. Plane Truss.



2=

9 12 0o -2 9 -2k
-12 41 0 b1 -12 57
- 0 0 9 0o 0 12
[F] = 26510 | o5 0 50 -12 66 | in kip™"
9 9 .12 0 212 18 =36
-2k 57 12 66 -36 155

Equation (4455) ylelds for the bar forces

i

T = 5 , ] _ |
{P} [951 P3p D)o P45 955 p54]

= [9% 80 -3 24 32 -40] kip
The bar elongation vector is

T - [a a a

gl 2 G @

ys G55 Ay

= 16::10"LL [96 -80 -3 2k 32 -40] in
Substituting [G]'l and {d} in Equation (4.21) or [F] and {q} in Equation
(4,28), one gets
T 1 2 1 2 1 2
_ 1
1yt hn [y3 ¥ Vi, vy, ¥s y5]
= £§§19' (288 78k 96 -85 288  -1696] in

The vector {Au} is

T 1 p) 1 2 1 )
{pa}” = [faz;  dazy) Laxp Llazp  Llaj,  lep

1 2
bojz Loz Le

The matrix [M] is formed from the bar forces and in this example (see

Appendix B for a derivation of [M])

% o0 -80 0 O O 24 Q0 -3 0 0 O
0 9% 0 -80 0 © 0 -24 0-32 0 O
0 © 0 0 -3 0 2h 0 0O 0 4 o
M]=] 0 O 0 0 0 -3 0 24 0 0 0 k40 |kip
0 0 0O 0 0 0 0 0 %2 0-k0 0
0 O 0O 0 0 O© 0 0 0 3 0 -bko
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Premultiplying [M] by [G]-lT, one gets

‘-588 384 240 -320 O =128 T2 0 0 128 120 -160_
0 -480 0 Loo o 160 0 O O 0 0 0

1 o 0 0 0 9% 0-72 0 0-128-120 160
[L]==| o o o0 0 .0 -9 0 72 0 9% 0 0 |kip
5 0 0 0 0 0O 0 0 0-9% 128 120 -160

0o 0 0 0 0 O 0 0 0-160 0 200

For a uniform error eu Equation (5.54) yields for the upper bound of

the error in the bar forces

{18sl} = Tlang] |2np| lagsl ag,] |an,| lag, |

= [615 347 192 88 168 120] €, kips
From Equation (5.36) the variance of {n} is found to be

lOLL

3{03} = =[46.84 141,60 T0.78 23.62 65.60 65'6016121 kip2

27

There is a 95.5% probability that {Apf lies within e{cp}, which 1is
readily found to be

{}} =ofof=1265 288 105 59 99 991 ¢, xip

Since [f] is just the identity matrix multiplied by 16 x lO'LP in kip-l

the matrix [R] is

b -1T

R] = 16 x 10" [G] b

[M] = 16 x 10" [L] in kip,

so that
ﬂAﬂ} =16 x ILO-lL ﬂépu in,

and

=b
{,Ad}e0 = 16 x 10 {Ap}20 in
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The matrix [H] is

>88-78» 0 0 O O O 00 O 0 O
0O 0288-786 0 0 O 00 O O O
16107 0 0 0 0-9%-8%6 0 00 0 0 O
= © 0 0 0 0 0-38%-720 0 0 Of in

5 O 0 0 0 0 ©0 0 00-912 0 0

. 0 0 0 0 0 0 0 00 038-840]

Premultiplying [H] by [G]":L one gets
=864 2352 0 0 O 0 0 00
) bl 1152 -3136 -1440 3920 0 O 0 0 0
(617t = 16x10 0 0 0 0288 2568 0 0.0
9 1152 -3136 -1440 3920 0 0 -1152 -216 - O
-86L 2352 0 0O 0 0 0 0 0
230k -6272 -1440 3920 384 342k -1152 -216 - 0O
T
0 0 o0
0 0o 0
0 0 0 |in
0 0 0
2736 0 0
-3648 -1920 uzog_J

Premultiplying [M] by [F], one gets

86k -1152 -T20 960 0 384216 0 0
-1152 3936 960 -3%280 0 -1312 288 0 0
0

16x10‘4 0 0 0 0 -288 0:'216 O
[F][M] = -1152 3936 960 -3280 0 -1600 :.288 216 0
9 864 -1152 -720 960 O 38k -216 O 288

-230k 5472 1920 -4560 -384 -2112 864 216 -384

-38Lk -360 480 |
512 480 -640

38Lh 360 -480 | in
800 480 -640
-T768 =720 960

3136 1920 -3560
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The matrix [S] is the difference between the foregoing products. Thus

1728 -3504 -T20 960 0 384 -216 © 0

-2304 7072 2400 -T200 0 -1312 288 0 0

16210~ 0 0 0  0-576-25%8 216 O O

[8] =— -230k 7072 2400 -7200 O -1600 14ko 432 0
9 1728 -3504 =720 960 0 384 -216 0 288

-L608 1174k 3360 -8480 768 -5536 2016 L3> -38L

-38Lk =360 480
512 480 -640
384k 360 -480 in
800 480 -640

-350L -T720 960

6784 3840 7760

From Equation (5.47) the extreme-limit error for the displacement vector

is calculated to be

-k
T 16x10
{lay|} = ; [2g12 7ho2 1528 8122 4328 18,90k]e  in,

and from Equation (5.48)

2
o y}T 56xlO [17.406 115,628 7,480 119,022 30.699
2 2
398.9761 €u in ,
from which
T 16x107%
{‘455,}2CI = [1606 L4139 1053 4199 2133 7688] ¢, in,

For this particular truss the caleulations to be carried out
in Milne's method can be stated in terms of matrices, ILet {Ap}M,
{na},, {av}, denote the errors calculated by Milne's procedure, then

{aohy, = [le]17™ 1 |u] e te,
{aahy = [12]{anhy
{avhy = Ulel17tt{aal, + T[H{e) €]
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for this particular truss. Substituting numerical values into these

equations, one gets

T
{tphy = (933 667 192 168 120] ¢

a kips

]

léxlO-u{Ap}M €, in

-4
T
{oyhy, = 16210 (3872 10,281 1528 11,242 5288

{ad},

22,970) e  in

With the ald of a desk calculator there is no difficulty in
calculating the components of the unit vectors to four-decimal-place
accuracy. With four place accuracy, €, <5x 10_5. Using thils value
for €,, one obtains the error estimates displayed in lines 2 to 4 in

Table I, A comparlison of the entries in Table I shows that the errors

are completely negligible compared to the displacements.

TABIE I
ESTTMATED DISPLACEMENT ERRORSK, ¢ = 5 x 1077
joint 3 L )
Line| direction 1 2 1 2 1 2

1 {y}  298.00 -784.00 -96.00 -856,00 288,00 -1696.00

> {ayl} 14 37 .08 A1 .22 .ol
5 {ayhs, .08 .21 .05 .21 .11 .38
4 {Ay}M .19 .51 .08 .56 .26 1.15

% ipli
A i d B
11 entrlesvto be multiplied by 16 x 10 in



CHAPTER VI

SUMMARY AND CONCLUSIONS

The problem of analyzing displacements in space trusses has
been considered in this study.

A vector method for calculating displacements was presented
in Chapter II. The method was formulated on the assumptions that the
displacements are small, and that the axial deformations of the truss
members were given. With the assumption of small displacements, the
methods lead to an exact solution of the problem. Compound and com-
plex as well as simple trusses were considered.

Solution for the displacements is obtained in a step-by-step
fashion. For the most part only three equations in three unknowns must
be solved in each step. Application of the method was demonstrated by
examples which, although simple, are by no means trivial and clearly
demonstrate that the proposed method is practical.

It was noted that solution of the three equations was not
difficult. However, for computation it was considered desirable to
have a general solution or "plug-in" type of formula. Formulas for
three methods of solution were given in Chapter III.

A step-by-step solution for the diéplacements is possible
only because the diéplacements, considered as a whole, are governed by
a special system of simultaneous equations. When the displacements are
needed for several sets of bar elongations, it is sometimes worthwhile
to find a general solution of the equations. The equations were derived
in a matrix formulation of the problem in Chapter IV. Practical methods

for inverting the matrix of coefficients were given.

"TT-



From the matrix formulation it was shown that the stress and
displacement analysis problems are virtually identical. This result,
combined with the experienced gained in working the example problems,
has convinced the writer that, in general, the labor required to calcu-
late the displacements at every Jjoint in a truss by the proposed method
is about the same as that required to calculate the displacement at one
Joint in one direction by the classical methods.

In general, an exact solution for the displacements is possi-
ble only in principle. This is true not only for the methods presented
in this work but also for any of the so-called exact methods.

Inherent errors were considered in detail in Chapter V.
Formulas for estimating the inherent errors under different assumptions
were given. It was shown that estimation of the inherent errors on the
assumption of a uniform or normal probability distribution does not de-
mand much computational work besides tﬁat needed to estimate the extreme
limit errors. It was pointed out that Milne's method of error analysis,09)
which overestimates the errors, can be used to advantage only in the case
of a simple truss, which is pin-connected to its foundation. A simple
method for estimating the error bounds for other types of trusses could
‘not be found.

A simple example was chosen to illustrate computation of the
inherent errors, in which, the errors were found to be completely negli-
gible. The example does not permit any general conclusions relative to
the errors which may be expected in a general case, but it shows that a
considerable amount of numerical work is required to obtain a close

‘estimate of the inherent errors.



APPENDIX A

EXAMPLES

Example I. A simple truss as shown in Figure 1-A is loaded at joint 1
with a vertical load of 10 kips. Joint O is fixed in the horizontal
plane. Joints 2 and 4 are constrained to remain in the horizontal plane.
Joint 4 is also constrained to remain on a line at an angle of 45° to
Ei. Find the displacement of all the Jjoints if %E = lO'LL ft kip’l for
all members of the truss.

The basic data for the truss is given in Table I-A. The bars
of the truss are identified in Column 2. The components of the length
vector for each bar are given in Columns 3 to 5. The origin of each
length vector is given by the first of the two indices required to
identify the length vector. Columns 7 to 9 contain the components of
the unit vectors. The entries in Column 10 are the bar forces, and,
when multiplied by 10'4, are the corresponding bar elongations. Columns
12 to 14 contain the components of the position vector to the joints
identified in Column 11.

To require both a translational and rotational correction, it
was assumed that

(1) joints 4, 8, and 3 are constrained to remain in the plane

defined by these Jjoints in the undistorted truss;

(2) Jjoint 3 is constrained to remain on the line connecting

joints 3 and k;

(3) joint 4 is fixed.

-‘7)9_
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TABLE I-A

BASIC DATA FOR EXAMPIE I

1) () (3) (1) (5) (6) (7) 8 (9 (10) (11) (12) (13)(2v)
Bar T,Ji (£t) LJi Eji dJi R; (ft)
Line j,1i El e, 55 ft El E2 Ej 107 1 é'l &, E}
1 0,1 10 0 0 10 1 o o o 1 10 0 o0
2 0,2 0 10 0 10 0 10 0 2 0 10 O
3 0,3 -10 10 o0 12 42/2 J2/2 0 202 3 210 10 0
L0,k -10 0o 010 -1 o o0 o 4 -10 0 0
5 0,5 0 0 10 10 0 o 1 o 5 0 0 10
6 0,8 -10 10 10 103 433 3/3 J3/3 a3 60 100 00 10
7 0,9 -10 o 10 12 A2z o W2/ w2 7 0o 10 10
8 1,2 -10 10 o0 1wl2 22 N2/2 0 0 8§ -10 10 10
9 1,6 © 0 10 10 0 o 1 0 9 -10 0 10
10 2,5 -10 0 010 -1 o o -20
11 2,6 10 -10 10 13 N3/3 J3/3 ¥3/3  -10/3
2 2,7 0 0 10 10 0 o 1 0
13 2,8 -10 0 10 10/2 2/2 o V22 102
i 3k 0 <10 0 10 0 10 -20
15 38 0 0 10 10 0 o 1 0
6 48 o 10 10 102 0 NEYZINEYE 20/2
17 4,9 0 0 10 10 0 o 1 -10
18 5,6 10 0 0 10 1 0 0 0
19 57 0 10 0 10 0 10 -10
20 58 -10 10 0 12 2/2 W2/2 0 102
21 5,9 -10 0 0 10 -1 o o0 -10
22 6,7 -10 10 o0 10/2 22 W2/2 0 10/2
23 7,8 -10 0 010 -1 0o o 10
24 8,9 0 -10 0 10 0 10 0
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Relative Displacements

Since joint 4 is assumed fixed, Zﬁ = 0. To find the relative
displacement of Jjoint 3, set 4 = 3, k = 4 in Equation (2.7). Substitu-

ting d54 and 534 in Equation (2.7), one gets
23 = - (-20)(-Eé)10'“ft = (-eoéé)lo'“ft

For the relative displacement of joint 8, one sets m = 8, £ = 3, and

k =4 in Equation (2.9).

&y = dgy = dyg = 202 (107"rt)

Omy = dg3 = 438 = O

Ung = ugs = -(e3)

Uy = gy = - [M2/2)8, + (2/2)85]
Ugs - Tg, =N2/2

75 - U3 = (-20e2) - (53)107H£t = 0

Substituting the foregoing numerical values in Equation (2.9), one gets

]

zg), + (~fé/2)z85 - 20/2 (1074¢t)

Gfé/2)z84 +2gg =0

The solution is

1]

Zg, = - ko2 (10-45t)

285

ko (10'4ft)

From Equation (2.8), one gets
zg = 284584 + Z85E85
- hol2 [-W2/2)e, - N2/2)e5 ] (107 *+4)

+ ho(-éB)(lo'”ft)

N
(ee)
]

(AOEQ)(lo'“ft)

NN
(ee]
1
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Using the relative displacements at joints 4, 3, and 8, one can now de-
termine the relative displacement at joint O. For the relative dis-

placement at joint 0, Equation (2.4) becomes

Zo* gy = Zg gy - Aoy = boy
ZO '.1—,103 = _Z-B ’1—105 - d05 = b05
Zgy ugg = Lg * ugg - dog = Pog

Inserting appropriate quantities from Table I-A one obtains

by = 0, By = (-1V2 - 20J2)107*rt = -30d2 (107%r1)

(M + 30V3)10 4 = ;5_(;& (107*+¢)
3

bo8

In the solution for Zb, take

ugh =y, Up3 = Up, Upg = us, Zo = L

bok = P1s Po3 = b2, bog = b3
For the direction solution

Z = Zlgl + Z2-e-2 + Z5—5

From Equation (3.5), the matrix [A] is found to be

-1 0 0
(A] = N2/2 Wzj2 o , and |A]| = /6/6
33 N33 N3/

et
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—
J6/6 0

a1t = A6 [V6/6 A3/3
0 J3/3

0

0

2/2 |

The solution for {z} is found from Equation (3.8):

1]

0

521\ J6/6
) g 6 | J6/6

0
~3/3
J3/3

1
L}
[OXY o
(@
—~
=
<
=
Hy
t
~—

Thus

0

0

2/2

4

\

0

- 302

130 3

3

Z =7g = (-60ep + 19055)(10'”ft)

If, instead of a direct solution, one took

7 = Wlai + Wgaé + WBEB P)

then in Equation (5.11)

1
L] = |v2/2
J3/3

No/2 \3/3
J6/3
J6/5 1

(

107 'ft

)
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and from Equation (3.14), one gets

1/3 2/6 o
L1t =6 N2/6 2/3 ~6/6
0 N6 1/2

From Equation (3.13) the solution for {w} is found to be

W S 13 Ae/s o1 [ o)
(v =6 | N2/6  2/3 Jo/6| (- 302} (10tet)

s 0 ~6/6 1/2 _130/3

\ 3 ),
60
= {- 250/2 (107*£t)
l 1903
Thus,

= (60w - 2502 T + 1903 ) (107 *t)

N
(@]
!

Since

Ul = uok = €1
up = EOB -\/—2/2 e1 +\/—2/2 €n

Uy = Tog = N335 +43/3 5 +V3/3 &5,

Il

the foregoing result reduces to

Zy = (-60 ey + 190 53)(10'”ft) :

which is identical to the previous value calculated for ZO'
Continued application of one of the methods used to obtain Zb
yields the remaining relative displacements. Columns 3 to 5 of Table

IT-A contain the components of the relative displacement for each joint,
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which is identified in Column 2. Column 1 of the table shows the order

in which the relative displacements were calculated.

Corrective Displacements

Zb, Eé, and ZA do not satisfy the conditions of constraint at
the corresponding joints. Thus, corrective displacements are required.

Since joint O is fixed, Equation (2.14) yields
Cp = - Zy = (460 ey - 190 55)(10'“ft)
Since joints 0, 4, and 2 remain in the horizontal plane
n =+ (55)

For joint 4, the fixed direction is + [QJé/2)§i - Gfé/E)Eé]
so that

u =+ [N2/2)8; + N2/2)e,]

Using the positive signs on n and u

I

Ry x 0 = (+10e,)ft., (Zy - Zy)+ n =190 (107 ft)
Ry x 1 = (-52835)rt., (Zo - Zy) - U = -30/2 (10-H1+t)
Ry x 1 = (108))%t., (Zy - Bp)« 1 = 230 (L074rt)

Taking

H= hlel + h2€2 + h363

and putting numerical values in Equation (2.16), one gets

10h, = 190 (107, hy =19 (107"
-2nz = - 30/2 (10-4), hg = 6 (104
10n; = 230 (10°4), hy =23 (10-4)
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Thus,
= - - —_ b
H = (2% + 19 + 6ez) (107)
The corrections due to H are entered in Columns 6 to 8 of
Table IT-A. Columns 9 to 1l contain the components of the displacements
for each joint in the truss. The vertical displacement at joint 1 is

-680 (lO'uft) 53} which is what one would obtain by using virtual work.

Example II. The compound truss shown in Figure 2-Aa is loaded at joint

9 with a vertical load of 10 kips. Take L= lO'Aft kip'l for all mem-

AR
bers. Find the displacement at all joints using the method for compound
trusses.v Check the results by using the method for cemplex trusses.
The basic data for the truss is given in Table III-A. Columns 12 to 14
of Table III-A contain the position vector to the joints indicated in
Column 11, when the pole is at Jjoint 7.

The displacements at joints 7 and 4 are found by the method
for simple trusses. It is not possible to determine immediately the
displacement at joint 6. Therefore the displacement at each of the
remaining Jjoints are obtained by using the method outlined for compound
trusses.

The truss is separated at joints 4, 7, and 6 as indicated in
Figure 6-Ab and relative displacements are computed for the right-hand
section of the truss. Columns 2 to 4 of Table IV-A contain the compo-
nents of the relative displacements for the Joints indicated in Column 1.

Joints 8, 9, and 11 were used to start the solution for the relative dis-

placements. The procedure is identical to that used in Example I.
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(v)

Figure 2-A. Truss for Example II.
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TABLE ITII-A

BASIC DATA FOR EXAMPLE II

(1) (2) (3 &) ) © (1 8 (9 (10) (1) (12) (13) (1%)
Bar Ly (£t) Ly Uy dyy Ry (ft)
Line  J1 B % F ot & 5 & Wt s 5 5 &
1 0,4 10 0 o0 10 1 0 0 -20 L 0 0 -0
2 Ly 10 -10 o 10/2 W2/2  J2/2 o 10/2 5 0 10 -10
3 1,7 10 -10 10 10/3 V3/3  43/3 ¥3/3  -10/3 6 0 10 O
I 2,6 10 0 0 10 1 0 0 0 7 0 o0 0
5 2,7 10 -10 o 10/2 W2/2  4f2/2 0 0 8 10 o0 -10
6 3,7 10 0 0 10 1 0 0 20 9 10 10 -10
7 L5 0 10 o0 10 0 1 0 -10 10 10 10 0
8 L7 0 0 10 10 0 0 1 10 11 10 o0 0
9 L8 10 0 o0 10 1 0 0 0
10 L1l 10 o 10 102 W2/2 o0 Jo/2 -10l2
1 5,6 0 0 10 10 0 0 1 0
12 58 10 -10 o0 10/2 We/2 42/ o 0
13 59 10 0 o 10 1 0 0 0
14 510 10 0 10 12 W2/2 o0 Jo/2  -10/2
15 511 10 -10 10 1003 W3/3 W33 433 1003
16 6,7 0 -10 0 10 0 -1 0 10
17 6,10 10 0 0 10 1 0 0 10
18 6,11 10 -10 o0 10/2 V2/2  42/2 0 -10/2
19 7,1 10 0 o 10 1 o 0 10
20 8,9 0 10 0 10 0 10 0
21 8,1 0 0 10 10 0 0o 1 0
22 90 0 0 10 10 0 o 1 10
23 9,11 o0 -10 10 102 o NEY-RNEY: 0
2k 10,11 0 -10 o0 10 0 -1 0 0




that corrective displacements are required.

.191_

A comparison of Y7 (l1ine 1 in Table IV-A) and 27 indicates

readily found that

From Equation (2.19) it is

Cy = (30ey + 120e, - 60e3) (10™) £t
TABLE IV-A

DISPLACEMENTS FOR EXAMPLE II,

TREATED AS A COMPOUND TRUSS
L) (@) () (&) (5) (6) (7 (8) (9 (10)

Ty (1074£t) Cg = [C7+Hx Eg](lo'“ft) T (10~ *£t)

s g & T 8§ & 5 T &
7 20 20 - 30
L 20 -ho - ko0
8 0 0 0 -20 - 90 -110 -20  -90 -110
9 0 0 0 20 - 90 -280 20 -90 -280
11 0 0 0 30 80 -110 30 80 -110
5 0 0 -30 20 - 50 -230 20 -50 -260
10 -60 0 10 70 80 -280 10 80 -270
L 0O 10 20 -20 - 50 - 60 -20  -ho - ko
6 -70 =90 -30 70 120 -230 0 30 -260
7t -10 -100 30 30 120 - 60 20 20 - 30
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A corrective rotation is also required in this case., The data needed

to determine H from Equations (2.21) are

Rg x ugp = 10e3 ft
Ry x uy = (W2 o1 + W2 &) £t
Ry x g = 10ep ft
Zg - Yp + Cg = (-40ep + 30ep - 90ez) 1074¢t
7y - Ty + T = (308, +1306, - 40ex) 107*rt
ho- 4+ Oy 1 2 3
Zy - Yo + Cp = (30eq:+ 130ep - hoes) 107t

(0 - 40) lO'uft

(-10d2 - 50/2) 10745t

(+20 + 30) 107%r1,

I

—d.62 -(26 - ?2 + 67) ¢ E62

-y -(By - T+ Cg) - wy

]

-dl,_o -(.Z—)-l- - -Y—O + 67) ¢ Euo

Taking H = hlgi + hggé + h5€3 and entering numerical values in Equation

(2.21), one obtains

1ons = -0 x 107, hy = - 4 x 107
521 + N2 hp =-60/2 x 107* by = -17 x 107
10n, = 50x107%, np= 5=x107"

Therefore,
§ = (175 + 55, - ba5) (107)
The correction at joint 8 due to H is
= 5 _ — = = -4
E x Rg = (-50e; - 210e, - 50e3) 107°ft

and the total correction at joint 8 is

C7 + H x Rg = (-20e1 - Y0ep - 110e3) 1074t
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The components of the total correction at each joint are given
in Columns 5 to 7 of Table IV-A. The components of the displacements
of all Joints are given in Colﬁmns 8 to 10.

As in the first example the actual entries in Column 10 of
Table IV-A are the bar forces for the applied loading. By means of the
principle of virtual work, it is readily verified that the vertical dis-
placement of joint 9 is -280‘5 (10'”ft).

In treating Example II as a complex truss, the bar connecting
Joints 9 and 11 is removed and a substitute bar inserted between joints
L and 6, thereby forming a simple truss. The components of the dis-
placement at each joint for zero elongation of the fictitious bar are
given in Columns 2 to 4 of Table V-A. The components of Yé are given
in Columns 5 to 7 of Table V-A.

Equation (2.23) rewritten for this example is

x(Yy - Ty) ug 49 = g 13 = [(Tg)__, - (1), o1 9,11

Substituting the appropriate numerical values from Tables III-A and V-A
one obtains

x =0 -(752) 1074t = - 72 107

Substituting the above value for x, and the data from Columns 2 to 7 of
Table V-A into Equation (2.22) yields the displacements given in Columns
8 to 10.

It is seen that both methods yield the same result, as was ex-
pected. For this particular example it turns out that fewer arithmetic
operations are required when the compound truss is treated as a complex

truss, but it is apparent that this will not always be the case.
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TABLE V-A

DISPLACEMENTS FOR EXAMPLE II,
TREATED AS A COMPLEX TRUSS

(Ts)  (10tre) T T, (107*f1t)
s & 5 8 & o 55 & 5 &
T 20 20 -3 0 0 0 20 20 - 30
I 20 -0 -k 0 0 0  -20 -0 - ko
6 0 30 -110 o o A2 0 30  -260
5 2130 -50 -110 «2 0 W2 20 -50 -260
8 -20 60 -110 0 N2 0 20 -50 -110

9 2130 60 -280 2 W2 o 20 -90 -280
10 10 8 -270 o 0 0 10 80 -270

11 30 80 -110 0 0 0 30 80 -110

Example III. The bar force for each member of the complex truss loadec
as shown in Figure 3-A¥ is given in Columns 5 and 10 of Table VI-A. The
components of the unit vector along each bar (directed as indicated by

. the paired numbers in Columns 1 and 6 which identify the bar) are given

b

in Columns 2 to 4 and 7 to 9 of Table VI-A. Assume that Lo 107t kip'l

AE

for every member of the truss and compute the displacement of all joints.
The substitute truss used in this example is shown in Figure 4-A

in which substitute members are indicated with dashed lines (there are

several other obvious choices for the substitute truss). The calculation

of Zs,O) Zs,k poses no problem since the substitute truss is a simple

* The layout of this truss was taken from Figure 269 of Reference 1.
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truss. The displacements for x; = O are given in Columns 2 to 4 of

Table VII-A, Columns 5 to 7, 8 to 10, and 11 to 13 contain the compo-

nents of Yé,k for k = 1,2, and 3, respectively. OSubstituting the appro-

priate numerical quantities from Tables VI-A and VII-A into Equation (2.26),

one obtains

(11,15)  Oxy - a2 xp + Ox5 = [0+ (}5) ] 10-*t = 5 (107*re)
(11,16) W10/2)x) - 2xpi+ Ox3 = - [- 52 + (17.52) [10"4 et = 12,52 (107 *£¢)
(12,16) W5 x) + 0%y - a2 x3 = [5++ 0 ] 2107 bry = 5 (10'“ft)
The solution is

x = -6/5 (107*¢t)

% = -1.25/2 (10" hey)

x5 = 6.2502 (107*t)

For joint 9, Equation (2.

Z9 =

9

n

25) yields

Yg = - [(220e7 + 30ep + 1553)
&/5(08) + Ogp + Oe3)
1.2502(«2 7 -2 5 +42 7)

6.25/2(/2 &1+ 05+ 05)]10- 1t

(21087 + 32.5¢5 + 12.553)10'“ft

It can be verified, by virtual work, that the displacement of

Joint 9 in the direction

of the applied load is (32.5)1074ft. The com-

ponents of the displacement of each joint in the truss are given in

Columns 14 to 16 of Table VII-A.



_96_

Figure 3-A. Truss for Example IIT.
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Figure L4-A.

Substitute Truss for Example III.
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TABLE VI-A

DATA FOR EXAMPLE ITI

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Bar Tj3 I Bar Ty Dy
31 = o &3 kip ioo8 & &3 kip
3,1 0 0 -1 20 7,9 0 0 1 5
3,2 N2/2 0 INEY R 7,11 0 1 0 0
3,4 1 0 0 -5 8,10 0 0 1 -5
3,5 0 0 1 5 8,11 «2/2 2/2 0 52
3,6 NEYZ R Jo/2 10l2 8,12 o 1 0 -5
3,7 0 1 0 0 9,10 1 0 0 -10
3,15 0 als/s  A5/5 0 9,11 0 NEY- RN Y S\
h,2 0 0 -1 -15 9,13 0 1 0 0
k6 0 0 1 -15 9,14 Nz/2 W2/2 o 0
4,7 def2 el o 52 10,12 0 NEYCRENEY N
4,8 0 1 0 -5 10,1k 0 1 0 0
5,6 1 0 0 -10 11,12 1 0 0 0
5,7 0 Jo/2 A2f2 52 11,03 o 0 1 0
5,9 0 1 0 -5 11,15 0 0 -1 0
510 W2/2 N2/ o e 11,16 W2/2 o Nefe  sl2
6,8 0 Jajo Wzfe sz 12,08 o 0 1 0
6,10 0 1 0 -5 12,16 0 0 -1 5
6,8 1 0 0 -5 13,1+ 1 0 0 0
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APPENDIX B

THE MATRIX [M]

Small variations (or errors) in the geometry of the truss and

applied loads affect the bar forces.

the variation or error in the bar forces is governed by the equation

(6120} = - {aq} - [o¢1%{p}

The elements in [3G

]T

(5.29)

vectors ﬁji’ and the elements in {p} are the bar forces due to the applied

loads. An alternate form of the product [SGJT{p} is needed for the error

analysis,

the errors in the geometry, are transformed into a column vector.

transformation is simplified by treating the product [8G]T{p} as an equiva-

lent error, {Ag}*, in the load vector. In expanded form

[5G]T

11

T
[6G]12

[BGJT{p} =

T
_!SG]lJ

T
2l

T
[6G]22

[8G]

——

[zsc]gl .. [SG]E:L .. [ae]gl
T T
LN
T
[SG]ts
T
[BC1L,

{2},
5},
{o}

{5},

1

|
!

T T
LS N [SGJJdl

;{P}J_

The

{20} ¥

{2a}]

{e
{ea}?

{35

When higher-order terms are neglected,

are the errors in the components of the unit

The form required is one in which the elements of [8G], which define

(B.1)

*
in which {Aq}t is the equivalent error in the loads at a joint due to errors

in the geometry of the truss.

ponds to joint j(t

- jn)

For that value of t(t = 1,2,...J) which corres-

-100-~
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Pja'
{p}j =-{p}j = (P (B.2)
where pja, pjﬁ% pjy are the forces in bars jo, JjB, and J7.
FrOmlthe developments in Chapter IV it is known that, in any one

column of submatrices of [G]_T, there are at most four submatrices which are

not identically zero. The elements in the null submatrices cannot be varied.
The nonzero matrices for that value of t corresponds to joint j, and those

values of s corresponding to joints a, B, 7, are

— 1 - 1
a5y O 0] 0 -ayg O
T o T 2
Gl =[-8 o0 o0 ¢l = lo -5, o0
L [C15 B
a2 0 0 0 -8 0
LaJa - 0 3B
_ - _ (B.3)
o 0 - ar et ]
T %7 goé JBJ7
, T 2 2
G =lo o - G = |a°  a“ :
15y 37 G1, = Poe % %y
0 0 -a5 a? a? a?
Jr LJa JB 7

The null columns of [G]? , etc., cannot be varied. Thus the
Ja

corresponding error matrices become

T F’-Aa%a 0o 0] T "0 —Aa?]jﬁ
[ee1, =-Aa§a 0 0 (861, = | © —Aa‘JQTB 0
L—Aa?a 0 0 0 -Aag'5 0
T 0 o0 -Aagy T Aaf];a Aa:éﬁ Aaéy
Be], <[ 0 © -Aa§7 (o1, = Agja b, Las,
0 o0 -Aagy Laaj& Loy, Lo
[SG]T =0 1#a, B, 7 J

Ji
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The contribution of errors in the components of Eja’ to the

equivalent load error {Aq}; at joint o, is

~_ 1 - (
Aaja 0 0 pja
T 5 2
[86T;fk; = -tefy 00 (P (B.5)
3
-0a” 0 0 .
ja Piy

which can also be written as
8G]. {pt. = [M]. shul, B.6
[ Jo6{}-‘] [Ja{ }J (B.6)
where the matrix [M]ja is defined by

[M]J,a= 0 -py O 000 000

and the vector {Aw}j is defined by

T 1 2 3 1 2 3 1 2 3
Moy = . . . . . . . . .
{ }J- (005 e gq dagy Doy Lagg Layg Lagy bayy Loy, ]

If we define additional matrices

M] =]0 0 0 0O =-p. 0 0 0 0
JB Jp

J7 J7

-W%B-ML



.-]_05..

and let
[M]jr =0 for v #Q, By, 7, J
= [M]joc r=0Q
= [M]ja r=pg
= My r=y
= [M](jj r =]

then the contribution of errors in the components of aja’ ﬁjB, ajy to the
equivalent load error at any joint, r(r = mtl, m&E,...,m+J) is given by
[SG]jr{p}j = [M]jr{ém}j ro=mtl, m2,...,m+J  (B.7)

and the total equivalent load error is

« o) 0 m+J
{aq} s ﬁ:;%ﬂmmdr{p}d =j=§+l[M]jr{m}j ro=mHl, mb2,...,m+d (B.8)
which is the same as

* J T J
{Aq}s = tgl (861 c{p}t. = tél [M]tS{Au}s 5 =1,2,.04,d (B.9)

or equivalently

[6G]T{p} = [M] {a} | (8.10)
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