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In this paper, the effects of pressure-sensitive yielding on the η factor and the J integral
estimation for compact tension specimens are investigated. The analytical expressions for
η and J for pressure-insensitive von Mises materials are generalized to pressure-sensitive
Drucker-Prager materials using a lower bound approach. The η factor as a function of the
pressure sensitivity and the normalized crack depth for compact tension specimens is
derived under plane stress and plane strain conditions. The numerical results indicate that
the η factor decreases as the pressure sensitivity increases. The effects are more
pronounced under plane strain conditions than under plane stress conditions. However, the
effects of the pressure sensitivity on η are found to be mild in general. For rigid
perfectly-plastic materials, the J estimation for pressure-sensitive materials is also reduced
to a simple expression of the tensile yield stress times the crack tip opening displacement
as for the von Mises materials. C© 1999 Kluwer Academic Publishers

1. Introduction
The J integral, introduced by Rice [1, 2], has been
widely used for the prediction of crack initiation where
the linear elastic fracture mechanics (LEFM) theory
cannot be used. TheJ integral was originally derived
for deformation plasticity (nonlinear elastic) materials.
From the viewpoint of energy release rate,J can be in-
ferred from the experimental load-displacement curves
of test specimens. Hence, it is possible to estimate theJ
integral from the load-displacement curves of various
test specimen geometries (Begley and Landes [3, 4]).
Bucciet al.[5] and Riceet al.[6] proposed theJ estima-
tion method for several specimen geometries, includ-
ing compact tension specimens. Merkle and Corten [7]
presented theJ integral estimation for compact tension
specimens using a limit load analysis by considering the
effects of the combined loading of the axial force and
the bending moment applied to the remaining ligament
of the specimens. They used a lower-bound approach
to derive theη factor for theJ integral estimation. The
η factor approach has been widely used to estimate the
J integral from the area under the load-displacement
(P-1) curve of a test specimen or structure

J = η

b

∫
P d1, (1)

where b is the remaining ligament of the specimen
[8, 9].

For plastics, ceramics, some metal alloys such as
nodular and malleable cast iron and even some steels,

yielding is sensitive to pressure. The pressure-sensitive
yielding is demonstrated by different values of the
yield stress in tension and compression when the
Bauschinger effect is not considered. This is contrary
to the prediction of the von Mises yield criterion where
the initial yield stress has the same magnitude under
tension and compression. Recently, Donget al.[16] in-
vestigated the fracture toughness of nodular cast iron
using compact tension specimens. For nodular cast iron,
the values of the yield stress in tension and compression
are quite different. This indicates that pressure-sensitive
yielding in nodular cast iron is not negligible. However,
the lower-bound approach used in the work of Merkle
and Corten [7] to estimateη andJ is based on fully plas-
tic yielding with the same value of the yield stress in ten-
sion and compression. Therefore, we here investigate
the effects of pressure-sensitive yielding (demonstrated
by different values of the yield stress in tension and
compression) onη and the estimation ofJ for compact
tension specimens of ductile pressure-sensitive materi-
als under fully plastic yielding conditions.

In this work, we first investigate the effect of the
pressure sensitivity on the lower-bound limit load for
compact tension specimens. Then, analytical expres-
sions for theη factor and theJ integral for rigid
perfectly-plastic materials are derived for compact ten-
sion specimens of pressure-sensitive materials. We also
present a parallel analysis by considering the effects
of plane strain conditions on the yield stresses under
compression and tension for thick specimens. Finally,
the effects of pressure sensitivity onη and J for rigid
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perfectly-plastic materials are presented for different
values of the normalized crack length and the pressure
sensitivity.

2. Plastic limit load and J estimation
2.1. Drucker-Prager yield criterion
For pressure-sensitive materials, the hydrostatic pres-
sure (or mean stress) affects yielding. To model
pressure-sensitive yielding, Drucker and Prager [10]
proposed a phenomenological yield criterion that is a
linear combination of the effective stress and the mean
stress. The Drucker-Prager yield criterion is a general-
ization of the Coulomb rule in soil mechanics where the
shear stress required for simple slip is linearly depen-
dent upon the normal pressure on the slip surface. The
Drucker-Prager yield criterion [10, 11] is represented
by

σe+
√

3µσm = σ0, (2)

whereµ is the pressure sensitivity factor,σe is the ef-
fective tensile stress andσm is the mean stress. Here,
σm is defined asσm= σkk/3 and σe is defined as
σe= (3si j si j /2)1/2 wheresi j are the deviatoric stress
components. The deviatoric stresses are defined as
si j = σi j − σkkδi j /3. The subscriptsi , j and k range
from 1 to 3 andδi j is the Kronecker delta. Summation
convention is adopted for repeated indices. In Equa-
tion 2,σ0 is the generalized effective tensile stress. For
perfectly plastic materials,σ0 is a constant.

The value of the pressure sensitivityµ varies for dif-
ferent classes of materials. Spitziget al. [12–14] re-
ported thatµ ranges from 0.029 to 0.064 for marag-
ing and tempered martensitic steels. For malleable cast
iron, µ is 0.22 [15]. For nodular cast iron,µ can
have a value of 0.28 as reported in Donget al. [16].
For polymers, Kinloch and Young [17] reported that
µ ranges from 0.10 to 0.25. For zirconia-containing
phase-transformation ceramics, much larger values of
µ for phase transformation were reported. For exam-
ple,µ ranges from 0.55 for Mg-PSZ [18] to 0.93 for
Ce-TZP [19].

The generalized effective tensile stressσ0 and the
pressure sensitivityµ are related to the uniaxial tensile
yield stressσt and the compressive yield stressσc by
the following relations

µ =
√

3

(
σc− σt

σc+ σt

)
, (3)

and

σ0 = 2σcσt

σc+ σt
. (4)

Defineµ′ =µ/√3. Thenσt andσc can be expressed in
terms ofµ′ andσ0 as

σt = 1

1+ µ′ σ0, (5)

and

σc = 1

1− µ′ σ0. (6)

Figure 1 The geometry of a compact tension specimen and the stress
diagram for the remaining ligament.

Equations 5 and 6 can also be obtained from the yield
criterion of Equation 2 by considering uniaxial tensile
and compressive loading, respectively.

2.2. Plastic limit load
Here, we use a lower-bound approach to obtain a
limit load for compact tension specimen of pressure-
sensitive materials as in Merkle and Corten [7]. Con-
sider a compact tension specimen of perfectly plastic
material as shown in Fig. 1. The specimen has a total
width W, a crack lengtha, a remaining ligament size
b and unit thickness. The specimen is loaded up to a
fully plastic limit load P0. The stress distribution in
the remaining ligament of the specimen is assumed as
shown in the figure where the portion of the ligament
near the tip is under uniaxial tensile yield stressσt and
the other portion is under uniaxial compressive yield
stressσc. Here, we use a dimensionless parameterα

which will be shown as a function of the crack depth
and the pressure sensitivity.

The plastic limit loadP0 is obtained for the speci-
men with consideration of the force equilibrium in the
vertical direction and the moment balance due to the
in-plane force and stresses. The force equilibrium in
the vertical direction requires

P0 = c[(1+ α)σt − (1− α)σc] (7)

The moment due to the tensile and compressive stresses
on the ligament as well as the limit loadP0 with respect
to the point of stress reversal is

c2

2

[
σt(1+ α)2+ σc(1− α)2]− P0[a+ (1+ α)c] = 0.

(8)

In Equations 7 and 8,c is one half of the remaining lig-
ament sizeb. A plastic limit load analysis for a speci-
men of pressure-sensitive materials under pure bending
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is presented in the Appendix. Substituting Equation 7
into Equation 8 gives

2[σt(1+ α)− σc(1− α)] −
[

a

c
+ (1+ α)

]
= σt(1+ α)2+ σc(1− α)2. (9)

For pressure-insensitive Mises materials, the compres-
sive and tensile yield stresses are the same. Therefore,
σt= σc= σ0, whereσ0 is the yield stress. Equation 9
can then be written as

α2+ 2

(
a

c
+ 1

)
α − 1= 0. (10)

Solving Equation 10 forα gives

α =
[(

a

c
+ 1

)2

+ 1

]1/2

−
(

a

c
+ 1

)
. (11)

Equations 10 and 11 are the same as those obtained
by Merkle and Corten [7]. Note that for pressure-
insensitive Mises materials,α is only a function of the
crack depth.

For pressure-sensitive Drucker-Prager materials, the
expressions forσt andσc from Equations 5 and 6 are
used. Substituting these expressions into Equation 9,
we get a governing equation forα for pressure-sensitive
materials as

2

[
1

1+ µ′ σ0(1+ α)− 1

1− µ′ σ0(1− α)

]

×
[

a

c
+ (1+ α)

]
= 1

1+ µ′ σ0(1+ α)2

+ 1

1− µ′ σ0(1− α)2. (12)

Rearranging the above equation gives a quadratic equa-
tion for α as

α2+ 2

(
a

c
+ 1

)
α −

[
1+ 2µ′

(
a

c
+ 1

)]
= 0. (13)

Solving forα yields

α =
[(

a

c
+ 1

)2

+ 1+ 2µ′
(

a

c
+ 1

)]1/2

−
(

a

c
+ 1

)
.

(14)
When the pressure sensitivity factorµ is set to zero,
the expression forα in Equation 14 reduces to Equa-
tion 11 for pressure-insensitive Mises materials, which
was originally given by Merkle and Corten [7]. It is
clear from Equation 14 thatα is a function of the crack
depth and the pressure sensitivity for pressure-sensitive
materials.

For thick specimens, the plane strain conditions
should be considered. In this case, the generalized effec-
tive stress is expressed in terms of the in-plane stresses
as given by Li and Pan [20] as

σ0 =
√

3

2

(
1− µ

2

3

)1/2[
(σ11− σ22)

2+ 4σ12
]1/2

+
√

3

2
µ(σ11+ σ22), (15)

whereσ11 is the in-plane normal stress in the direc-
tion parallel to the crack,σ22 is the in-plane normal
stress in the direction perpendicular to the crack, and
σ12 is the in-plane shear stress. Denoteσ p

t as the tensile
yield stress under plane strain conditions. Therefore,
σ22= σ p

t andσ11= σ12=0. Substituting these values
into Equation 15 yields

σ0 =
√

3

2

[(
1− µ

2

3

)1/2

+ µ
]
σ

p
t , (16)

from whichσ p
t can be expressed as

σ
p
t =

σ0√
3

2

[(
1− µ

2

3

)1/2

+ µ
] . (17)

Define two new parametersσ ′′0 andµ′′ as

σ ′′0 =
σ0√

3

2

(
1− µ

2

3

)1/2 , (18)

µ′′ = µ(
1− µ

2

3

)1/2 . (19)

Combining Equations 17–19 givesσ p
t expressed in a

form similar to that ofσt in Equation 5 as

σ
p
t =

1

1+ µ′′ σ
′′
0 , (20)

Similarly, the compressive yield stressσ p
c under plane

strain conditions can be obtained as

σ p
c =

1

1− µ′′ σ
′′
0 . (21)

Equations 20 and 21 can be used to describe the ten-
sile and compressive yield stresses under plane strain
conditions. Note that the forms of the yield stresses in
compression and tension under plane stress and plane
strain conditions are similar, as demonstrated by Equa-
tions 5 and 6 on one hand and Equations 20 and 21 on
the other hand. Therefore, analogous relations for the
plane strain case can be obtained by usingµ′′ in stead
of µ′ for the plane stress case. Then we get a similar
expression forα in terms ofµ′′ as

α =
[(

a

c
+ 1

)2

+ 1+ 2µ′′
(

a

c
+ 1

)]1/2

−
(

a

c
+ 1

)
.

(22)

2.3. The η factor and J integral calculation
Riceet al.[6] gave theJ integral expression in terms of
the load-displacement (P-1) curve for deeply-cracked
specimens as

J = 2

b

∫ 1

0
P d1. (23)

4323



P1: FJD/FJN P2: FJU(SAI) 705-97 June 16, 1999 12:36

The displacement1 can be decomposed into an elastic
part1e and a plastic part1p as

1 = 1e+1p. (24)

Then,J can be expressed as

J = Je+ Jp, (25)

where Je represents the elastic part ofJ, and Jp the
plastic part ofJ. Merkle and Corten [7] expressed the
plastic partJp as

Jp = η

b

∫ 1p

0
P d1p + η

∗

b

∫ p

0
1p d P, (26)

whereη andη∗ are dependent on the geometry of the
specimen and loading. The first and second integrals in
Equation 26 are the plastic work and the complimentary
plastic work done on the specimen, respectively.

Theη factor is defined by

η = b
1

P0

d P0

db
. (27)

From Equations 5–7,P0 is evaluated as

P0 = 2cσ0

1− µ′2 (α − µ′). (28)

DifferentiatingP0 with respect tob, with dc/db=1/2,
yields

d P0

db
= 2cσ0

1− µ′2
(
α − µ′ + c

∂α

∂c

)
. (29)

Then,η can be obtained by substituting Equations 28
and 29 into Equation 27, withb=2c, as

η = 1+ c

α − µ′
∂α

∂c
. (30)

In order to determine∂α/∂c, Equation 13 is differenti-
ated with respect toc using the relationa=W−2c to
evaluate∂a/∂c

2α
∂α

∂c
+ 2

[−2c− a

c2
α +

(
a

c
+ 1

)
∂α

∂c

]
−2µ′

−2c− a

c2
= 0. (31)

From Equation 31, the form needed in Equation 30 can
be solved for as

c

α − µ′
∂α

∂c
=

2+ a

c

α + a

c
+ 1

. (32)

Equation 13 is again used to get the expression fora/c
as

a

c
= 1− 2(α − µ′)− α2

2(α − µ′) . (33)

The expression fora/c in Equation 33 is then substi-
tuted into Equation 32 which yields

c

α − µ′
∂α

∂c
= 1+ 2(α − µ′)− α2

1− 2µ′α + α2
. (34)

Finally, substituting Equation 34 into Equation 30 and
simplifying give the expression forη as

η = 2
(1+ α)(1− µ′)
1− 2µ′α + α2

, (35)

whereα is expressed in Equation 14. We can compare
the form forη in Equation 35 with the one given by
Merkle and Corten for Mises materials (Equation 47 in
Ref. [7]). It is clear that Equation 35 reduces to their
expression whenµ is set to zero. For the plane strain
case, the expression forη takes a similar form to that
of Equation 35 withµ′′ replacingµ′ as

η = 2
(1+ α)(1− µ′′)
1− 2µ′′α + α2

, (36)

whereα is expressed in Equation 22.
For rigid perfectly plastic materials, the elastic strain

is zero, and so is the complimentary plastic work in
Equation 26. Therefore, theJ integral for the plane
stress case reduces to

J = 2

b

(1+ α)(1− µ′)
1− 2µ′α + α2

P01 (37)

Fig. 2 shows the displacement diagram for the com-
pact tension specimen (see Merkle and Corten [7]). The
applied displacement1 can be related to the crack-tip
opening displacementδ by

1

a+ (1+ α)c
= δ

(1+ α)c
, (38)

from which1 is obtained as

1 =

(
a

c

)
+ (1+ α)

(1+ α)
δ. (39)

Combining Equations 28, 33, 37, and 39 gives an ex-
pression for theJ integral for rigid perfectly-plastic
pressure-sensitive mateials as

J = 1

1+ µ′ σ0δ = σtδ, (40)

where Equation 5 is used. For a material without pres-
sure sensitivity, the resulting expression in Equation 40
is similar to the simpleJ integral expression for rigid
perfectly-plastic Mises materials.

For the plane strain case, the expression forJ is de-
rived in terms ofµ′′ andσ ′′0 , instead ofµ andσ0. In
this case. Equation 20 is used in the result in order to
obtain J in terms of the tensile yield stressσ p

t under
plane strain conditions as

J = σ p
t δ. (41)

Figure 2 Relation between the applied displacement1 and the crack-tip
opening displacementδ for rigid-perfectly plastic material as in Merkle
and Corten [7].
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It is noted that theJ integral for rigid perfectly-plastic
pressure-sensitive materials given by Equations 40 and
41 is independent of the value ofa/c, as for Mises
materials. Equations 40 and 41 are in agreement with
the results for the Dugdale-Barenblatt cohesive zone
model for perfectly-plastic materials.

3. Numerical results and discussions
Although the relations developed earlier for theη fac-
tor are for the idealized case of rigid perfectly-plastic
material behavior, they are indicative of the role of the
pressure sensitivity on the estimation of theJ integral
using theη factor approach. TheJ integral estimation
procedure and the use of theη factor for compact ten-
sion specimens were originally intended to apply to
metals [9]. The recent study of Donget al. [16] on the
fracture mechanisms in compact tension specimens of
nodular cast iron motivates us to investigate the quanti-
tative effects of the pressure sensitivity on theη factor
for estimation of theJ integral for pressure-sensitive
metals under fully yielded conditions.

The relations derived for theη factor for pressure-
sensitive materials are used here to depict the depen-
dence ofη onµ and the normalized crack lengtha/W.
First, it is desirable to relate the variables here to the
ratio of the crack length to the total specimen width,
a/W, instead of the ratioa/c. Since the parameterα in
Equation 14 is expressed in terms ofa/c, we refer to
the specimen geometry as shown in Fig. 1 to relatea/c
to a/W by

a

c
=

2

(
a

W

)
1−

(
a

W

) , (42)

which is used in the computation ofα andη.
Figs 3 and 4 show the dependence of theη factor on

the pressure sensitivityµ for the plane stress and plane
strain cases, respectively. Fig 3 shows theη factor as a

Figure 3 The η factor as a function of the pressure sensitivityµ for
different values ofa/W for the plane stress case.

Figure 4 The η factor as a function of the pressure sensitivityµ for
different values ofa/W for the plane strain case.

function ofµ for three different values ofa/W=0.2,
0.5, and 0.8 for the plane stress case in whichµ′ is used
in the calculations. It is shown in the figure that as the
pressure sensitivity increases, the value ofη decreases.
This effect is mild in general, but it is more significant
for small values ofa/W than for large values. When
a/W becomes large, the effect of the pressure sensitiv-
ity becomes less significant because for deeply-cracked
specimens,η approaches the value of 2 regardless of the
material constitutive behavior (Riceet al. [6]). For ex-
ample, forµ=0.3,η is reduced from that forµ=0 by
about 4% fora/W=0.2, while it is reduced by about
1% fora/W=0.8.

Fig. 4 shows theη factor as a function of the pressure
sensitivityµ for the same values ofa/W as in Fig. 3
for the plane strain case, in which the calculations are
made based onµ′′. Comparing with Fig. 3 for the plane
stress case, we find that while in both cases the values
of η emanate from the same values atµ=0 for differ-
ent values ofa/Wand decrease with increasingµ, the
rate of decrease ofη in the plane strain case is higher,
and thus the effect of the pressure sensitivity is more
prominent. For example, fora/W=0.2, η for µ=0.3
is reduced from that forµ=0 by about 7% in Fig. 4
as opposed to the 4% as noted for the plane stress case.
For a/W=0.5, η for µ=0.3 is reduced from that for
µ=0 by about 4.5%. The same trend of a mild effect of
the pressure sensitivity onη for larger values ofa/W
for the plane stress case as shown in Fig. 3 is also seen
here. However, the value ofη for the plane strain case
approaches 2 for all ratiosa/W at a higher rate than
that for the plane stress case asµ increases.

Figs 5 and 6 show the dependence of theη factor
on the normalized crack lengtha/W for different val-
ues ofµ. Fig. 5 is a plot of theη factor as a function
of a/W for the plane stress case. For all the values of
the pressure sensitivity, asa/W increases, theη fac-
tor decreases. For larger values of pressure sensitivity,
(µ=0.8), the initial value ofη is lower and closer to 2
and, consequently,η becomes relatively insensitive to
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Figure 5 Theη factor as a function of the normalized crack lengtha/W
for different values of the pressure sensitivityµ for the plane stress case.

Figure 6 Theη factor as a function of the normalized crack lengtha/W
for different values of the pressure sensitivityµ for the plane strain case.

the value ofa/W. This can also be observed in Fig. 3.
Fig. 6 is a plot of theη factor as a function ofa/W for
the plane strain case. Comparing Fig. 6 with Fig. 5, we
find that forµ=0, η remains the same for both of the
cases. This is expected since whenµ=0,η becomes a
function ofa/W only for both the plane stress and plane
strain cases. Also, for a larger value ofµ, theη factor
is less sensitive toa/W in the plane strain case. As in
the plane stress case,η for various pressure sensitivities
approaches 2 for deep cracks.

The effect of the pressure sensitivity on theη factor
is due to the fact that the introduction of the Drucker-
Prager yield criterion induces a shift of the neutral axis
of the remaining ligament of the specimen by account-
ing for the difference in the tensile and compressive
yield stresses. A comparison between the von Mises
yield criterion and the Drucker-Prager yield criterion
for µ=0.13 is shown in Fig. 7 where both of the crite-

Figure 7 Yield contours based on the von Mises yield criterion and the
Drucker-Prager yield criterion withµ=0.13 in the two dimensional
principal stress plane.

ria are plotted in the two-dimensional principal stress
σ1− σ2 plane. The plots are normalized by the uni-
axial tensile yield stressσt. In the figure, the Mises
yield criterion is represented by the dashed line, and the
Drucker-Prager criterion for a presure-sensitive mate-
rial withµ=0.13 is represented by the solid line. Con-
sidering the plane stress case withσ2=0, we see that in
the Mises case, the normalized tensile and compressive
yield stresses have the same magnitude. However, in
the Drucker-Prager case, the uniaxial compressive yield
stress is larger than the uniaxial tensile yield stress.

Now we consider the plane strain case withε2=0.
Based on the normality flow, the tensile and compres-
sive yield stresses are represented by points MT and MC
on the yield contour for the Mises materials, where the
outward normal to the yield contour is parallel to the
σ1 axis. On the other hand, the tensile and compressive
yield stresses are represented by point DPT and DPC on
the yield contour for the Drucker-Prager materials. The
difference between the tensile and compressive yield
stresses is much larger for the plane strain case than for
the plane stress case. Therefore, the effects of the pres-
sure sensitivity onη is larger for the plane strain case.

Note that theη factor in Equations 35 and 36 be-
comes undefined whenµ′ =1.0 andµ′′ =1.0, respec-
tively. Therefore, when evaluatingη at µ′ =1.0 from
Equation 35 andµ′ =1.0 from Equation 36, we resort
to L’Hopital’s rule. For both cases, the result isη=2.
These correspond toµ=√3=1.73 in the plane stress
case, andµ=√3/2=0.866 in the plane strain case.
Mathematically speaking, this is why in the latter case,
the effect of pressure sensitivity is more pronounced
because it takes a lower value of the pressure sensitiv-
ity to reach to the limit value ofη. This is due to the
way the Drucker-Prager yield criterion is defined for
the two cases. In the plane strain case, the difference
between the comprssive and tensile yields, stresses is
twice as much as it is in the plane stress case. The shift
in the neutral axis in the remaining ligament increases
in the plane strain case.
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Even though the results presented here for theη factor
are for the idealized case of rigid perfectly-plastic mate-
rial behavior, they are indicative of the role of the pres-
sure sensitivity on the estimation of theJ integral. For
materials with very small pressure sensitivity, the effect
is mild. However, for materials where the pressure sen-
sitivity is moderate, such as malleable and nodular cast
irons, the effect is more noticeable and the difference in
the calculation of theη factor for the estimation of the
J integral for the compact specimen should be taken
into consideration. For such types of materials, theη

factor presented here is needed to estimateJ.

4. Conclusions
In this work, we investigate the effect of pressure sen-
sitivity on theη factor and theJ integral estimation for
compact tension specimens of rigid perfectly plastic
materials. Theη factor decreases with increasing pres-
sure sensitivity for different crack lengths in general.
However, the effect is mild for small and moderate val-
ues of pressure sensitivity. The effects of pressure sen-
sitivity on η are found to be more pronounced for the
plane strain case than for the plane stress case due to the
larger difference between the tensile and compressive
yield stresses in the plane strain case.
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Appendix: a limit moment analysis for bend
specimens of pressure-sensitive materials
The limit moment for specimens of pressure-sensitive
materials under pure bending can be obtained by con-
sidering the equilibrium under fully plastic load. Con-
sider the specimen of unit thickness shown in Fig. 8
subjected to pure bending moment. A simple stress dia-
gram for the left part of the specimen under fully plastic
loading is also shown in the figure. Due to the pressure
sensitivity, the compressive yield stressσc is larger than
the tensile yield stressσt. Consequently, the span of the
tensile portion with the widthγb is larger than that of
the compressive portion with the width (1− γ ) b in
order to satisfy the force equilibrium. Therefore,

γbσt − (1− γ )bσc = 0. (43)

Figure 8 The geometry of a bend specimen subjected to pure bending
and the stress diagram for the left part of the specimen for pressure-
sensitive materials.

The moment balance with respect to the point of stress
reversal is obtained as

M0 = γbσt
γb

2
+ (1− γ )bσc

(1− γ )b

2
. (44)

For the plane stress case,σt andσc are given by Equa-
tions 5 and 6. Substituting the two equations into Equa-
tion 43 gives the expression forγ as

γ = (1+ µ′)
2

(45)

Substituting this expression forγ into Equation 44
yields

M0 = 1

4
σ0b2. (46)

This is the same as that for pressure-insensitive von
Mises materials. However,σ0 is the generalized tensile
effective stress. For pressure-sensitive materials,σ0 can
be expressed as a function of the tensile yield stressσt
and the pressure sensitivityµ from Equation 5. Then,
M0 becomes

M0 = 1

4
(1+ µ′)σtb

2. (47)

Under plane strain conditions, the tensile yield stressσ
p
t

and the compressive yield stressσ p
c , given in Equations

20 and 21, should be used in Equations 43 and 44. In
this case, the parameterγ becomes

γ = (1+ µ′′)
2

(48)

The resulting moment becomes

M0 = 1

2
√

3
σ ′′0 b2, (49)

or, in terms ofσ0

M0 = 1(
1− µ

2

3

)1/2

1

2
√

3
σ0b2. (50)

For µ=0, the first quotient in Equation 50 becomes
unity, and the moment reduces to the expression for
Mises materials. Similarly,M0 can be expressed in
terms ofσt as

M0 = 1

2
√

3

1+ µ′(
1− µ′2)1/2σtb

2. (51)

From Equations 47 and 51, the effects of pressure sen-
sitivity on M0 can be observed. Asµ increases,M0 in-
creases because the compressive yield stressσc is larger
than the tensile yield stressσt. Consequently, the load-
ing needed to attain fully plastic conditions is larger.
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