Specification of Interface Behavior for the Automatic Generation of
Bus-Interface Models®

Ajay J. Daga, William P. Birmingham
Abstract

This paper describes HIDE, a system that automatically generates VHDL and Verilog bus-interface
models (BIMs) from a high-level specification of interface behavior. HIDE users need not be familiar
with VHDL or Verilog, and instead specify interface behavior using familiar hardware constructs,
such as timing diagrams, state diagrams and truth tables. We present a novel methodology for
interface specification that is built on an understanding of the elements of interface behavior. HIDE
contains knowledge of the structural elements of an interface specification and the semantics
associated with these elements. This allows a user to specify interface behavior in a uniform manner,
and automates the task of identifying the relevant semantics associated with a specification.
Knowledge of the structure of an interface specification allows formal reasoning on its representation
and facilitates the model-generation task.

1. Introduction

Simulation of digital systems is common design practice. For simulation to be effective, accurate
models of devices must be available. Complex devices can be described by behavioral and bus-
interface models (BIMs). :

Behavioral models capture the full functionality of a device, i.e., both the computation and interface
functions are described. For devices such as a microprocessor, these models realize the complete
instruction set, allowing small programs to be executed. Behavioral models are difficult to construct,
since all details of the component's behavior must be known.

BIMs, also known as hardware-verification models [1], bus-functional models [2], and chip-level
models [3] describe only the interface behavior of a device. Essentially, these models capture the
communication activity of a device. BIMs treat internal circuitry as a black box, while modeling how
a device communicates with its environment. A BIM for a CPU, for example, contains a description of
the transactions performed by the CPU (e.g., read, write) to communicate with other devices, but does
not model the internal functions of the CPU. -

Since BIMs implement a subset of a component's behavior, they are concise, and can be executed
quickly on general-purpose hardware. As such, BIMs fit very well with the typical computer-aided
engineering (CAE) environment, where a designer captures a design as a schematic and performs
logic simulation of that design. BIMs allow a user to ensure that a component communicates .
correctly with the devices it is connected to for a set of test vectors supplied by the user.

Though less complex than behavioral models, BIMs can be difficult to build because of the
complexity of the interface behavior of VLSI devices. Development of simulation models for highly
complex VLSI components may require several man-months of effort. This effort is spent in three
places: understanding how the device operates from its documentation, understanding the syntactic
details of a hardware-description language (HDL), and writing the model. Often, models are

* Manuscript received . The authors are with the Electrical Engineering and Computer Science

Department, The University of Michigan, Ann Arbor, MI, 48109.
This research was supported by Digital Equipment Corporation and the National Science Foundation grant MIPS-905781. All views

expressed here are those of the authors, and not necessarily those of the funding agencies.

produced by third parties who are not developers of the component being modeled. For these groups,
understanding the operation of a component is a major undertaking; consider that complete
descriptions of the operation of complex microprocessors fill several hundred pages. The modcling
process is further hampered by HDLs. While HDLs are intended to facilitate model creation, they are
sometimes cumbersome and complex, and require considerable programming skill to be effectively
used. Thus, a model writer must be an expert in both hardware and a HDL.

To alleviate the problems associated with building BIMs, it is desirable to automate their generation
from high-level specifications. Some of the desirable features of automated-model generation are
listed below:

« A means for the specification of interface behavior using constructs that are familiar to a
hardware engineer [4, 5]. This alleviates the need for a hardware designer to be proficient with
the syntactic details of an HDL. The inputs to our model-generation process are similar to those
used by hardware designers during the synthesis (manual or automated) process to document
interface behavior. As a result, engineers can easily generate models for devices they design.

« A succinct specification methodology that captures the pertinent information contained in
voluminous component manuals, reducing the amount of information needed to generate a
BIM.

* A reduction in the time taken to generate a model.

» A method for generating an executable specification of component behavior (prior to the
realization of this behavior in hardware), based on desired signal activity at the interface of a
component. This specification may be easily modified, if required, during the design cycle.

To automatically generate BIMs, it is necessary to identify the elements of interface behavior and
provide a means for specifying them. The specification methodology should meet the criteria
outlined by McFarland [5].

In this paper, we describe a tool, HIDE (HDL Interface Models Designer) [6], that generates
simulation models from a graphical specification of interface behavior. The ability to perform this
task depends, in large part, on understanding the structure of an interface specification and
identifying the semantics associated with this structure. We, therefore, present the rules used to
associate formal semantics with structural elements of an interface specification. HIDE may be viewed
as a tool that uses embedded knowledge to (a) interpret an interface specification, (b) identify
syntactic and semantic errors in the specification, and (c) generate HDL code that encapsulates the
behavior contained in the specification.

The key contributions of this paper are listed below:

« A methodology for the automatic generation of BIMs from a high-level specification of
interface behavior using timing diagrams, state diagrams and truth tables. There is no existing
system that performs this task.

» The identification of semantic rules associated with a graphical specification of interface
behavior that permits formal reasoning on an efficient representation of this behavior.
McFarland [5] points out that a graphical specification of interface behavior based on timing
diagrams is desirable because of its proximity to the way hardware designers represent and
communicate hardware information. He, however, faults existing tools that provide a means for
the graphical specification of interface behavior with regard to their lack of a rigorous
semantics that allows formal reasoning on the specified behavior. The semantic rules that we
have outlined in this paper formalize the specification of interface behavior.

The paper is organized as follows. Section 2 defines the elements of interface behavior and discusses
our graphical-specification methodology. Section 3 discusses SpecIT, a tool used to capture interface

specifications. The semantic structure of timing diagrams is presented in Scction 4. Section 5 defines
the elements and important characteristics of an event graph as a representation for timing
information. Section 6 presents the event-graph-traversal algorithms. Section 7 discusses the model-
generation techniques used to transform the internal representation of an interface specification into
simulation models. Section 8 contrasts HIDE with related work and discusses its limitations. Section 9
presents results of the application of SpecIT and HIDE to model generation tasks, and Section 10
summarizes the paper.

2. The Elements of Interface Behavior

The interface behavior of a device may be defined at different levels of abstraction corresponding to
the physical, circuit and logical views of a digital device [7]. In this paper, we focus on the
specification of interface behavior at the logical level.

Interface behavior may be represented hierarchically through bus cycles, bus states, and signal
activity as shown in Figure 2.1.

At the most abstract level, the bus-cycle level, the interface behavior of a device is defined by a
collection of bus cycles that describe how a device communicates with its environment. A bus cycle is
a complete interface transaction. A device may execute only one bus cycle at a time. A
microprocessor, for example, has read, write, and bus-arbitration cycles.

A bus cycle may be synchronous or asynchronous [8]. A synchronous bus cycle is one where events
on an output signal occur at fixed intervals of time relative to the edges of a clock signal. An
asynchronous bus cycle does not clock output events at fixed intervals of time. A single interface
may have both asynchronous and synchronous bus cycles. The read and write transactions of a CPU
may, for instance, be synchronous while bus arbitration may be asynchronous.

The manner in which a bus cycle is initiated results in it being classified as either a master or slave

cycle [8]. A master cycle is initiated by the internal circuitry of a device. For the duration of this
cycle, the initiating device is referred to as a bus master. A slave cycle is initiated by an external

device.

v v Vi

Control-Signal 1 _/ \ ’ \ ,

Dam.-Slgnnll : 1 XL— |
. ———— > |

Control-Signal n k '

Figure 2.1: Representation of interface behavior.

A bus cycle is composed of a sequence of bus states. Sequencing information on the bus states of a
cycle are captured at the bus-state level of interface behavior. Bus states define sub-activities of a bus
cycle, i.e., signal activity on a set of interface ports for a portion of the bus cycle. Bus states represent
generic activity and may be shared by different bus cycles. For example, the following sequence of
bus states is common to both the read and write cycles of most CPUs:

- place stable address

» assert address strobe

» wait for ready signal

« read or write data

* terminate cycle

A sequence of bus states that form a complete bus cycle is called a transaction path for the bus cycle.
A read bus cycle for the Motorola MC68020, for example, consists of bus states S0, SI, $2, $3, 4 and
S5 [9]. Taken in that order, these bus states represent a transaction path for the read cycle. A bus
cycle may have multiple transaction paths. This, for instance, is the case for the read cycle of the

MC68020, as multiple wait states (S3) may be inserted during the cycle.

As bus states are shareable among bus cycles, they do not specify exact signal activity. Knowledge of
both the bus cycle and the bus state of an interface, however, implies precise signal activity. Figure
2.2 illustrates the notion of generic bus states that have different signal activity associated with
different bus cycles. The values taken by a subset of the ports that participate in the read and write
cycles of the MC68020, for bus states that are common to both cycles, are shown in Figure 2.2.

CYCLES SIGNALS BUS-STATES
SO| S1] S2 | S3 S4 S5
Write Read/Write L} L L L L L
Data Z} Z Ao Ao | Ao Ao

Data-Strobe H| H |H L L H

Legend:
Read Read/Write H|H |H H H H
L -Logic0
Data Z\}| Z|Z Z Ai | Al H -Logic1

Z - High Impedance
Ao - Active Output

Data-Strobe H|L L (L | L |H
Ai - Active Input

Figure 2.2: Signal activity as a function of bus states and bus cycles.

Signals on an interface are characterized by the kind of information they convey, and may be of type
data or control. Data signals convey information. Control signals communicate the type of bus cycle
being executed and control the transfer of information among devices. Some control signals, referred
to as cycle-control signals, convey information about the cycle being executed by a device, for
example, the read/write signal on a microprocessor interface. The values of other control signals,
however, determine the bus state of a bus cycle. These state-control signals are used solely to inform
other devices of the status of bus-cycle activity. An example of a state-control signal is the data-strobe
signal generated by a CPU.

The temporal information associated with signal activity during a bus cycle is typically documented
with timing diagrams. These diagrams do not, however, convey other non-temporal information
needed for a complete interface specification, such as conditional information associated with a bus
cycle. Conditional information is required, in the event of multiple transaction paths, to specify
transaction paths as a function of signal values. Timing diagrams are also incapable of representing
boolean or arithmetic functions that determine signal values or influence other aspects of interface
behavior. For instance, the manner in which variable-sized data is multiplexed on a data bus. Thus, in

addition to timing diagrams, state diagrams and truth tables are required to fully specify interface
behavior.

2.1. Timing Diagrams

A timing diagram specifies temporal relationships with regard to signal activity within a bus cycle. It
consists of a set of signals, and specifies the sequencing of events on these signals, for a given bus
cycle, through timing links between events. The diagram represents temporal conditions that must be
satisfied, and documents those that will be satisfied in a correctly functioning interface. Timing
diagrams focus on events, rather than signal logic levels. An event is a transition between logic levels.
An event that occurs on an input signal is referred to as an input event, and that on an output signal as
an output event.

If a bus cycle has a single transaction path, then a timing diagram completely specifies the
sequencing of events for a given cycle. This is because a single transaction path implies an identical
sequence of events for different executions of the same cycle. In this situation, it is possible to specify
temporal relations between relevant event pairs that, taken together, completely specify interface
activity.

In the presence of multiple transaction paths, timing diagrams incompletely specify signal activity for
a bus cycle. This is because conditional information, used to select among paths, precludes a priori
knowledge of a transaction path. A transaction path is dependent on the values received by input-
control signals. As these values cannot be anticipated, the sequence of bus states that constitute a bus
cycle cannot be known prior to the execution of the cycle. Consequently, timing diagrams cannot
completely specify the temporal relation between events associated with states that may, or may not,
occur. For example, the insertion of wait states during a read or write cycle depends on when a CPU
receives a ready signal from the device it is communicating with. As the arrival time of this signal
cannot be anticipated, the transaction path in terms of the number of wait states inserted during a bus
cycle, cannot be determined a priori. Consequently, the temporal relation between a pair of events,
where one event occurs before the bus cycle enters a wait state and the other after the bus cycle leaves
a wait state, cannot be completely specified on a timing diagram.

A typical timing diagram, for the read cycle of the Motorola MC68020 [9], is shown in Figure 2.3.
Address (ADDR) is an example of a data signal, while Address-Strobe (AS) is a state-control signal.
The labels SO through S5 associated with the phases of the CLK signal represent different bus states of
the read cycle. Note that each of the bus states is associated with events on control signals. During
state S0, for instance, the R_W signal goes high, indicating the start of a read cycle. In state S/, signal
AS goes low indicating valid address on the ADDR bus. Not shown on the diagram is how the values
of input state-control signals (DSACKO and DSACK1) determine whether wait states should be
inserted. This, however, does not prevent the specification of a timing link, T14, indicating the
minimum width of the address-strobe pulse. If no wait states are inserted, the address-strobe signal’s
pulse width will have a duration of at least 120 ns for a 12.5 MHz clock. This is an instance of an
incomplete interface specification, as the actual pulse width of the address-strobe signal is dependent
on the number of wait states inserted.

2.2, State Diagrams

State diagrams specify sequencing at the bus-cycle and bus-state level (refer Figure 2.1). At the bus-
cycle level, a state diagram specifies the initiation and termination conditions of the cycles of a
device. Each device has a cycle that captures the default interface activity of a device (the default
cycle is referred to as the Idle cycle for the rest of this paper). An example state diagram at the bus-
cycle level for a memory device is shown in Figure 2.4.

The read and write cycles of a memory device are slave cycles. As a slave cycle is a response to an
external bus master, its initiation is dependent on the values of input-control signals (WE and CE in
Figure 2.4). The initiation condition of a master cycle, on the other hand, is controlled by the value

of a pseudo signal. A pseudo signal is not present on the interface, but is required to specify the
transfer of information between the internal circuitry and the interface. Figure 2.5 shows the bus-
cycle-level state diagram for the MC68020 consisting of master read and write cycles!. Next-Cycle is
a pseudo signal that specifies the cycle to be executed at the completion of the current cycle. Note, by
default, the Idle cycle is executed. Also, note that read and write cycles on the MC68020 may be
executed consecutively without intermediate /dle cycles.

S0 s1 s2 s3 S4 s
ax[[) . —
—T3: 'y " T2 ‘e n—-;:--o—n—t U—? T
[+ T6—¥
m[S
Q-T‘—ﬂ
T
T e vy +
ECS [{
R —> 112
T
AS [¢ Ti4 ¥
— 21—
RV [T18—¥
128 }¢—
f—T47a e 478 \g
psacxa [
¥ 147 T47H »
T31A—
psacxl [—
]
‘0—151" m?—’o—m—;—_‘
DATA Y
[(
J— T47r—d1¢— 1473
BERR [_____’

Figure 2.3: An example timing diagram.

Legend:

CE - Chip Enable
WE - Write Enable

(not WE) and CE

Figure 2.4: Example bus-cycle-level state diagram for slave cycles

1 The MC68020 has halt, arbitration and read-modify-write cycles; for simplicity only the read and write cycles are shown on the

state diagram.

N_C!=READ
NCi= WRITE\ \
N_C=READ . Legend:

N_C - Next Cycle

Figure 2.5: Example bus-cycle-level state diagram for master cycles

When a cycle has multiple transaction paths a bus-state-level state diagram is required to specify
sequencing and conditional information associated with these paths. We assume that an asynchronous
cycle has a single transaction path, and consequently does not need further decomposition at the bus-
state level. This is the case for typical asynchronous handshake protocols, such as the fully
interlocked handshake [8]. Note that while state diagrams, in general, may also specify signal activity
as a function of the state and current input, this information is conveyed through timing diagrams in
our methodology.

State diagrams and timing diagrams complement each other, conveying sequencing and signal
activity information in a non-redundant manner. In the event of multiple transaction paths, different
phases of the signal that sequences an interface through its bus states, referred to as a sequencing
signal (typically a clock signal), are labeled on a timing diagram with the name of the corresponding
state in the state diagram. The timing diagram captures signal activity for each bus state. As the role
of a timing diagram is to specify temporal information associated with signal activity, a state diagram
does not have to indicate, for example, when a state-control signal should be sampled to determine a
state transition. This, in tum, allows an elegant representation of state-sequencing information that is
free from temporal concerns.

Multiple bus cycles may be specified through the same state diagram, if they are composed of the
same number of bus states and the sequencing between states is the same. This is because state
diagrams capture sequencing information without implying specific signal activity. Consequently, two
or more bus cycles may share the same bus states and specify different signal activity for each bus
state through different timing diagrams. This is the case for most read and write cycles on a
microprocessor, for example the MC68020 (shown in Figure 2.2).

Every bus cycle has a single start state and one or more final states. Sequencing between states is
dependent on the logic levels sensed at input state-control signals. Conditions on the arcs between bus
states specify this sequencing information.

A state diagram specifying the different transaction paths for both the read and write cycles of the
MC68020 is shown in Figure 2.6. Arcs are labeled with the transition condition. The sequencing
signal is CLK. The subscript associated with the sequencing signal represents the event on which the
transition is made (f for falling edge and r for rising edge). R_P is a pseudo signal used to indicate
the status of a read or write cycle to the internal circuitry.

All read and write cycles have a start state of SO, and return to either SO (if a bus cycle has to be
retried, or if the entire data has not been transferred), S 44/ (a halt condition), or to the first state of
the next cycle (if the current cycle has successfully completed execution). The insertion of multiple
S3 states, depending on the logic level of the DSACKO and DSACK signals, represents sequencing
information associated with the wait states of a read or write cycle. Note that there is no need to
specify when DSACKO and DSACK1 in Figure 2.6 are to be sampled; this information is specified on
the timing diagram (see Figure 2.3).

2.3 Truth Tables

Signal values can be arithmetic or Boolean functions of other signals, or functions of their own values
during an earlier bus cycle. To specify these functions it is convenient to use a truth table. While
timing and state diagrams specify the sequencing of events for a bus cycle, a truth table is necessary
to specify the manipulation of signal values. Truth tables may be used to specify the values taken by
both pseudo signals and signals on an interface.

The LHS of a truth table represents determining signals;, the RHS specifies actions or behavior
associated with a set of dependent signals that are a function of the determining signals. There are as
many truth tables as sets of determining and dependent signals. Each truth table is qualified by the
bus cycle(s) to which it applies. A truth table does not have to specify when determining signals are
sampled or dependent signals driven.

CLK (rf& notR_P

LK(r)

CLK(r)& RP&30rC

1K &4
(r

CLKI&HALT=1

@

Legend:
R_P: Request Pending
1: DSACKO=1 & DSACK1=1
: DSACKO0=0 or DSACK1=0
: HALT=1 & BUS_ERR =1

: HALT=0 & BUS_ERR=0

: HALT=0 & BUS_ERR =1

e WwWN

Figure 2.6: State diagram for the read and write bus cycles for the MC68020.

A portion of a truth table representing data multiplexing information for the read and write cycles of
the MC68020 is shown in Figure 2.7. The truth table specifies which portion of the data bus is to be
read based on address alignment, size of data transfer (word, byte, etc.) and size of the device being
read. The determining signals are, therefore, ADDR[0-1], SIZE[0-1] and DSACK [0-1]2. When
multiple bus cycles are required to complete an interface transaction, the actions associated with
determining the next address and the size of the next transfer also depend on these determining
signals. Consequently, the actions associated with determining the values of the ADDR and SIZE
signals for the next bus cycle are listed along with those that specify how to multiplex the data bus.

Datum is a pseudo signal that stores the value of data read. Note how R P is reset to indicate that a

read or write cycle has completed its task. Both these signals model the flow of information between
the internal circuitry and the interface.

3. SpeclT

Interface specifications using timing and state diagrams and truth tables are captured by the tool
SpecIT (Specification of Interface Transactions), which generates input to HIDE. Simulation models

2 The value received on the DSACKO and DSACKI1 signals on a 68020 determine the data size of the communicating device.

are created by HIDE. The flowchart of the process of generating BIMs from an interface
specification is shown in Figure 3.1. SpecIT consists of a timing-diagram editor Xwave, a state-
diagram editor Xstate, and a truth-table editor Xtable.

LHS: DETERMINING-SIGNALS RHS: ACTIONS
SIZE[1]] SIZE[{0] ADDR([1] ADDR([0] DSACK 1} DSACKO0
0 0 0 0 0 0 DATUM[31:0] = DATA([31:0]
RP=0
0 0 0 1 0 0 DATUM[23:0] = DATA([23:0]
ADDR =ADDR +3
SIZE = SIZE - 3
0 0 1 0 0 0 DATUM[15:0] = DATA[15:0]
ADDR = ADDR + 2
SIZE = SIZE - 2
0 0) 1 0 0 DATUM[7:0] = DATA[7:0]
ADDR = ADDR + 1
SIZE =SIZE - 1

Figure 2.7: Example truth table.

Model Developer

BIM Models

Figure 3.1: Generation of BIMs from an interface specification.

Xwave takes as input a list of the ports, and their characteristics (such as directionality and width), that
constitute an interface. It also takes as input a listing of the minimum and maximum values associated
with a timing link for all the operating conditions of a device. An operating condition for a
microprocessor may, for instance, be its clock frequency.

Xwave generates a list of (a) all the events on a timing diagram, and (b) of all the timing links, the
pair of events connected by them and the link type (causal or constraint). Figure 2.3 illustrates a
typical timing diagram entered through Xwave. Xwave uses timing-diagram conventions outlined by
Rony [10].

Xstate generates a state-transition table A typical state diagram captured by Xstate is shown in Figure
2.6.

Xtable allows the user to enter a truth table. Signal values on the LHS of the truth table may be 0, 1 or
X. The RHS of the table associates each row with a set of actions. Figure 2.7 illustrates an example
truth table entered using Xtable.

4. Timing-Diagram Semantics

Timing-diagram semantics are culled from the structure of timing links and the events they connect.
Identifying the semantics associated with timing links is key to creating an appropriate representation
for timing information, and greatly facilitates the model-generation task. In this section, we discuss
the types of timing links, the timing link structure that indicates signal sampling, and contrast our
method for culling semantics from an interface specification with other work in this area.

4.1 Causal and Constraint Timing Links

It is important to differentiate between causal and constraint links when generating simulation
models. A causal link results in code that drives signal values after a specified duration, while a
constraint link requires a check to determine if the time between events is within limits. It is desirable
to allow a user to enter timing links without having to specify their type.

A timing link ¢/, as shown in Figure 4.1, connects a pair of events efrom and e¢o. The event occurring
earlier relative to ¢/ is efrom, and the later one is e¢p. Timing links may be of only two types, causal or
constraint. A link can’either specify or constrain the time at which an event will occur relative to
another event. A link that specifies a time of occurrence for an event ey, relative to an event efrom is
causal. A link that constrains the time of occurrence of an event ey, relative to an event efrom is

constraint. This notion of causal and constraint links is similar to that outlined by Martello, et al.
[11].

t »

4 /
®from |‘ e

to

Figure 4.1: A timing link.

The timing-link type may be determined by the pair of events it connects. The rules for identifying
link type are given below.

Rule 4.1:
A timing link is of type constraint if ez is an input event. Links 1 and 4, in Figure 4.2, are of
type constraint.

10

By definition, a device can never cause an event to happen on its input signal; it can only monitor
input signal activity. Consequently, a timing link that connects an event (on an input or output signal)
efrom With an input event e, has to specify a constraint on the temporal relation between these two
events. For example, in Figure 2.3, link 728, with efrom being the rising edge of AS (an output event)
and ey being the rising edge of DSACKO (an input event), is of type constraint. The rising edge of
DSACKQO is caused by the device with which the MC68020 is communicating. Hence the rising edge
of AS cannot cause DSACKO to rise.

Rule 4.2:

A timing link is causal if e;p is an output event. The only exception to this rule is indicated in
Rule 4.4. Links 2 and 3 in Figure 4.2 are causal.

A device causes events to happen on its output signals. The temporal separation between an event ey,
on an output signal and an event efrom (on an input or output signal) is a known value (dependent on

the delay of the circuitry that drives the output signal) and is specified on a timing diagram. It is,
therefore, incorrect for a link to specify a constraint over a period of separation that is known and

invariant.
Out_signal 2 ;

In_signal

Constraint Links: 1 and 4
Causality Links: 2 and 3

Figure 4.2: Causal and constraint timing-link types.

Causality, in the sense that it is used here, does not necessarily imply that efrom causes ezo. Event eyp
may have many causal links associated with it, and the task of determining the true causal link is
handled by the event-graph-traversal algorithm (see Section 6.2). For example, consider the timing

diagram in Figure 2.3, and let ez, be the rising edge of signal AS. Links T/4 (e from is the falling
edge of AS) and T12 (efrom is the falling edge of CLK in state S4) are both causal, as ey, is an output
event. Link T12 is the true causal link; link T/4 is shown for documentation purposes.

4.2 Sampling Structure
The sampling structure on a timing diagram implicitly specifies when a signal value should be

captured. It also alleviates the need for state diagrams and truth tables to specify temporal
information regarding the sampling of signal values referenced by them.

11

A synchronous cycle samples input signals relative to events on another signal. Typically, signals are
samyled on the falling or rising edges of a clock signal, as is the case with the CLK signal in Figure
2.3

An asynchronous cycle does not share the same notion of signal sampling. Data signals are sampled
relative to events on one or more control signals. Consider, for instance, the timing diagram for a
memory interface shown in Figure 4.3. The address and data values for a write operation are sampled
at the rising edge of either the chip-enable (CE) or write-enable (WE) signals.

The sampling of a signal is shown implicitly on a timing diagram by the structure of timing links
shown in Figure 4.4. All sampled signals must meet set-up and hold-time constraints relative to the
sampling signal. Link ¢5 in Figure 4.4 is the set-up constraint, and link 4 is the hold constraint. For
generality, signals are shown using the active logic level, but the structure is valid for all logic levels.

Rule 4.3:
Any input signal on a timing diagram whose two consecutive events e and e2 have timing links
to a common event e on an input signal has its logic level /g, between e and e2, sampled at eg.

The justification of this rule follows from the earlier discussion on set-up and hold time requirements
that an input signal has to satisfy. These requirements are structurally manifested as shown in Figure
4.4.

Rule 4.4:
If the sampling event es occurs on an output signal, then the link between e and e is of type
constraint and not causal as specified by Rule 4.2.

¢ Twe >
e [—— b
[—Tsa v
DATA [
‘ Taw » Tha—H
+ TS He—H TH
CE I:

dl ey

Figure 4.3: Timing diagram for a write cycle on a memory device.

This is the only exception to Rule 4.2, wherein events on an output signal are used by a device to
sample input signals. In this situation, the event e; does not cause ey, and the link between these
events specifies the set-up time constraint. In Figure 4.4, if sampling-signal were an output signal and
sampled-signal an input signal, then link tg would be of type constraint, and not causal as indicated
by Rule 4.2.

3 Some devices sample signals at high or low levels of a clock signal. This does not change the following discussion on the sampling

structure of timing links.

12

e e

Sampled Signal * Is X

e

Sampling Signal X

€
s

Figure 4.4: Sampling structure.

An asynchronous interface, unlike a synchronous interface, may show signals sampled by more than
one state-control signal. Consider, for example, the sampling of the signal DATA in Figure 4.3.
DATA has tg and tp, links with regard to the rising edge of both CE and WE.

Rule 4.5:
In the case where a logic level /5 is sampled by a multiple event set E = {eg], €52, ..esn}, the
sampling of /; is performed at the event eg; € E that occurs before the other events esj € E.

For example, in Figure 4.3 if the rising edge of CE (WE) were to occur before WE (CE), then the
value of DATA when CE (WE) rises is sampled by the device. Note that this rule, in effect, assumes
that the rising edges of CE and WE are logically ORed to sample DATA. This rule may be overridden
by annotating the constraint links leading from the rising edges of CE and WE to DATA by any other
logical relation (e.g., AND).

4.3 Discussion

Borriello [7, 12] identifies three kinds of constraints representing simultaneity, ordering and
synchronicity constraints; causal links are not discussed. We have shown that only causal and
constraint links are necessary for timing diagrams. A constraint link, based on the minimum and
maximum values associated with it (whether these values are positive, negative, zero or infinity),
implicitly represents Borriello’s three different constraint types. Borriello does not identify rules to
cull sampling and link-type semantics. A signal that is synchronous to a clock is explicitly labeled so
by a user. Waves restricts the drawing of synchronous signal transitions based on set-up and hold
timing constraints relative to the sampling edge of a clock signal.

The specification mechanism developed by Subrahmanyam [13, 14] associates semantics with
graphical icons. A user selects the appropriate icon to explicitly specify the desired semantics. The
ability to identify semantics from structural elements is not embedded in the tool.

Mavaddat and Gahlinger's [15] definition of a constraint link (referred to as a required constraint) as
being a bound on a pair of input events is overly restrictive, as a constraint may be specified between
an output and input event when the output event is efrom (Rule 4.1). On the other hand, their

definition of a causal link (referred to as a produced constraint) as being a bound on the separation
between a pair of events when one of these is an output event, is overly accommodative; Rule 4.2

states that a causal link has to be one where the ey, event is an output event.

5. Event Graphs

A natural representation of temporal information is an event graph [16]. An event graph is a directed
acyclic graph (DAG) whose nodes, E = {e], e2....en}, represent events, and arcs, A = (1], 22...tm},
represent causal links between pairs of events. Constraint links are not shown on the event graph. An

13

event graph is essentially a timing diagram, without constraint links, where logic levels have been
abstracted away. The graph is acyclic as an event, e;, occurring after an event, e, cannot, in tum,
cause ej 10 occur. A causal link, ¢J, connecting efrom With o is represented by a directed arc from
efrom 10 e€po. Each causal link has a minimum value, min(z}) and a maximum value, max(t]). The

minimum separation between a pair of events may be O units, while the maximum may be e units.
The event graph for the timing diagram of Figure 2.3 is shown in Figure 5.1.

Traversing an event graph refers to the propagation of timing values from a set of reference events R
= {er], er2....erk} to events that are connected directly or indirectly to R. Event-graph traversal is
necessary to: (a) identify a subset of the events on a timing diagram that serve as temporal reference
points for other events, and (b) define the temporal separation of a non-reference event, connected
indirectly to a reference event. through a direct link that subsumes the information contained in the
indirect links.

An event ¢; is connected directly to an event e when the length of the path connecting these events is

exactly one. An event e; is indirectly connected to an event ej when the length of the path connecting
these events is greater than one. An event graph’s depth is the length of the longest path from a
reference event ey to a leaf event e; that has an out-degree of zero. After the traversal of an event

graph its depth is exactly one.

T1

T12A

Figure 5.1: Example event graph.

Traversal occurs by following arcs leading from a reference event e, to all non-reference events e; €
E rooted at e, € R. A reference event e, has an in-degree of zero and out-degree of at least one. An
event graph may have more than one reference event. Every graph has a start event eg that is a
reference event and is the first event to occur in a bus cycle. The event e is specified by a user. The

notion of a reference event is similar to the anchor set described by Martello, et al. [16], Ku and
DeMicheli [17] and the reference frame outlined by Wallace and Sequin [18].

The propagation of timing values refers to determining the range of occurrence associated with each
event ¢;, relative to an event e,. This range of occurrence, tp(e;), has the form tmin(ei) < tp(ej) <
tmax(ei). The time tymin(ei) (tmax(ei)) depicts the earliest (latest) that event e; could occur relative to
er, and is computed using the min(t]) (max(t])) values of timing links connecting e, with e;. The time

tmin(ei) (tmax(ei)) is a lower bound (upper bound) on the temporal separation between e, and e;.
The notion of a range of occurrence is similar to that of a temporal interval outlined by Allen [19].

Every event ¢; has an initial range of occurrence 0 < tp(ej) < e relative to es. The event es has
tmax(es) and tmin(es) equal to 0. The objective of traversing an event graph is to restrict the range of

14

occurrence of all output events relative to a reference event. An event e¢; could have multiple
reference events e,, in which case a set of rules is required to determine the true reference event.
Listed below are rules that characterize the range of occurrence associated with an event.

Rule 5.1:
The range of occurrence of an input event e; cannot be further restricted from the initial value

of 0 < tp(ej) < o relative to the start event e5.

There is no causal link whose erp event is an input event. As an event graph is composed of only
causal links, no input event may have an arc leading in to it. Consequently, an input event is not
traversed during the propagation of timing values, and retains its initial range of occurrence.

Rule 5.2:
After traversing an event graph, all output events e; have tymgx(e;) less than «. A value of e for

tmax(ej) manifests an incorrect interface specification.

If an output event has an unbounded range of occurrence (i.e., =), then no other device would be
able to communicate with it. Every output event must have a finite range of occurrence relative to
some reference event.

Rule 5.3:
The range of occurrence for a reference events e, is 0 < tp(ej) < e relative to the start event ey,

unless ey is eg, in which case tymgx(er) and tmin(er) have values of zero. The exception to this
rule is discussed in Rule 6.2.

As a reference event e has an in-degree of zero, its range of occurrence cannot be changed during
the traversal of an event graph.

Rule 5.4:
No output event may be a reference event unless it is the start event eg or a sequencing event on
an output signal. All reference events are, therefore, input events, with the exception of eg and
those events that conform to Rule 5.6. Not all input events are reference events, as some input
events may have an out-degree of zero.

Using Rule 5.4, an output event, unless it is the start event always has an arc incident on it. Thus, it
may not retain its default value of o for ¢yyqx(ei). Therefore, by definition, an output event cannot be
a reference event with the exception of eg and events that satisfy Rule 5.6.

Events on a sequencing signal are called sequencing events, and each sequencing event e; is
associated with a bus state s;, the state entered by an interface when the event ej occurs.

Rule 5.5:
The set of events E rooted at a sequencing event e¢; have their causality superceded by the bus

state of an interface. The events in E occur when the device enters the bus state s; associated
with e;.

The rationale for this rule is that the event at which a device enters a state s; may or may not be the
particular sequencing event e; shown on a timing diagram. For example, in the event graph shown in
Figure 5.1, CLKf3 has a causal link to AS . If there are no wait states inserted during a read cycle,
then CLKy3 would cause ASyj. If, however, one wait state is inserted, then CLKf4 would cause ASy]. In
general, CLKf{3+p) is the event that causes ASf] (n is the number of wait states inserted). In all cases,
however, AS] occurs when the read cycle enters state S5.

15

Rule 5.6:

All sequencing events that have an out-degree of at least one are reference events.

This rule follows from Rule 5.5. As all events E rooted at a sequencing event e; are caused when the
cycle enters state s; associated with e, their range of occurrence is defined relative to s;. The
reference event for events in the set E is therefore ¢;.

6. Event-Graph Traversal

HIDE uses a list of events, provided by Xwave, to generate an unconnected event graph. HIDE then
connects events that are causally linked. As constraint links are not part of the event graph, we will
delay a discussion on how they are processed until the section on code generation. HIDE traverses an
event graph using the traverse_graph algorithm, which calls propagate_value to propagate timing
values for a reference event. The propagate_value algorithm calls resolve_reference_event to resolve
the situation where an event has multiple reference events. These algorithms are discussed in the
following sections.

6.1 The Resolve_Reference_Event Algorithm

Consider the case, depicted in Figure 6.1, where an event e; has two reference events e, and e,2, and
that e; has received a range of occurrence relative to e,7. When the event graph relative to e,2 is
traversed e; will be reached. At this point a decision has to be made, if possible, on which of the two
reference events, e,] or e,2 to use when determining e;’s range of occurrence. The
resolve_reference_event algorithm performs this task, and uses the following rule.

Rule 6.1:
If an event ¢; (an ezp event) is indirectly or directly connected to events e,; and er2 (efrom
events), and if it is known that e, occurs before e,2, then the link between e,2 and e; is the true
causal link. The link between e} and e; is shown for documentation purposes.

The justification of this rule is as follows. Given that e, occurs before e,2; assume, contrary to Rule
6.1, that the link ¢,7between e, and e; is the true causal link and that between ey2 and e; is a link, 2,
shown for documentation purposes. The event e; has to occur after e,2 for ¢,2 to exist, and therefore
the chronological sequence of these events must be e}, €2, ¢;. While ¢,2 may be constrained to
occur within a temporal span relative to e, the actual time at which e 2 occurs is not known or
specifiable. The event ey2 may never occur during an erroneous execution of a bus cycle. It is
therefore incorrect to document the separation between e,2 and e¢;. Consequently the assumption that
tr] is the true causal link is incorrect. On the other hand, as e} has to have occurred for er2 to occur,
it is always correct to document the separation between e, and e;.

Rule 6.1 is shown in Figure 6.1. The event CLKf] (er2) is the true reference event in this situation.
The application of this rule in different cases is listed below.

Case A:

If er] (ep2) is €5, then the range of occurrence is taken relative to e,2 (er7). This is because no event
can occur before eg.

16

Case B:

If er7 and e,2 are non-sequencing events on the same signal, and it is known that e, (er2) occurs
before er2 (erj), then er2 (er]) is the true reference event. The ordering of events on a non-
sequencing signal is explicitly shown on a timing diagram.

Case C:

If er; and e,2 are sequencing events, then event erJ is associated with bus state s/ and e,2 with bus
state s2. If it can be shown, by traversing the state diagram, that state s/ (s2) always occurs before state
s2 (s1), then e,2 (er]) is the reference for event e;. The traversal of a state diagram to determine if
state s2 occurs after state s/ requires two conditions to be satisfied.

1. It must be shown that state s/ has a transition path to state s2, and
2. that state s2 does not have a transition path to state s/.

If condition 1 is not satisfied, then nothing can be said about the temporal relation between the two
states s/ and s2. If condition 2 is not satisfied, then s/ may or may not occur after s2, and
consequently no a priori decision can be made on the temporal relation between the two states. If
both conditions are not satisfied both e¢,; and e,2 are retained as reference events.

The search for a transition path between two states is performed by a depth-first search of the state
diagram. The start state for condition 1 is s/, and that for condition 2 is state s2. A state once visited is
marked, and is not revisited. Arcs leading into the start state (SO in Figure 2.6) are not traversed as
they represent the start of a new bus cycle. The search terminates for condition 1 (2) when state s2
(s1) is reached, or when there are no more arcs to traverse.

SO

‘r1 ¢r2 S1

@

Tree representing depth-first search 52
of state diagram using the rules of the
resolve_reference_event algorithm 33

T6
S4
S5
Event graph representing multiple
reference events
Shalt

Figure 6.1: Illustration of Case C in resolve_reference_event.

A portion of the event graph in Figure 5.1 that corresponds to case C is shown in Figure 6.1. The tree
representing the depth-first search of the transition diagram is also shown in Figure 6.1. From the tree
shown in Figure 6.1, it is clear that SO has a path to S/, and that S/ does not have a path to SO.
Therefore, bus state SI is always reached after SO and, consequently, the falling edge of the clock
signal is the true reference event for the falling edge of AS.

17

Case D:

If events ey and e 2 do not conform to scenarios A, B or C, then ¢;’s range of occurrence relative to
both e, and e,2 is maintained.

6.2 The Propagate_Value Algorithm

The propagate_value algorithm is given a reference event e, and traverses the event graph affixing a
range of occurrence for events rooted at er. An event e; has a set of parent events P = {ep],
ep2..¢pm} and children events C ={ec], ec2....eck}. The algorithm performs a breadth-first search
of the event graph rooted at e, by traversing arcs connecting a parent event with its children. All the
arcs connected directly or indirectly to e are traversed, except as indicated by Rule 6.2.

Rule 6.2:
If event ey is a sequencing event and is associated with bus state s, and is connected directly or
indirectly t0 a sequencing event e; (associated with bus state s;) that occurs on the same signal,
then the arcs out of e; are not traversed during a traversal of the event graph rooted at e,. This
is illustrated in Figure 6.2. The set of links E2, shown dashed, are not traversed. Note the
following:

cer#ejand sp#sj.
. ¢; is traversed during a traversal of e,.

» ¢; is an output event, as only then would it have a causal link incident on it (Rule 4.2).
Consequently, the sequencing signal in this situation has to be an output signal.

Legend:
E; and E, represent sets of links
Cyand C; represent sets of events

Figure 6.2: Ilustration of Rule 6.2.

This rule on event-graph traversal follows from Rules 5.5 and 5.6. As all sequencing events that have
an out-degree of atleast one are reference events, the graph rooted at ¢; cannot be traversed when the
graph rooted at e, is being traversed. If traversed, events caused by s; would have their range of
occurrence defined relative to s,. For example, assume that the CLK signal in Figure 2.3 is an output
signal (it is actually an input signal). If links T/, T3 and T12 are followed from CLK] then the falling
edge of the AS signal would have a range of occurrence defined by the equation 2T1+T3+T12,
relative to CLKyy. This is incorrect as it implies that the AS signal is raised, and the read cycle
terminated, regardless of the number of wait states inserted during a read cycle.

The impact of traversing arcs leading into reference events on an output sequencing signal, but not
the arcs leading out of these events, is the following:

« Those reference events that occur on an output sequencing signal have an in-degree greater
than zero.

18

« Also, reference events on an output sequencing signal have a range of occurrence that is not 0 <
tp(e,') < oo relative to the start event eg. This is the exception to Rule 5.3.

A breadth-first search of the event graph is necessary for the following rcason. Consider an event €
with children C and parents ep/ and ep2, as shown in Figure 6.3. C represents the event graph rooted
at e;, and could have a depth greater than one. A depth-first search of the event graph would result in
the children C receiving their values based on the value received by e; (25 < tp(ej) < 90) through epJ
(assuming that ep; is traversed first). If, however, when the link between ep2 and e; is traversed, it is
determined (using rules for affixing a range of occurrence) that e;'s value (20 < tp(e;) < 80) is
dependent on that of ep2, then the arcs between e; and its children must be revisited. This is wasteful.

A breadth-first search never requires an arc to be revisited. The rules for affixing a range of
occurrence for an event follow.

Rule 6.3:
If ep is ey, then tp(ec) for a child e, that has not been visited, is defined so that the lower
(upper) bound of tplec) inherits the min(t]) (max(t)) value of the arc ¢; connecting ep with e .

Case B

. - C represents a set of events
and could have a depth greater

than 1

Figure 6.3: Need for a breadth-first search of the event graph.

The justification of this rule is straightforward; the range of occurrence of a node directly connected
to a reference event is dependent on the value of the link connecting the two events. This rule is
illustrated by Case A in Figure 6.3. When the link between e, and ep] is traversed, ep] has not been
previously visited. It receives a value of 15 < tp(ep]) < 50.

Rule 6.4:

If ep is not ey, then ep will have been visited. If ep is connected through arc #7 to a child e that
has not been visited, then:

* tmin(€c) = tmin(ep) + min(t])

* tmax(€c) = tmax(ep) + max(1])

A check is made to ensure that t;yin(ec) < tmax(ec)-
The range of occurrence of a node that is connected indirectly to a reference event is the sum of the

max(t]) (min(t])) values on the path connecting the pair of nodes. This is shown labeled Case B in
Figure 6.3. When the link between ep] and e; is traversed (assuming ep] is traversed before ep2), ej

19

has not yet been visited. The range of occurrence of ej, tp(e;), receives a value that is dependent on
the link ¢/ being traversed and tp(ep}]). The range of occurrence fp(e;) is therefore, 25 < tp(ej) < 90.

Rule 6.5:
If ec has been visited and has a range of occurrence relative to er then:

* tmin-new = tmin(ep) + min(t})
* tmax-new = max(€p) + max(t])
* tmin(€c) = max (tmin-new: tmin(ec))

* tmax(ec) = min(tmax-new: tmax(ec))
As in Rule 6.4 a check is made to ensure that t;yin(ec) < tmax(ec)-

Event e.'s range of occurrence is restricted, so that the tmin(ec) (tmax(ec)) bound satisfies both the
existing specification on the temporal separation between e, and e, and the tmin-new and tmax-new
values. The rationale behind the rule is the following. In the event of multiple direct or indirect arcs
from erto e, the lower (upper) bound should be established such that all the specifications on the
minimum (maximum) separation between e, and e are simultaneously satisfied. The maximum
(minimum) value of a set of lower (upper) bound specifications satisfies all other lower (upper)
bound specifications.

Rule 6.5 is illustrated in Figure 6.3, labeled Case C. The lower bound of zp(e;) is 25 when the link
connecting ep2 with e; is traversed. As tmin-new is equal to 20 and is less than t;yin(ec) the lower
bound of tp(e;) remains unchanged. The value of zpax(e;) is 90 and that of tymgx-new 80.
Consequently, tmgx(e;) is set to 80 and the range of occurrence of e; is revised to 25 < tp(e;) < 80.

Finally, if e has a range of occurrence relative to an event e,] # e, then the resolve_reference_event
algorithm is called to determine the true reference event.

The result of the propagate_value algorithm for the event graph shown in Figure 5.1 is shown in
Figure 6.4. The arc connecting a reference event, e,, with an event ¢; is labeled by the tmin and tmayx
values of e;'s range of occurrence relative to e;.

6.3 The Traverse_Graph Algorithm

The traverse_graph algorithm passes events to the propagate_value algorithm that have no parents or
occur on an output sequencing signal, and thus are reference events (Rule 5.4). The algorithm starts
by passing the start event eg to propagate_value. It then looks for arcs not yet traversed, and if any

such arc exists, it passes a reference event e to the propagate_value algorithm. The traverse_graph
algorithm terminates when all arcs have been traversed. Figure 6.4 shows the result of the
traverse_graph algorithm, as all the reference events associated with the event graph in Figure 5.1 are
shown.

Rule 6.6:
If an arc ¢ remains to be traversed and the event efrom associated with ¢/ is an output event, then
the event e, passed to the propagate_value algorithm is the first input or sequencing event
found during a search up the event graph that is connected to efrom.

20

Figure 6.4: Result of the propagate_value algorithm for the entire event graph.

Note that in the absence of an output sequencing signal there has to be an input event connected
directly or indirectly to efrom, as the only output event that can be a reference event in this situation is
es. The first input event found on this recursive search is er, as it cannot have any parents (if it did it
would be an input ey, event for a causal link, violating Rule 4.2). Also note that none of the events on
this search up the event graph will have a range of occurrence associated with them, except if they are
sequencing events. This is because if they did, then link ¢; would have been traversed.

Rule 6.7:
If an arc ¢ remains to be traversed, and the event efrom associated with #7 is an input event, then
the event e, passed to the propagate_value algorithm is efrom.

As there can be no input event on an event graph with an arc leading in, the first input event found
(efrom) when searching up the event graph from e, must be a reference event.

6.4 Discussion

Mavaddat and Gahlinger [15] use an event graph to represent timing information and then tighten
(compute the shortest paths between events) this event graph. Tightening is similar to our traversal of
the event graph. Prior to tightening, their event graph may have cycles as a maximum constraint
between a pair of events is represented as a negative weighted edge with a direction opposite that of a
minimum constraint. Ku and DeMicheli [17] and Khordoc et al. [20, 21] use a similar representation.
We, however, consider the entity of relevance to be the range of occurrence of an event. Separating
the representation of lower and upper bounds does not allow the manipulation of a range of
occurrence. The rules that define ranges of occurrence help in identifying errors; for example, the
detection of an output event with an infinite upper bound. The only error detectable in the scheme
used by Khordoc et al. is a lower bound exceeding the upper bound (manifest as a cycle with positive
weight).

Martello and Levitan [16, 22] use an event graph, for interface verification tasks, that is similar to
ours. Each event in their graph has an enabling expression that contains conditional information that
may be optionally specified to affect the occurrence of the event. An enabling expression is
constructed from the values of other signals (possibly, and by default, all signals) that participate in
an interface transaction. We believe conditional information is best represented symbolically, as in
our scheme, for the following reasons:

21

« A symbolic representation of interface state eliminates the need to tag each state with an
expression that encapsulates signal activity associated with that state.

- A state diagram allows reasoning about the transaction paths of a bus cycle. This is useful, for
instance, when resolving multiple reference events.

Khordoc et al. and Martello and Levitan do not preprocess an event graph to determine reference
events. Consequently, during the verification task they determine the reference event for each pair of
events whose temporal relation needs to be verified. We believe this to be computationally expensive,
as a typical interface transaction has a few reference events (order of n) and many more non-
reference events (order of 10n). It is, therefore, advantageous to determine the reference events and
reduce the depth of the event graph to one prior to its use in a verification application.

OEgraph [23, 24] consists of two types of nodes, operation and event, which are connected by
directed arcs to form a bipartite graph. While an event node in an OEgraph represents a class of
events, events described in this paper represent discrete events. Timing constraints are specified using
first-order predicate calculus (FOPC). We believe that the OEgraph structure may be simplified, and
the need for FOPC alleviated, if discrete events are represented on an event graph and state diagrams
used to specify sequencing, looping and conditional aspects of interface behavior.

DDS [25] represents timing information, in a timing model, that is a level of abstraction above the
signal activity that we represent on an event graph. The timing model essentially captures the manner
in which interface timing constraints may influence the scheduling of micro-operations. This model,
while perhaps suitable for the integration of timing constraints in the behavioral synthesis process,
does not deal with interface behavior at an appropriate level of abstraction.

7. Model Generation

HIDE generates BIMs written in VHDL [26] and Verilog [27]4 code. The modeling style employed
by HIDE closely resembles the process-model graph structure outlined by Armstrong [3]. A BIM is
implemented as a set of processes that execute concurrently. A process is generated for the bus-cycle-
level state diagram associated with an interface specification, and for each timing diagram, truth table
and bus-state-level state diagram. Code generation for each process is modular and independent of
the code generated for other processes. The overall architecture of a HIDE-generated model, using
VHDL syntax, is shown in Figure 7.1. As bus-state diagrams and truth tables are optional (they, for
instance, are not required for a memory device) their associated processes are not always present in a
model.

Each process has a set of signals on its sensitivity list. An event on any of these signals results in the
execution of the process. Depending on the status of the input signals on a device during a simulation
run, any number of processes may be active at a given time.

Processes communicate with each other through buffers that contain the value driven or received by a
signal. A buffer (<signal-name>_buf) exists for every signal on the interface of a device. Only
processes generated from timing diagrams directly drive or receive values from signals on an
interface. This is because temporal aspects of interface behavior are specified only through timing
diagrams. When driving a signal, a process sends the value contained in the signal buffer to a signal.
When sampling a value on a data or control signal, a process stores the received value in the signal
buffer. Processes generated from state diagrams use the buffer value of signals to update the bus state
of a cycle. Processes generated from truth tables use and affect the buffer value of signals.

4 In this section, examples of HIDE generated code will be given using VHDL syntax.

22

use libraries.all;
entity <name> is

generic (

<link-name> : time := <default-min-value>; /* The minimum value of a timing link
. at the default operating condition of a

. device */

°)

port (

<signal-name> : <direction> <type>;
*)

end name;

architecture interface of <name> is
type bus_state is (None, si, s2,....s,); /* When state diagrams are specified for bus cycles this enumerated type
defines all the bus states of all the cycles in the interface -
None is the default state of a cycle that has no state
diagram*/
type bus_cycle is (Idle, cj,c2,...ck); /* For a master device this type defines all the bus cycles */

signal state : bus_state := None /* Initial state of a device is None*/

signal cycle : bus_cycle := Idle; /* Default cycle is Idle;*/

signal next_cycle : bus_cycle := Idle; /* Default cycle is Idle;*/

signal pseudo_signall : <type>; /* Declaration of all pseudo signals used in the

. interface specification */

<signal-name>_buf: <direction> <type>; /* Buffers for each signal on a device

. interface */

<signal-name>_sample : bit; /* Sample flags for input/bi-directional signals*/

begin

cycle_transition: process(<sensitivity-list>) /* code for bus-cycle state diagram */

begin

end process cycle_transition;

<cycle-name>_transition: process(<sensitivity-list>) /* code for each cycle that has a bus-state diagram */

begin

end process <cycle-name>_transition;

truth_table_<number>: process(<sensitivity-list>) /* code for each truth table */
begin

end process truth_table_<number>;

<cycle-name>: process(<sensitivity-list>) /* code for each bus cycle */

begin

end process <cycle-name>;
end interface;
Figure 7.1: Architecture of overall BIM generated by HIDE.

23

In addition to a buffer the following predefined signals are contained in a model:

« A flag (<signal-name>_sample), associated with all input and bi-directional interface ports, that
is toggled when the signal is sampled.

« A signal (state) that stores the current state of a bus cycle.
» A flag (trans) that indicates the occurrence of a state transition.

« A signal (cycle) that indicates the current cycle being executed, and another (next_cycle) that
indicates the next cycle to be executed.

The manner in which interface activity is initiated depends on whether the cycle being executed is a
master or slave cycle. A slave cycle's interface behavior is initiated by events on the sensitivity list of
its associated process. The interface behavior of a master cycle is explicitly initiated by a user during
a simulation run. This may be done through a high-level procedure call that, in turn, drives the
corresponding process in a model. Alternatively, a user may cause the execution of a master cycle by
forcing values on signal buffers. In either case, the user passes and receives values for data signals
through their associated buffers and pseudo signals. Figure 7.2 illustrates an example command file
used to initiate a read cycle on a MC68020. A command file contains a sequence of instructions used
to simulate the interface activity of a device or digital design. The command file is written in pseudo-
code; its syntax is dictated by the simulator used.

#include mc68020

variable data: integer;

cycle = MC68020;
ADDR _buf = "00";
SIZE_buf = "11";

wait until R_P = 0;

Figure 7.2: Example command file.

The following sections discuss the structure of processes generated for timing and state diagrams, and
truth tables.

7.1 Processes for Timing Diagrams

Constraint links, as mentioned in Section 5, are not part of the event graph as they take no part in the
propagation of timing values. A constraint link is, however, stored with its ez, event and points to its
ecfrom event. The direction of a constraint link is opposite that of a causal link in an event graph.

ode associated with a constraint link checks for a temporal separation between a pair of events. This
check can only be made once ez, has occurred. Therefore, constraint link code is associated with the
€to event.

Figure 7.3 illustrates the event graph shown in Figure 6.3 with constraint links. Code generation
examines arcs leading out of each event in the event graph. An event that has no arcs leading out of it
has no code generated. An event may have been marked as one that is used by a device to sample a
signal or set of signals. This marking is performed using Rule 4.3. In this case, code to implement
sampling also needs to be generated for each of the sampled signals. Note that once an event graph
has been traversed and annotated with constraint arcs and sampling information, code can be
generated for each event by examining its direct links.

Code generation commences with a creation of the sensitivity list for a process. This list consists of
signals whose events are in the set of reference events R or in the set of events E¢ that have constraint

24

links pointing to other events. The event eg, if it is an output event, is excluded from this list.
Sequencing events in R are replaced by the signal, trans, that indicates a state transition.
Consequently, as all other reference events are input events (Rule 5.4) and all ey events for constraint
links are also input events (Rule 4.1), the signals on a sensitivity list for a process are all input signals.
This is rlft to be expected as a process should react to signal activity on a subset of the input signals on
an interface.

Causal Arc D ;
Constraint Arc s«
al

Figure 7.3: Event graph with constraint links.

Each causal arc results in the generation of a signal-assignment statement for the non-reference event
e; connected to the reference event e, in the set R. A constraint arc results in the generation of an
assertion statement that checks the temporal separation between the event e; that is connected by the
arc to an event in the set E¢. An event that is used to sample a signal results in code that stores the
value of the sampled signal in that signal’s buffer. The value of the corresponding
<signal_name> sample signal is toggled to indicate that the signal has been sampled. Each of these
statements is nested within a conditional statement that tests for the occurrence of the event from
which these arcs fan out. A reference event that is a sequencing event results in a test for the
associated bus state, rather than the particular event (Rule 5.5). An illustration of these different
statements is shown in Figure 7.4 for the event CLKy3 associated with bus state S5 in the event graph
shown in Figure 5.1.

Xwave labels an event based on the logic level taken by a signal at the completion of the event. Xwave
uses an event counter to distinguish between events that have the same label and occur more than
once on a signal, for example CLKy] and CLKf3. A pair of signals (a counter, <signal-name>_count,
and a flag, <signal-name>_pulse), associated with each port on the interface, indicate the number of
periodic occurrences of a complementary event pair (for example, rise and fall, active and high-
impedance) on the port.

An issue in code generation is when to reset the event counter, <signal-name>_count, associated with
a signal. This is important because a timing diagram shows the pulse width that needs to be satisfied
by a signal through a single pulse on the diagram. During a simulation run, however, the signal may
pulse many times during a cycle. Each of these pulses must meet the width constraint. If the event
counter for all signals is reset at the end of a bus cycle, then the assertion statement associated with the

25

pulse-width constraint would not be activated for any pulse other than the first. This is, however,
clearly not the intent of the timing specification. To handle this situation, the event counter for a
signal is reset when the last event, specified on a timing diagram, for that signal occurs. If a signal
with a single pulse was shown on a timing diagram, then the signal’s counter is reset when the event
that signifies the end of the pulse occurs.

Figure 7.4 shows the code generated for a signal-assignment, assertion and sampling statement, and
that related to the manipulation of an event counter. Each signal on a process sensitivity list would
have similar code generated to manipulate its event counter. Each event in the scts R and E¢ would

have code generated similar to that shown for bus state S5.

READ : process (DSACKO, DSACK1, DATA, trans) /* trans is a flag used to indicate change in bus state */
variable DSACKO_counter : integer := 1; /* event counter for the DSACKO signal */
variable DSACKO_pulse : integer := 0; /* counter needs to be incremented at the

. end of a period (consisting of two transitions) */
begin
if cycle = 'READ’ then
if DSACKO'event then f* code to handle the incrementing of the event
DSACKO_pulse := DSACKO_pulse + 1; counter associated with the DSACKO signal */
if DSACKO_pulse = 3 then
DSACKO_pulse := 1;
DSACKO_count := DSACKO_count + 1;
end if;
end if;
if state'event and state = S5 then /* code associated with the event CLK§3 */
AS <= transport '1" after T41; /* signal assignment statement */
AS_buf <= transport '1';
assert DATA'last_event > T27 [* assertion statement */
report "Timing Violation";
DATA_buf := DATA; /* code as a result of a sampling arc */
DATA_sample <= not DATA_sample; /* used to indicate that the DATA signal has been sampled */
end if;
if DSACKO'event and DSACKO = '1' and DSACKO_count = 1 then
DSACKO_pulse := 1; /* reset of the event counter associated with the DSACKO signal */
end if;
end if;

end process READ;

Figure 7.4: Portion of a process generated from a timing diagram.

7.2 Processes for State Diagrams

The sensitivity list of a process generated for a bus-cycle-level state diagram contains all the signals
that specify the initiation and termination conditions of asynchronous cycles, and also the sequencing
signal for synchronous cycles. For example, the sensitivity list for the bus-cycle-level state diagram
for a memory device, shown in Figure 2.4, contains the signals CE and WE.

Code is generated for each transition in the state diagram if the cycle from which the transition is

specified does not have a bus-state-level state diagram. The code generated is a sequence of
conditional statements that capture the information specified by a state-transition table. Each

26

statement checks the current cycle and the condition associated with the transition. If the transition
condition is satisfied then the signal cycle has its value updated to the value contained in the
next_cycle signal. The value /dle (in general the name of the default cycle specified by a user) is
stored in the next_cycle signal. If the cycle to which the transition is made has a bus-state-level state
diagram then the start state on this diagram is stored in the signal state; if not the value None is stored
in state. If the cycle to which a transition is made is a master cycle then the signal R_P (Request
Pending) is set to 1. The specification for the reset of this signal is assumed to have been specified
through a truth table or on a timing diagram (see Figure 2.7).

A procedure, in a command file, that causes the execution of a master cycle waits for R_P to be reset
before terminating and allowing the next procedure to be executed. R_P may be reset during the
execution of a cycle, allowing the next procedure in the command file to initialize buffers and
commence execution without intermediate /dle cycles. The signal R_P, therefore models a signal that
informs internal circuitry about the status of execution of a cycle and affects the scheduling of these
cycles.

Figure 7.5 shows a portion of the code generated for the bus-cycle-level state diagram for the
MC68020 shown in Figure 2.5. Similar code would be generated for each transition in the state
diagram as outlined earlier in this section.

CYCLE_TRANSITION : process (CLK)
begin
if CLK 'event and CLK = '0' and next_cycle = Read and cycle = Idle then
cycle <= Read
state <= S0;
next_cycle <= Idle;
R_P<="1";
end if;

end CYCLE_TRANSITION;

Figure 7.5: Portion of a process generated from a bus-cycle level state diagram.

The sensitivity list for a process generated from a bus-state-level state diagram contains only the
sequencing signal. For the state diagram in Figure 2.6 the sequencing signal is the CLK signal. Each
statement checks the current bus state and conditional information specified for transitions associated
with the bus state. If a transition condition is satisfied then the state is updated to its new value. Also,
the trans signal is toggled to indicate that a state transition has been made. For a transition that
indicates the completion of a cycle as many conditional statements are generated as arcs leading out
from the cycle at the bus-cycle-level state diagram. Each of these conditional statements evaluate the
initiation condition for cycles reachable from the current cycle, in addition to the condition
associated with the transition at the bus-state level. The actions associated with a transition that
terminates a cycle are identical to those generated for a transition at the bus-cycle level. The process
generated for a portion of the state diagram in Figure 2.6 is shown in Figure 7.6.

7.3 Processes for Truth Tables

The sensitivity list for a process generated from a truth table consists of sampling flags associated with
the following signals:

1. Those signals on the LHS of a truth table that are input to a device.

2. Those signals on the RHS of an action associated with a row in a truth table.

27

These signals represent data flow constraints on the actions in a truth table. Recall that a flag for a
signal is set when that signal is sampled by a process generated from a timing diagram. When all
sampling flags associated with a process generated from a truth table have been set, then the actions
associated with a row in the truth table are performed. The code generated for each row of the truth
table is one that tests whether the row conditions are satisfied, and if so executes the actions associated
with that row. A signal whose value is X for a row in the truth table does not form part of the
conditional statement. The process generated for a portion of the truth table in Figure 2.7 is shown in
Figure 7.7.

READ_STATE_TRANSITION : process (CLK)
begin
if cycle = Read or cycle = Write then
if CLK'event and CLK ='0' and state = S0 then
state <= S1/;
trans <= not trans; /* indicate that a state transition has been made */
end if;

end if;
end READ_STATE_TRANSITION;

Figure 7.6: Portion of a process generated from a bus-state level state diagram.

TRUTH_TABLE _1 : process (DSACKO_sample, DSACKI_sample, DATA_sample)
variable DSACKO_sample_flag: integer := 0; /* flags used to indicate whether all signals
variable DSACKI _sample_flag: integer := 0; that are a part of the data flow constraint
variable DATA_sample_flag: integer := 0; of a truth table have been sampled */
begin
if DSACKO_sample'event then
DSACKO_sample_flag := 1;
end if;
if DSACKO_sample_flag = 1 and DSACK_sample_flag = 1 and DATA_sample_flag = 1 then
if R W ="1"and SIZE(1) = '0' and SIZE(0) ='0' and ADDR (1) ='0' and ADDR(0) ='1' and DSACKO ='0' and
DSACKI ="'0' then
DATUM(31 downto 0) := DATA_buf (23 downto 0);
ADDR _buf := ADDR_buf + 3;
SIZE_BUF := SIZE_BUF - 3;
end if;

end if;
end TRUTH_TABLE _1;

Figure 7.7: Portion of a process generated from a truth table.

8. Related Work

In this section, we contrast our approach to model generation and interface specification with that of
others, and also point out the limitations of SpecIT and HIDE.

General approaches have been taken toward the automated generation of simulation models. HUM

[28] is a commercial tool that generates VHDL models representing the behavior of both the
computation and interface engine of a device. HUM requires a spreadsheet-like specification of the

28

behavior of a device. XBIF [29] is a user interface that provides both graphical and tabular
specification formats of device behavior, which may then be converted to VHDL or retained in an
internal [30] representation for synthesis tasks. Both XBIF and BIF rely on the specification and
representation, respectively, of behavior using hierarchical annotated state tables. While the use of
state tables is appropriate for specifying control flow, we believe that timing diagrams arc necessary 10
capture the temporal behavior that is an integral part of an interface specification.

Research in the area of interface specification has focused on interface timing verification and
synthesis tasks, such as the synthesis of interface adapters and the assimilation of interface constraints
during the synthesis of the internal circuitry of a device.

Textual approaches to timing or interface specification have (a) used temporal logic [31], (b)
extended the features of an HDL to allow for the specification of timing constraints [32, 33, 34], and
(c) used the features of a software programming language (SPL) to express timing constraints [35].

Nestor and Thomas [32, 33], and Camposano and Kunzmann [34] take a similar approach to
extending ISPS and DSL (two HDLs), respectively, to accomodate timing constraints in behavioral-
synthesis. While Camposano and Kunzmann do not capture interface timing constraints, Nestor and
Thomas do. The interface specification in BSI (extended ISPS) is not distinct from the internal-
circuitry specification; rather, a composite specification is used to guide the synthesis process. We
believe, instead, it is desirable to have a modular specification of internal and interface behavior. Also,
both BSI and DSL only permit the specification of timing constraints; the causal information that is
contained in our specification is a result of synthesis tasks, and represents the delay associated with
the generation of output signals.

The disadvantages of textual specifications of interface behavior are the following:

« They require knowledge of a programming language (hardware or software), or specification
style such as temporal logic that is not a natural means for the specification of hardware
behavior to designers. Designers conceptualize hardware in terms of timing, state diagrams and
truth tables [4].

« They often comingle the specification of internal and interface behavior.
Graphical specification tools have been developed by Borriello [7, 12] and Subrahmanyam [13, 14].

Waves [7, 12] is a tool used for the capture of interface specifications for the synthesis of interface
adapters. Waves uses a notion of formalized timing diagrams, which extend conventional diagrams by:
(a) allowing signal values to be specified as a function of other signals, (b) using regular expressions
to specify the transaction paths of a bus cycle, and (c) allowing timing diagrams to be interconnected
by linking events in different diagrams. SpecIT has more embedded knowledge about the structure
of a timing diagram and semantics that may be culled from structural elements. This allows a user to
enter a diagram in a uniform manner without having to explicitly provide semantic information
associated with elements of a timing diagram. Also, we have defined rules that formalize the
representation of interface behavior using event graphs. These specification and representation rules
allow formal reasoning on interface behavior.

Subrahmanyam [13, 14] developed a tool for the capture of timing diagrams whose information is
represented internally by a format built on temporal-logic constructs, and used subsequently for the
synthesis of mixed-mode (asynchronous and synchronous elements) systems. Subrahmanyam,
however, does not attempt to capture all the information in a graphical form; information not easily
captured on a timing diagram is specified textually.

29

8.1. Limitations of SpecIT and HIDE

Our interface specification methodology currently allows three hierarchical specification levels (bus-
cycle-level, bus-state-level, and signal activity). It may be desirable to allow the specification of
hierarchical state diagrams with arbitrary levels of nesting [29] for the following two reasons:

» To ease the specification of a complex interface with many bus states.
« To permit the specification of causal and constraint information at multiple hierarchical levels.

It may also be useful to allow timing diagrams to be linked to specify signal activity associated with
multiple transaction paths.

We make an assumption that all asynchronous bus cycles have a single transaction path and
consequently cannot specify or model asynchronous cycles with multiple transaction paths.

9. Results

HIDE has been used to generate models for the Intel 180386, Motorola MC68020 and MC68332
CPUs, a Cypress Semiconductor memory device, CY7C147, and other non-commercial interface
specifications that exercised the capabilities of the tool. The model generation time using HIDE is a
few man-days, in contrast to a few man-months when the same task is performed manually. Most of
the time is spent in understanding device interface behavior; the execution time of HIDE is of the
order of a few seconds. Figure 9.1 summarizes some of the relevant results of the model generation

process? .

Note that the MC68332 required fewer man days to generate a model because of its similarity to the
MC68020. Much of the effort spent in understanding and specifying the MC68020 was applicable
when generating a model for the MC68332.

The models accurately simulated device behavior. Particular attention was paid to the ability of the
models to handle dynamic bus-sizing, multi-cycle interface transactions and the execution of
consecutive master cycles without intermediate /dle cycles (when so desired).

T DEVICE | GRAPHICAL INPUTS LINES OF CODE | MAN DAYS
DIAGRAMS |DIAGRAMS |TaBLES | (VHDD)
MC68020 3 6 2 1134 7
MC68332 4 8 2 1368 3
180386 2 3 4 1051 10
CY7C147 1 2 0 332 1

Figure 9.1: Results of the Application of SpecIT and HIDE

5 Verilog models were, on average, 20% more verbose than VHDL models.

30

10. Summary

In this paper we have presented a system, HIDE, for the automated generation of BIMs from a high-
level specification of interface behavior using constructs that are familiar to a hardware engineer. We
have provided a methodology for the specification of interface behavior, and built a tool, SpeclIT for
this purpose. SpecIT captures asynchronous and synchronous behavior in a uniform manner. Our
methodology for interface specification conforms to the criteria outlined earlier in the paper and is
consistent with standard logic design methodologies.

We have identified the semantics associated with structural elements of an interface specification, and
have shown how knowledge of this structure facilitates the automated generation of simulation
models. The notion of causal and constraint links, and the ability to identify these links in a timing
diagram significantly enhances our representation of timing information using event graphs. The
ability to identify the occurrence of a sampling event, specified implicitly on a timing diagram, allows
a simple methodology for interface specification whose components are modular and
complementary. The notion of a range of occurrence for an event, the rules it adheres to, and the
manner in which it is computed have been formally defined. These are important formalisms
associated with an event graph and facilitate the representation of temporal information.

Acknowledgements

Yew-Hong Leong developed the first Xwave/HIDE system and many of the ideas in this paper stem
from that work. We thank Anurag Gupta for his insightful comments.

References

[11 Logic Automation, Inc. Processor Control Language, Users Guide.

2] D. Coelho. The VHDL Handbook. Kluwer Academic Publishers, 1989.

[3] J. Armstrong. Chip-Level Modeling with VHDL. Prentice-Hall Inc., 1989.

[4] W.I Fletcher. An Engineering Approach to Digital Design. Prentice-Hall, Inc., 1980.

[S] M. McFarland. CPA: Giving an Account of Timed System Behavior. In Proceedings of TAU' 90, August
1990.

[6] W.P.Birmingham and Yew-Hong Leong. The Automatic Generation of Bus-Interface Models. In Proceedings
of the 29th Design Automation Conference, June 1992.

[71 G. Borriello. A New Interface Specification Methodology and its Application to Transducer Synthesis.
Technical Report UCBICSD 88/430 (PhD Dissertation), Computer Science Division, University of
California at Berkeley, May 1988.

[8] H.S. Stone. Microcomputer Interfacing. Addison-Wesley Publishing Company, February 1983.

[9] Motorola, Inc. MC68020 32-bit Microprocessor User's Manual. Prentice Hall Inc., 1990.

[10] P.Rony. Interfacing Fundamentals: Timing Diagram Conventions. Computer Design, January 1980.

[11] A.R. Martello, S.P. Levitan and D.M. Chiarulli. Timing Verification using HDTV. In Proceedings of the
27th Design Automation Conference, June 1990.

[12] G. Borriello. Specification and Synthesis of Interface Control Logic. In High-Level VLSI Synthesis, edited by
Raul Camposano and Wayne Wolf. Kiuwer Academic Publishers, 1991.

[13] P. A. Subrahmanyam. Automated Synthesis of Systems with Interacting Asynchronous (Self-Timed) and
Synchronous Components. In Proceedings of the International Conference on Computer Design, October
1989.

[14] P. A. Subrahmanyam. TALES: Event-Based Semantics for Timing Specification. (with Application to
Synthesis, Verification and Analysis). In Proceedings of TAU’90, August 1990.

[15] F.Mavadatt and T. Gahlinger. On Deducing Tight Bounds from Partial Timing Specifications. In Proceedings
of TAU’ 90, August 1990.

[16] AR. Martello and S.P. Levitan. Temporal Specification Verification Via Causal Reasoning. In Proceedings
of TAU’92, February 1992.

(17] D.Ku and G. De Micheli. Relative Scheduling under Timing Constraints. In Proceedings of the 27th Design
Automation Conference, June 1990.

31

(18]

(19]
(20]

(21]

(22]
(23]

[24]

[25])
(26]
27
(28]
(29]
(30]
(31]
(32]
(33]
(34]
[35]

D.E. Wallace and C. H. Sequin. ATV: An Abstract Timing Verifier. In Proceedings of the 25th Design
Automation Conference, June 1988.

J.F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the ACM 26(11), 1983.
K. Khordoc, E. Cerny, and M. Dufresne. Modeling and Execution of Timing Diagrams with Optional and
Multi-Match Events. In Proceedings of TAU' 92, February, 1992.

K. Khordoc, M. Dufresne, and E. Cermny. A Stimulus/Response System Based on Hierarchical Timing
Diagrams. In Proceedings of the International Conference on Computer Aided Design, December, 1991.

AR. Martello and S.P. Levitan. Causal Timing Verification. In Proceedings of TAU’ 90, August, 1990.

T. Amon and G. Borriello. On the Specification of Timing behavior. In Proceedings of TAU' 90, August,
1990.

T.Amon, G. Borriello and C. Sequin. Operation/Event Graphs: A Design Representation for Timing
Behavior. In Proceedings of the Tenth International Conference on Computer Hardware Description Languages
and their Applications (CHDL "91), IFIP April 1991.

S. Hayati, A. Parker and J. Granacki. Representation of control and timing behavior with applications to
interface synthesis. In Proceedings of the International Conference on Computer Design, October 1988.
Institute of Electrical and Electronics Engineering, IEEE Standard VHDL Language Reference Manual, IEEE
Std. 1076-1987, 31 March 1988.

D.E. Thomas and Philip Moorby. The Verilog Hardware Description Language. Kluwer Academic Publishers,
1991.

Lewis System, Inc. HUM Users' Manual, VHDL PC Version, July 1991.

N. Dutt, J. Cho and T. Hadley. A User Interface for VHDL Behavioral Modeling. In Proceedings of the Tenth
International Conference on Computer Hardware Description Languages and their Applications (CHDL "91),
IFIP April 1991.

N.D. Dutt, D.D. Gajski and T. Hadley. BIF: A Behavioral Intermediate Format for High Level Synthesis.
ICS Technical Report 89-03, University of California at Irvine, February, 1989.

G.V. Bochmann. Hardware Specification with Temporal Logic: An Example. IEEE Transactions on
Computers, March, 1982.

J.A. Nestor and D.E. Thomas. Behavioral Synthesis with Interfaces. In Proceedings of the International
Conference on Computer Aided Design, December 1986.

J.A. Nestor. Specification and Synthesis of Digital Systems with Interfaces, PhD Thesis, Carnegie Mellon
University, April, 1987.

R. Camposano and A. Kunzmann. Considering Timing Constraints in Synthesis from a Behavioral
Description. In Proceedings of the International Conference on Computer Design, October 1986.

E.F. Girczyc, R.J. Buhr, and J.P. Knight. Applicability of a Subset of Ada for Graph-Based Hardware
Compilation. JEEE Transactions on Computer Aided Design, April, 1985.

32

