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In this paper, the effects of pressure-sensitive yielding on the 5 factor and the J integral
estimation for compact tension specimens are investigated. The analytical expressions for
n and J for pressure-insensitive von Mises materials are generalized to pressure-sensitive
Drucker-Prager materials using a lower bound approach. The 5 factor as a function of the
pressure sensitivity and the normalized crack depth for compact tension specimens is
derived under plane stress and plane strain conditions. The numerical results indicate that
the n factor decreases as the pressure sensitivity increases. The effects are more
pronounced under plane strain conditions than under plane stress conditions. However, the
effects of the pressure sensitivity on n are found to be mild in general. For rigid
perfectly-plastic materials, the J estimation for pressure-sensitive materials is also reduced
to a simple expression of the tensile yield stress times the crack tip opening displacement
as for the von Mises materials. © 7999 Kluwer Academic Publishers

1. Introduction yielding is sensitive to pressure. The pressure-sensitive
The J integral, introduced by Rice [1, 2], has beenyielding is demonstrated by different values of the
widely used for the prediction of crack initiation where yield stress in tension and compression when the
the linear elastic fracture mechanics (LEFM) theoryBauschinger effect is not considered. This is contrary
cannot be used. Thé integral was originally derived to the prediction of the von Mises yield criterion where
for deformation plasticity (nonlinear elastic) materials. the initial yield stress has the same magnitude under
From the viewpoint of energy release ralegan be in-  tension and compression. Recently, Detgl.[16] in-
ferred from the experimental load-displacement curveyestigated the fracture toughness of nodular cast iron
of test specimens. Hence, it is possible to estimatd the using compact tension specimens. For nodular castiron,
integral from the load-displacement curves of variousthe values of the yield stress in tension and compression
test specimen geometries (Begley and Landes [3, 4]are quite different. Thisindicates that pressure-sensitive
Buccietal.[5]and Riceet al.[6] proposed thd estima-  yielding in nodular cast iron is not negligible. However,
tion method for several specimen geometries, includthe lower-bound approach used in the work of Merkle
ing compact tension specimens. Merkle and Corten [7fand Corten [7] to estimatgandJ is based on fully plas-
presented thé integral estimation for compact tension tic yielding with the same value of the yield stressin ten-
specimens using a limitload analysis by considering thesion and compression. Therefore, we here investigate
effects of the combined loading of the axial force andthe effects of pressure-sensitive yielding (demonstrated
the bending moment applied to the remaining ligamenby different values of the yield stress in tension and
of the specimens. They used a lower-bound approacbompression) on and the estimation af for compact
to derive they factor for theJ integral estimation. The tension specimens of ductile pressure-sensitive materi-
n factor approach has been widely used to estimate thals under fully plastic yielding conditions.
J integral from the area under the load-displacement In this work, we first investigate the effect of the
(P-A) curve of a test specimen or structure pressure sensitivity on the lower-bound limit load for
compact tension specimens. Then, analytical expres-
J= Q/ P dA (1) sions for then_ factor_and theJ _integral for rigid
b ’ perfectly-plastic materials are derived for compact ten-
sion specimens of pressure-sensitive materials. We also
whereb is the remaining ligament of the specimen present a parallel analysis by considering the effects
[8, 9]. of plane strain conditions on the yield stresses under
For plastics, ceramics, some metal alloys such asompression and tension for thick specimens. Finally,
nodular and malleable cast iron and even some steelthe effects of pressure sensitivity grand J for rigid
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perfectly-plastic materials are presented for different P
values of the normalized crack length and the pressur: \
sensitivity. w |

a b=2¢c—+

2. Plastic limit load and J estimation

2.1. Drucker-Prager yield criterion ® o,
For pressure-sensitive materials, the hydrostatic pres

sure (or mean stress) affects yielding. To model
pressure-sensitive yielding, Drucker and Prager [10]
proposed a phenomenological yield criterion that is a
linear combination of the effective stress and the mear
stress. The Drucker-Prager yield criterion is a general-
ization of the Coulomb rule in soil mechanics where the
shear stress required for simple slip is linearly depen-

: c
dent upon the normal pressure on the slip surface. Thi S '
lIZ));ucker-Prager yield criterion [10, 11] is represented (1+0)c (L-oe

oe+ \/é,u(fm =09 (2) Figure 1 The geometry of a compact tension specimen and the stress

diagram for the remaining ligament.

wherep is the pressure sensitivity facter, is the ef-
fective tensile stress arngl, is the mean stress. Here,
om is defined asom=okk/3 and oe is defined as Equations 5 and 6 can also be obtained from the yield
oe=(3s; Sj/2)"/2? wheres; are the deviatoric stress criterion of Equation 2 by considering uniaxial tensile
components. The deviatoric stresses are defined @)d compressive loading, respectively.
Sj =0ij —okkdij /3. The subscript$, j andk range
from 1 to 3 andbj; is the Kronecker delta. Summation
convention is adopted for repeated indices. In Equa2.2. Plastic limit load
tion 2,09 is the generalized effective tensile stress. FoHere, we use a lower-bound approach to obtain a
perfectly plastic materials;y is a constant. limit load for compact tension specimen of pressure-

The value of the pressure sensitivjtyvaries for dif-  sensitive materials as in Merkle and Corten [7]. Con-
ferent classes of materials. Spitag) al. [12—-14] re-  sider a compact tension specimen of perfectly plastic
ported thatu ranges from 0.029 to 0.064 for marag- material as shown in Fig. 1. The specimen has a total
ing and tempered martensitic steels. For malleable castidth W, a crack lengtha, a remaining ligament size
iron, p is 0.22 [15]. For nodular cast irony can b and unit thickness. The specimen is loaded up to a
have a value of 0.28 as reported in Dosigal. [16].  fully plastic limit load Py. The stress distribution in
For polymers, Kinloch and Young [17] reported that the remaining ligament of the specimen is assumed as
wu ranges from 0.10 to 0.25. For zirconia-containingshown in the figure where the portion of the ligament
phase-transformation ceramics, much larger values afear the tip is under uniaxial tensile yield stresand
u for phase transformation were reported. For examthe other portion is under uniaxial compressive yield
ple, 1 ranges from 0.55 for Mg-PSZ [18] to 0.93 for stresso.. Here, we use a dimensionless parameter
Ce-TZP [19]. which will be shown as a function of the crack depth

The generalized effective tensile stregsand the and the pressure sensitivity.
pressure sensitivity are related to the uniaxial tensile  The plastic limit loadPy is obtained for the speci-
yield stresso; and the compressive yield stregsby ~ men with consideration of the force equilibrium in the

the following relations vertical direction and the moment balance due to the
in-plane force and stresses. The force equilibrium in
w= @(Gc _ ot), (3) the vertical direction requires
oc + ot
and Po = cl(1 + @)or — (1 — @)oc] (7
200t

) (4) Themomentdue to the tensile and compressive stresses
oc + ot on the ligament as well as the limit loddg with respect
to the point of stress reversal is

og =

Defineu’ = M/\/ﬁ. Thenot ando, can be expressed in

terms ofy’ andog as 2
1 E[at(l + )® + o¢(1 — @)?] — Pola+ (1 + a)c] = 0.
ot = -00, (5)
1+ (8)
and . . N
In Equations 7 and & is one half of the remaining lig-
Oc = 1 0. (6) ament sizeb. A plastic limit load analysis for a speci-
1—w men of pressure-sensitive materials under pure bending
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is presented in the Appendix. Substituting Equation Avhereoy; is the in-plane normal stress in the direc-

into Equation 8 gives tion parallel to the crackg;; is the in-plane normal
a stress in the direction perpendicular to the crack, and
2[ot(1 4+ ) — oc(1 — )] — [— +(1+ a)} o12is the in-plane shear stress. Dengfeas the tensile
¢ yield stress under plane strain conditions. Therefore,
= oy(1 4 @)%+ oe(1 — a)2. @ 922=of andoi;=01,=0. Substituting these values

_ - _ _ into Equation 15 yields
For pressure-insensitive Mises materials, the compres-

sive and tensile yield stresses are the same. Therefore, V3 U2 1/2 0
o1 = 0. = 0o, Whereoy is the yield stress. Equation 9 00 = —- (1 - §> +u o, (16)
can then be written as
a4 2<§ + 1)0, _1=0. (10) from whicha can be expressed as
C
i . fon i oP = 90 (17)
Solving Equation 10 fow gives t = 73 N\ V2 .
" Z-5)

a:|:<§+l>2+l:| —<%+1>. (11) ?

Define two new parametesg andu” as
Equations 10 and 11 are the same as those obtained

by Merkle and Corten [7]. Note that for pressure- ol = %0 (18)
insensitive Mises materialg, is only a function of the 0 /3 o\ 12
w
crack depth. - (1 — —)
For pressure-sensitive Drucker-Prager materials, the 3
expressions fos; ando, from Equations 5 and 6 are , n
used. Substituting these expressions into Equation 9, wo= N (19)
we get a governing equation ferfor pressure-sensitive 1 H*
materials as 3
1 1 Combining Equations 17-19 gives expressed in a
2 1+ oo(1+a) — 1_ M/UO(l —a) form similar to that ob; in Equation 5 as
1
a p_ ”
X[E+(L+@}=1+Mpdl+ay W'_1+MM%’ (20)
1 5 Similarly, the compressive yield stres§ under plane
T o oo(1 — )", (12) " train conditions can be obtained as
Rearranging the above equation gives a quadratic equa- 1
tion for o as o = ~0g - (21)

1—u

a [ a
o+ 2(5 T l)“ - [l+ 2u (E + 1)] =0. (13) " Equations 20 and 21 can be used to describe the ten-
) i sile and compressive yield stresses under plane strain
Solving fora yields conditions. Note that the forms of the yield stresses in
2 1/2 compression and tension under plane stress and plane
Q= (E + 1) +1+ 2//(3 + 1) — <§ + 1), strain conditions are similar, as demonstrated by Equa-
c c c tions 5 and 6 on one hand and Equations 20 and 21 on
(14)  the other hand. Therefore, analogous relations for the
When the pressure sensitivity factaris set to zero, plane strain case can be obtained by ugifign stead
the expression fow in Equation 14 reduces to Equa- Of u’ for the plane stress case. Then we get a similar
tion 11 for pressure-insensitive Mises materials, whichexpression fow in terms ofy.” as
was originally given by Merkle and Corten [7]. It is 12
clear from Equation 14 that is a function of the crack a 2 Lfa / a
depth and the pressure sensitivity for pressure-sensitivé = (E + 1) +1+2u <E + 1) - (E + 1)-
materials. 22)
For thick specimens, the plane strain conditions
should be considered. Inthis case, the generalized effec-
tive stress is expressed in terms of the in-plane stress

as given by Li and Pan [20] as 253. The n factor and J integral calculation

Riceet al.[6] gave the] integral expression in terms of

B V3 2\ Y2 5 12 the Iqad-displacemenP(—A) curve for deeply-cracked
oo=—-(1-7% [(011 — 022)° + 4012] specimens as
3 2 (4
+ \/7_#(011 + 022), (15) I=5 /0 Pda. (3)
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The displacemem can be decomposed into an elastic Finally, substituting Equation 34 into Equation 30 and

partAe and a plastic par, as simplifying give the expression for as
A = Ae+ Ap. (24) _ 0t —u) 35
7 1- 2o +a?’ (35)

Then,J can be expressed as ) ) )
wherea is expressed in Equation 14. We can compare

J=Je+ Jp, (25)  the form foryn in Equation 35 with the one given by
Merkle and Corten for Mises materials (Equation 47 in
Ref. [7]). It is clear that Equation 35 reduces to their
expression whem is set to zero. For the plane strain
case, the expression fgrtakes a similar form to that
of Equation 35 withu” replacingu’ as

_+a) - )

_ 2°
wheren andn* are dependent on the geometry of the 1-2ata
specimen and loading. The first and second integrals ivherex is expressed in Equation 22.
Equation 26 are the plastic work and the complimentary For rigid perfectly plastic materials, the elastic strain

where Je represents the elastic part 8f and J, the
plastic part ofJ. Merkle and Corten [7] expressed the
plastic part), as
n [P n* [P
0 0 (36)

plastic work done on the specimen, respectively. is zero, and so is the complimentary plastic work in
Then factor is defined by Equation 26. Therefore, thé integral for the plane
stress case reduces to
LdR (27) 2(1+a)1
7” = 0D— —-. _ !
Po db g=20read=im)p (37)

) ] T bl-2ua+a?
From Equations 5—7 is evaluated as ) ] )
Fig. 2 shows the displacement diagram for the com-

2cop (@ — 1), (28) pacttension specimen (see Merkle and Corten [7]). The

Po= 1—p? applied displacemenk can be related to the crack-tip
. i . . ing displ atb

Differentiating Py with respect td, withdc/db=1/2, opening displacemeitoy
yields A __ 9 (38)

dR 2cCoyg , oa a+(@tac (ta)

db — 1\ H +teo o). (29)  from which A is obtained as

a
Then,n can be obtained by substituting Equations 28 (—) + (14w
and 29 into Equation 27, with= 2c, as N (39)
5 14+ a)
c
n=1+ po— B—Z. (30) Combining Equations 28, 33, 37, and 39 gives an ex-

pression for thel integral for rigid perfectly-plastic
In order to determinéa/dc, Equation 13 is differenti- pressure-sensitive mateials as
ated with respect to using the relatiom =W — 2c to

evaluateda/dc J= 008 = oid, 40
/ L t (40)
L 2[_2C —a 4 (9 n 1) a_o‘} where Equation 5 is used. For a material without pres-
ac c? ac sure sensitivity, the resulting expression in Equation 40
—2c—a is similar to the simple) integral expression for rigid
—2p 2 - 0. (31)  perfectly-plastic Mises materials.

. . . For the plane strain case, the expressionifes de-
Egoglsgg?gfgssl’ the form needed in Equation 30 Callived in terms ofu” andoy, instead ofu andop. In

this case. Equation 20 is used in the result in order to

242 obtain J in terms of the tensile yield stresg under
¢ da _ 3 c (32) Plane strain conditions as
N J=ops. (41)

Equation 13 is again used to get the expressiomafor

as
a_l—2(o¢—/ﬂ)—oz2' (33) 4 5

c 20 — 1)
The expression foa/c in Equation 33 is then substi- a (+0)c (l-w)c j
tuted into Equation 32 which yields ‘ * '

I—

N2 Figure 2 Relation between the applied displacem#&mind the crack-tip
¢ 8_a — 1+ 2(0{ L ) o . (34) opening displacemeitfor rigid-perfectly plastic material as in Merkle
a— ' dc 1-20a+ a? and Corten [7].
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It is noted that thel integral for rigid perfectly-plastic N
pressure-sensitive materials given by Equations 40 ar 2 g
41 is independent of the value afc, as for Mises
materials. Equations 40 and 41 are in agreement wit
the results for the Dugdale-Barenblatt cohesive zon
model for perfectly-plastic materials.

24

3. Numerical results and discussions

Although the relations developed earlier for théac-

tor are for the idealized case of rigid perfectly-plastic
material behavior, they are indicative of the role of the
pressure sensitivity on the estimation of théntegral
using then factor approach. Thé integral estimation
procedure and the use of thdactor for compact ten-
sion specimens were originally intended to apply ta
metals [9]. The recent study of Domeg al.[16] on the
fracture mechanisms in compact tension specimens «
nodular cast iron motivates us to investigate the quanti
tative effects of the pressure sensitivity on thiactor

Plane Strain

alW =02
—e—e—e - aW=05
- —— - aW=08

0

for estimation of theJ integral for pressure-sensitive Figure 4 The n factor as a function of the pressure sensitivityfor

metals under fully yielded conditions.
The relations derived for the factor for pressure-

different values o,/ W for the plane strain case.

sensitive materials are used here to depict the depefanction of i for three different values ai/W = 0.2,

dence ofy onu and the normalized crack lengaht W.

0.5, and 0.8 for the plane stress case in whitis used

First, it is desirable to relate the variables here to then the calculations. It is shown in the figure that as the
ratio of the crack length to the total specimen width, pressure sensitivity increases, the valug décreases.

a/W, instead of the ratia/c. Since the parameterin
Equation 14 is expressed in termsayfc, we refer to
the specimen geometry as shown in Fig. 1 to redate

This effect is mild in general, but it is more significant
for small values ofa/W than for large values. When

toa/W by

which is used in the computation efands.

Figs 3 and 4 show the dependence ofijtactor on
the pressure sensitivigy for the plane stress and plane
strain cases, respectively. Fig 3 showsHactor as a

n
26

(42)

- Plane Stress

aw =02
———————— - aW=05
| - — — - aW=08

Figure 3 The  factor as a function of the pressure sensitivityfor

different values ofi/ W for the plane stress case.

a/W becomes large, the effect of the pressure sensitiv-
ity becomes less significant because for deeply-cracked
specimens; approaches the value of 2 regardless of the
material constitutive behavior (Rie al.[6]). For ex-
ample, foru = 0.3, n is reduced from that far = 0 by
about 4% fora/W = 0.2, while it is reduced by about
1% fora/W =0.8.

Fig. 4 shows the factor as a function of the pressure
sensitivity u for the same values @&/ W as in Fig. 3
for the plane strain case, in which the calculations are
made based op”. Comparing with Fig. 3 for the plane
stress case, we find that while in both cases the values
of n emanate from the same valuesuat O for differ-
ent values o/ Wand decrease with increasipg the
rate of decrease af in the plane strain case is higher,
and thus the effect of the pressure sensitivity is more
prominent. For example, fa/W =0.2, n for ©=0.3
is reduced from that forr =0 by about 7% in Fig. 4
as opposed to the 4% as noted for the plane stress case.
Fora/W =0.5, n for © =0.3 is reduced from that for
u = 0byabout4.5%. The same trend of a mild effect of
the pressure sensitivity apfor larger values o/ W
for the plane stress case as shown in Fig. 3 is also seen
here. However, the value gffor the plane strain case
approaches 2 for all ratics/ W at a higher rate than
that for the plane stress caseagcreases.

Figs 5 and 6 show the dependence of thiactor
on the normalized crack leng#y W for different val-
ues ofu. Fig. 5 is a plot of the; factor as a function
of a/W for the plane stress case. For all the values of
the pressure sensitivity, @' W increases, the fac-
tor decreases. For larger values of pressure sensitivity,
(u=0.8), the initial value ofj is lower and closer to 2
and, consequently, becomes relatively insensitive to
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2.6 —==———-- Mises

Plane Stress ————— Drucker-Prager
e - u=0.13
—_—— = n=03

2.4

——

e

2.2

DPC

1. L L L L I L L 1 L I L 1 L L ' L L L L I L L H L
8 0.2 0.4 06 08 1 2

alW

(=]

. hen f ¢ ion of th lized Kl W Figure 7 Yield contours based on the von Mises yield criterion and the
flgg_r; ST enl actorfasa unction of t € norma 'ﬁe Icrac engf Drucker-Prager yield criterion witlx =0.13 in the two dimensional
or different values of the pressure sensitivityor the plane stress case. principal stress plane.

22 ria are plotted in the two—dimensiona] principal stress
5 Plane Strain 01— 02 plz.;\ne..The plots are norm.allzed by thg uni-
- axial tensile yield stress:. In the figure, the Mises
i - ~ t:g-B yield criterion is represented by the dashed line, and the
24k el _ n=03 Drucker-Prager criterion for a presure-sensitive mate-
- ——— = p=05 rial with © = 0.13 is represented by the solid line. Con-
""""""""" sidering the plane stress case with= 0, we see thatin

________ the Mises case, the normalized tensile and compressive
22 - - - yield stresses have the same magnitude. However, in
e ——— TN the Drucker-Prager case, the uniaxial compressive yield
) stress is larger than the uniaxial tensile yield stress.
Now we consider the plane strain case with=0.
i Based on the normality flow, the tensile and compres-
3 sive yield stresses are represented by points MT and MC
- on the yield contour for the Mises materials, where the
18', N T T I outward normal to the yield contour is parallel to the
0 0.2 0.4 0.6 0.8 1 o1 axis. On the other hand, the tensile and compressive
alW yield stresses are represented by point DPT and DPC on
the yield contour for the Drucker-Prager materials. The
difference between the tensile and compressive yield
stresses is much larger for the plane strain case than for
the plane stress case. Therefore, the effects of the pres-
the value ofa/W. This can also be observed in Fig. 3. sure sensitivity om is larger for the plane strain case.
Fig. 6 is a plot of the; factor as a function ad/ W for Note that then factor in Equations 35 and 36 be-
the plane strain case. Comparing Fig. 6 with Fig. 5, wecomes undefined whew = 1.0 andu” = 1.0, respec-
find that foru =0, n remains the same for both of the tively. Therefore, when evaluating at ' = 1.0 from
cases. This is expected since whes 0, becomes a Equation 35 ang’ = 1.0 from Equation 36, we resort
function ofa/ W only for both the plane stress and planeto L'Hopital’s rule. For both cases, the resultjis= 2.
strain cases. Also, for a larger valueofthen factor ~ These correspond 0= +/3=1.73 in the plane stress
is less sensitive ta/W in the plane strain case. As in case, ang: =+/3/2=0.866 in the plane strain case.
the plane stress casgfor various pressure sensitivities Mathematically speaking, this is why in the latter case,
approaches 2 for deep cracks. the effect of pressure sensitivity is more pronounced
The effect of the pressure sensitivity on théactor  because it takes a lower value of the pressure sensitiv-
is due to the fact that the introduction of the Drucker-ity to reach to the limit value of;. This is due to the
Prager yield criterion induces a shift of the neutral axisway the Drucker-Prager yield criterion is defined for
of the remaining ligament of the specimen by accountthe two cases. In the plane strain case, the difference
ing for the difference in the tensile and compressivebetween the comprssive and tensile yields, stresses is
yield stresses. A comparison between the von Miseswice as much as it is in the plane stress case. The shift
yield criterion and the Drucker-Prager yield criterion in the neutral axis in the remaining ligament increases
for © =0.13 is shown in Fig. 7 where both of the crite- in the plane strain case.

Figure 6 Then factor as a function of the normalized crack lengftw
for different values of the pressure sensitivityor the plane strain case.

4326



Eventhoughtheresults presented here foptlagtor ~ The moment balance with respect to the point of stress
are forthe idealized case of rigid perfectly-plastic mate+eversal is obtained as
rial behavior, they are indicative of the role of the pres- yb (1—)b
sure sensitivity on the estimation of tdentegral. For Mo = Vb0t7 +(1- V)chT- (44)
materials with very small pressure sensitivity, the effect )
is mild. However, for materials where the pressure senEOr the plane stress case ando. are given by Equa-
sitivity is moderate, such as malleable and nodular cadions 5 and 6. Substituting the two equations into Equa-
irons, the effect is more noticeable and the difference irfion 43 gives the expression fpras
the calculation of they factor for the estimation of the 1+ W)
J integral for the compact specimen should be taken =

(45)

into consideration. For such types of materials, the o . .2 _ _
factor presented here is needed to estinjate Su:sttltutlng this expression for into Equation 44
yields
1 2
4. Conclusions Mo = 7 o0b”. (46)

In this work, we investigate the effect of pressure sen-_l_h_ is th hat f . -
sitivity on then factor and the) integral estimation for 1S IS the same as that for pressure-insensitive von

compact tension specimens of rigid perfectly pIastich'fseSt matenals.FHowevezro is the generalized tensile
materials. The) factor decreases with increasing pres-ETeCtive stress. For pressure-sensitive materigisan

sure sensitivity for different crack lengths in general. P& €xpressed as a function of the tensile yield swess

However, the effect is mild for small and moderate val-2"d the pressure sensitivigy from Equation 5. Then,
ues of pressure sensitivity. The effects of pressure ser¥lo PecOmes
sitivity on n are found to be more pronounced for the

plane strain case than for the plane stress case due to the

larger difference between the tensile and compressive i . o
yield stresses in the plane strain case. Under plane strain conditions, the tensile yield stegss

and the compressive yield stress given in Equations
20 and 21, should be used in Equations 43 and 44. In
this case, the parametgrbecomes

1
Mo = Z(1+ p)orb?. (47)
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Appendix: a limit moment analysis for bend .
specimens of pressure-sensitive materials or, in terms ofog
The limit moment for specimens of pressure-sensitive 1 1 2
materials under pure bending can be obtained by con- Mo = 2\ 172 Zﬁaob : (50)
sidering the equilibrium under fully plastic load. Con- (1 — %)

sider the specimen of unit thickness shown in Fig. 8
subjected to pure bending moment. A simple stress diaFor ;1 =0, the first quotient in Equation 50 becomes
gram for the left part of the specimen under fully plasticunity, and the moment reduces to the expression for
loading is also shown in the figure. Due to the pressuréises materials. SimilarlyMo can be expressed in
sensitivity, the compressive yield stregss larger than  terms ofo; as
the tensile yield stresg. Consequently, the span of the 1 14
tensile portion with the widthyb is larger than that of Mo = s
the compressive portion with the width {1y) b in 23 (1- ,wz)l/
order to satisfy the force equilibrium. Therefore,

Soth?. (51)

From Equations 47 and 51, the effects of pressure sen-
yboy — (1 — y)boe = 0. (43) sitivity on Mg can be observed. As increasesMy in-
creases because the compressive yield stggs$arger
than the tensile yield stress. Consequently, the load-

M, T ing needed to attain fully plastic conditions is larger.
a-yb
Oy
boog T References
vb 1. J. R. RICE,J. Appl. Mech35(1968) 379.
l 2. ldem, in “Fracture 11,” edited by H. Liebowitz (Academic Press,
1969) p. 191.

3.J. A. BEGLEY andJ. D. LANDES, in “Fracture Toughness,”
Figure 8 The geometry of a bend specimen subjected to pure bending  Proceedings of the 1971 National Symposium on Fracture Mechan-
and the stress diagram for the left part of the specimen for pressure- ics, Part Il, ASTM STP 514 (American Society for Testing and
sensitive materials. Materials, 1972) p. 1.

4327



10.

.J. D. LANDES andJ. A. BEGLEY, in “Fracture Toughness,” 11
Proceedings of the 1971 National Symposium on Fracture Mechani2
ics, Part Il, ASTM STP 514 (American Society for Testing and
Materials, 1972) p. 24.

. R. J. BUCCI,P. C. PARIS,J. D. LANDES andJ. R. RICE,
in “Fracture Toughness,” Proceedings of the 1971 National Sympo-

sium on Fracture Mechanics, Part Il, ASTM STP 514 (American 15.

Society for Testing and Materials, 1972) p. 40.
.J. R. RICE,P. C. PARISandJ. G. MERKLE, in “Progress
in Flaw Growth and Fracture Toughness Testing,” ASTM STP 536
(American Society for Testing and Materials, 1973) p. 231.
.J. G. MERKLE andH. T. CORTEN, J. Press. Vess. Tech.,
Trans. ASME1974) 286.
. C. E. TURNER, in “Fracture Mechanics: Twelfth Conference,” 18
STP 700 (American Society for Testing and Materials, 1980) p. 314.19
. ASTM, “Standard Test Method fod,c, a Measure of Fracture 20
Toughness,” E 813-8% (American Society for Testing and Ma-
terials, Philadelphia 1989) p. 713.
D. C. DRUCKERandw. PRAGER, Q. Appl. Math.10 (1952)
157.

4328

13.
14.

16.

17.

.D. C. DRUCKER, Metall. Trans.4 (1973) 667.
.W. A. SPITZIG, R. J. SOBER andO.
Acta Metall.23(1975) 885.

Idem, Metall. Trans.7A (1976) 1703.

O. RICHMOND andwW. A. SPITZIG, in “International Union

of Theoretical and Applied Mechanics,” 1980, p. 377.

J. A. COLLINS, in“Failure of Materials in Mechanical Design”
(John Wiley & Sons, New York, 1981).

M. J. DONG,C. PIOURandD. FRANCOIS, “Damage In-
fluence on the Fracture Toughness of Nodular Cast Iron: Part I,
Metall. Mater. Trans(1997), in press.

A. J. KINLOCH andR. J. YOUNG, in “Fracture Behavior of
Polymers” (Elsevier Applied Science, London, 1983).

.1.-W. CHEN, J. Amer. Ceram. So@4 (1991) 2564.

.C.-S. YU andD. SHETTY, ibid. 72(1989) 921.

.F. Z. LI andJ. PAN, J. Appl. Mech57(1990) 40.

RICHMOND,

Received 30 April 1997
and accepted 24 February 1999



