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Abstract

We present a scheme for the generation of symbolic timing equations that establish the temporal
relationship between arbitrary events on an interface transaction. We discuss a representation for the
temporal and sequencing aspects of interface behavior, using causal event graphs and state-transition
graphs, that is amenable to the equation-generation task. We present algorithms used to traverse these
graphs to establish the temporal relation of events with respect to the start of an interface transaction.
We also present an algorithm used to establish the temporal relation between any arbitrary event pair.

1. Introduction

The sequencing and temporal aspects of an interface transaction for a component! are typically
specified through timing diagrams and state diagrams [1, 2]. It is desirable to automatically generate
the symbolic timing relation between arbitrary events on an interface transaction. This is useful to
support manual and automated synthesis,asd mmg sverification tasks. For example, high-level-
synthesis tools need to consider compoge§ ays relative to a critical path to aid the part-selection
task [3]. Symbolic equations, whichr.are generated. from a,rhlgh -level specification of interface
behavior, may be input to linear prog;hrhmmg tot)ls to_aid suc{f‘,cynthesm decisions. Likewise, timing
verifiers need to consider path delays. Apphc;;gons Tike; th need to establish the temporal relation
between arbitrary events that do not ces;amy have a spec “felation.

In this paper, we describe an algorifhrh thati giverra umﬁng daag’ram and state diagram, will generate a
symbolic equation between arbitrary ,g&en.ts£ Whll@ 4 \ga;qe}y g)f Jiming-verification tools [4, 5, 6, 7] use
timing equations internally, none of mese. too}s pmw ugm}ns to the user. We do not focus on
the manipulation or solution of symbolib uations, -o‘t’ theif transformation from one form to
another, but instead on their automatw -gqn“ératlon “frqm a high-level specification of interface
behavior.

The paper is organized as follows. Section 2 briefly characterizes interface behavior. Section 3
discusses our representation schemes for temporal and sequencing aspects of interface behavior.
Section 4 presents the algorithms used to traverse a causal-event-graph. Section 5 outlines the
algorithm used to traverse a state-transition graph. Section 6 discusses the technique used to generate
timing equations between an arbitrary event pair and Section 7 summarizes this paper.

2. Interface Behavior

The interface behavior of a device is defined by a collection of bus cycles that describe how a device
communicates with its environment. A bus cycle may be synchronous or asynchronous, master or
slave [8]. A bus cycle is composed of a sequence of bus states. Bus states define subactivities of a bus
cycle, i.e., signal activity on a set of interface ports for a portion of the bus cycle.

This research was supported by Digital Equipment Corporation and the National Science Foundation grant MIPS-905781. All views
expressed here are those of the authors, and not necessarily those of the funding agencies.

1Componeut is used in a general sense, indicating a VLSI device (e.g., a microprocessor), or a cell in an ASIC cell library.



A sequence of bus states that form a complete bus cycle is called a transaction path for the bus cycle.
A read bus cycle for the Motorola MC68020, for example, consists of bus states S0, SI, S2, $3, §4 and
S5 [9]. Taken in that order, these bus states represent a transaction path for the read cycle. A bus
cycle may have multiple transaction paths. We assume that asynchronous cycles, such as a fully-
interlocked handshake [8], have a single transaction path.

The temporal information associated with signal activity during a bus cycle is typically documented
using timing diagrams. If a bus cycle has a single transaction path, then a timing diagram completely
specifies the sequencing of events for a given cycle. These diagrams do not, however, convey other
non-temporal information needed for a complete interface specification, such as conditional
information associated with a bus cycle. Conditional information is required, in the event of multiple
transaction paths, to specify transaction paths as a function of signal values. Thus, in addition to
timing diagrams, state diagrams are required to specify sequencing aspects of interface behavior.

3. Representation of Temporal and Sequencing Information

3.1 Causal Event Graphs

A typical timing diagram, captured using the tool Xwave [10], specifying the read bus cycle for the
Motorola MC68020 [10], is shown in Figure 3.1. The labels S0 through S5 associated with the phases
of the CLK signal, referred to as a sequencing signal, represent different bus states of the read cycle.
A sequencing signal is one that sequences a cygle’ through its different bus states.

A representation of temporal mformanon that supports the equation-generation task is a causal event
graph (CEG). An event graph is a d1rected acyclic.graph (DAG) whose nodes, E = {e], e2...en}
represent events, and arcs, A = {t,}. t2..tm}, reljresent tumhg links between pairs of events. A timing
link, ¢}, is represented by a directeéd arc from efrpm: to.éo.:An event graph essentially encapsulates the
timing behavior of a bus cycle w1th IOgIC levels abstracted away.

While there are two types of tlrmng l_mks shown; on a tlfnmg diagram, causal and constraint [10], for
the purpose of equation generation they are - ‘both’ treated and represented identically (constraint links
are represented as causal links). This assumes that: mput events will occur at times consistent with
specified timing constraints. Hence'wg refer to; this:sépresentation as a CEG. Note, in general, the time
of occurrence of an input event cannot bé anticipated, and therefore, the need to represent causal and
goilstraint links differently [10]. The CEG for the timing diagram of Figure 3.1 is shown in Figure

Events on a sequencing signal are referred to as sequencing events. The representation of a
sequencing signal is such that each sequencing event e; is associated with a bus state s;, the state
entered by an interface when the event e; occurs. For example, CLK,], a sequencing event, is
associated with state SO in Figure 3.1.

The undirected CEG is connected and has a single component. A CEG that has more than one
component manifests an incompletely specified timing diagram. It is the connected property of a
CEG that allows the temporal relation of an arbitrary event pair to be established.

A CEG has a set of events that serve as temporal reference points for other events. These events are
referred to as reference events. Reference events are cut-vertices of the undirected CEG. There are two
important properties with regard to the reference events on a CEG:

« If there is no state diagram associated with a bus cycle, then there is exactly one reference event,
the start event eg. The start event is the first event to occur in a bus cycle and is specified by a
user.



« When a bus cycle has multiple transaction paths, and consequently a state diagram is specified,
then the number of reference events is the number of sequencing events with an out-degree
greater than one. The events rooted at a sequencing event e; occur when the device enters the

bus state s; associated with e;.
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Figure 3.2: Example CEG.



3.2. State-Transition Graphs

State diagrams are captured using the tool Xstate [10]. Every state diagram has a single start state, s,
one or more final states and transitions between states. Each state transition is labeled with the
sequencing event at which the transition is made. In addition, if sequencing between states is
dependent on the logic levels sensed at input signals then a conditional expression is used to specify
this sequencing information. For the purpose of equation generation, conditional expressions may be
omitted from a state diagram, and a non-deterministic state diagram specified (Figure 5.1).

A state diagram specifying sequencing aspects for the read cycle of the MC68020 is shown in Figure
3.3. The sequencing signal is CLK. A state diagram is represented as a state-transition graph, that
essentially has the same structure as the diagram.

Legend:

R_P: Request Pending

1: DSACKO=1 & DSACKI=1
CLK (y&motR_P  2: DSACK0=0 or DSACK1=0

3: HALT=1 & BUS_ERR = |
4: HALT=0 & BUS_ERR=0

CLK(I_)& (RP&3)ord)

Figure 3.3: State diagram for the read bus cycle of the MC68020.

4. Traversing Causal Event Graphs

Traversing a CEG refers to the propagation of timing values from a set of reference events R = {er],
er2....erk) to events that are connected directly or indirectly to R [10]. Event-graph traversal is
necessary to define the temporal relation of a non-reference event, connected indirectly to a reference
event, through a direct link that subsumes the information contained in the indirect links. Traversal
occurs by following arcs leading from a reference event e to all non-reference events e; € E rootec
at e € R. The propagation of timing values gives a timing equation, #(e;), to an event ¢;, relative to ar
ecvent ey.

A CEG is traversed using the traverse_graph algorithm, which calls propagate_value to establish
timing equations for a non-reference event, and to establish state-transition times (if a state diagram is
specified). The propagate_value algorithm calls resolve_reference_event to resolve the situation
where an event has multiple reference events. These algorithms are discussed in the following
sections.

4.1 The Traverse_Graph Algorithm

The traverse_graph algorithm passes reference events to the propagate_value algorithm. The
algorithm consists of two steps that are repeated iteratively until all arcs in a CEG have been traversed.

In Step 1, the start event eg and all sequencing events with an out-degree greater than one are passed
to propagate_value. After all reference events have been passed to the propagate_value algorithm
there may remain untraversed arcs; for example, the arc between DSACKOf; and CLKf, in Figure 3.2.
In this situation (Step 2), those untraversed arcs, t], whose event ez has received a timing equation are
examined. The timing equation associated with the event efrom of such arcs is established in the
following manner:



If etp € er:

* Hefrom) = - 1]
cefe )=¢€to
Else:fmm

* lefrom) = teto) - ]
* erefrom) = ereto)

Step 1 is then repeated, with those events with an out-degree greater than one that received a value
through Step 2 passed to propagate_value. The algorithm terminates when all arcs have been
traversed.

4.2 The Propagate_Value Algorithm

The propagate_value algorithm is given a reference event ey, and traverses the CEG affixing an
equation for events rooted at e,. An event e; has a set of parent events P = {e pl,€p2...e pm} and
children events C = {ec], ec2...eck}. The algorithm performs a breadth-first search of the CEG
rooted at ey by traversing arcs connecting a parent event with its children. All the arcs connected
directly or indirectly to ey are traversed, except as follows:

* If event e is a sequencing event and is associated with bus state s,, and is connected directly or
indirectly to a sequencing event e; (associated with bus state s;), then e; is not traversed during a
traversal of the CEG rooted at ey.

Furthermore:

* If ey and e 4] are consecutive sequencing events then the arc ¢} between them specifies the state
transition time of state s, associated with ey.

The propagate_value algorithm is shown in Figure 4.1 and an example execution of this algorithm is
shown in Figure 4.2.

4.3 The Resolve_Reference_Event Algorithm

Consider the case, depicted in Figure 4.3, where an event e; has two reference events er] and e,2, and
that e; has received a timing equation relative to er7. When the CEG relative to ey is traversed e; will
be reached. At this point a decision has to be made, if possible, on which of the two reference events,
er] or er2 to use when determining e;’s timing equation. The resolve_reference_event algorithm
performs this task using the following rule:

 If an event e; (an ey event) is indirectly or directly connected to events er] and er2 (e from
events), and if it is known that e occurs before e2, then the link between e2 and e; is the true
causal link. The link between erj and e; is shown for documentation purposes.

Note that for an event to have multiple reference events, these reference events need to be sequencing
events. Event e is associated with bus state s/ and e,2 with bus state s2. If it can be shown, by
traversing the state diagram, that state s/ (s2) always occurs before state s2 (s1), then ey2 (ery) is the
reference for event e;. The traversal of a state diagram to determine if state s2 occurs after state s/
requires two conditions to be satisfied: (1) it must be shown that state s/ has a transaction path to state
52, and (2) that state s2 does not have a transaction path to state s/.



The search for a transaction path between two states is performed by a depth-first search of the state-
transition graph. The start state for condition 1 is s/, and that for condition 2 is state s2. A state once
visited is marked, and is not revisited. Arcs leading into the start state, s¢, (SO in Figure 3.3) are not
traversed as they represent the start of a new bus cycle. The search terminates for condition 1 (2)
when state s2 (s1) is reached, or when there are no more arcs to traverse.

Propagate_value (er)
ép=é€r
t] = next_bfs_arc();
ebfs = etolt]);
while (zj<> null) {
change = 0;
If (e bfs not visited and ep = er) { /* Nlustrated as Case A in Figure 4.2 */
Hebfs) =11,
change = 1;

}
Else If (e pfs not visited and ep <> ey) { /* Illustrated as Case B in Figure 4.2 */

Hebfs) =11 + t(ep);
change = 1;

}
Else If (epfs visited and er(epfs ) =er) { I* eepfs) refers to the reference event of e bfs */

l(new) =1]+1(ep); /* Illustrated as Case C in Figure 4.2 */

Wepfs) = tighter (tnew, H(ebfs)) /* computed using the actual values associated with
If (t(epfs) = thew) the timing symbols and comparing their lower and
change = 1; upper bounds [10] */

}
Else If (epfs visited and er(epfs) < er)) {
erebfs) = resolve_reference_event(er(epfs), er, epfs);
If (e{epfs) <> er and ep < ep) {
Hebfs) =1 + tep);
change = 1;
}
If (eAepfs) <> er and ep=ep {
Hebfs) =1;
change = 1;

}

I}f (change)

er{ebfs) =er;
1] = next_bfs_arc (); /* The next arc to be traversed is chosen so that it satisfies Rule 5.1 */

If (£ <> null) {
ebfs = eto(1]);
ep = efrom(tl);
If (ep and epfs € consecutive sequencing events)
tirans(ep(Sp)) = t1;

Figure 4.1: The propagate_value algorithm

If condition 1 is not satisfied, then nothing can be said about the temporal relation between the two
states s1 and s2. If condition 2 is not satisfied, then s/ may or may not occur after s2, and
consequently no a priori decision can be made on the temporal relation between the two states. If

both conditions are not satisfied both e} and e are retained as reference events.



The resolve_reference_event algorithm is illustrated in Figure 4.3. The tree representing the depth-
first search of the transition diagram is also shown in Figure 4.3. From the tree shown in Figure 4.3, it
is clear that SO has a path to S/, and that S/ does not have a path to SO. Therefore, bus state S1 is
always reached after SO and, consequently, the falling edge of the clock signal is the true reference
event for the falling edge of AS.

Case B

C represents a set of events
-‘\ and could have a depth greater

than 1

Figure 4.2: Illustration of propagate_value
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Tree representing depth-first search
of state diagram using the rules of the
resolve_reference_event algorithm d3

Event graph representing multiple
reference events

Figure 4.3: Illustration of resolve_reference_event.

The CEG of Figure 3.2, after traversal is shown in Figure 4.4. Note that all non-reference events are
directly connected to reference (sequencing) events and that the temporal relation between a non-
reference event and a reference event is contained in this direct link. Also, note that the temporal
relation of sequencing events with regard to the start event is not yet established. To do so it is
necessary to traverse the state-transition graph.

S. Traversing State-Transition Graphs

In the presence of sequencing events, it is necessary to traverse the state-transition graph associated
with a cycle to determine the timing equations that relate the occurrence of a state relative to the start
of a cycle. It is necessary to identify the transaction paths to a state, and loops in a state diagram.
Once this is done, the timing equations relating the occurrence of a bus state relative to the start of a
cycle may be expressed as a function of: the paths to a state, the time associated with each state-
transition in a path (determined by the propagate_value algorithm), and the possible loops that may
be encountered (the number of times a loop is executed is expressed as a constant).



Urans(S0) = T3; ttrans(S1) = T2; trans(S2) = T3; tirans(S3) = T2; trans(S4) = T3, tirans(S5) = T2;
Figure 4.4: Example CEG after traversal.

A depth-first search of the state-transition graph is performed starting from s¢. Arcs leading into s¢
are not traversed, nor are the arcs that signify completion of a bus cycle. For example the arc from S5
to SO on the state diagram, shown in Figure 3.3 is not traversed as it leads into s¢. Also, the arc from
S5 to the Read box is not traversed as it signifies the completion of the read cycle. The path being
traversed relative to s( is maintained in current_path. When a state, s;, is visited, and it does not exist in
current_path, then current_path is added to the list of paths to s; from s¢. If the state s; is a member
of current_path then a loop in the state-transition graph has been traversed. An index, loop_counter,
of the loops in a state diagram is maintained; it initially has a value of 0. Loop_counter is incremented
when a loop is identified and with it is associated those states in current_path that form the loop. All
paths to a state are enumerated and so are all the loops in a state-transition graph. If, after the traversal
of the state-transition graph, there are states that do not have a transaction path from s, then these
state are unreachable. Such a condition manifests an incorrect state-diagram specification.

Figure 5.1 shows an example state-transition graph and the result of traversing this graph.

TEST

Paths:

S1: S0, S0-S2
§2: S0, S0-S1
83: S0, S0-S1-S2

1: S1
2:81,S82

Figure 5.1: Illustration of state-transition-graph-traversal



6. Generating Timing Equations

The timing equation relating an arbitrary event pair, e ] and e 2, may be determined by: finding the
closest common ancestor, eg, to the reference events of e ] and e2, and generating timing equations
that define the temporal relation of e ; and e2 with regard to eg.

It is necessary to find the closest common ancestor to a pair of reference events to avoid examining
false transaction paths. When a bus cycle has a single transaction path, there is only a single reference
event, es. The event e is, therefore, also the closest common ancestor, e, for any event pair. In the
presence of multiple transaction paths, all reference events are sequencing events. Given two reference
events e; and ej associated with bus states s; and sj, ifsj=sjtheneg=e;=ej. If s; # sj then the
transaction paths to both states, established by the state-transition-graph-traversal algorithm, are
examined. If a transaction path to s; (sj) includes s )i (s7) then ej (e;) is the ancestor event for e; (e j).
Note that, in general, either e; or ej, or both, are ancestor events when given a pair of dissimilar
reference events e; and ej. This is important because it eliminates the possibility of considering a
transaction path that does not include both e; and e; when determining the temporal relation between
events rooted at these reference events. For example, consider the the state diagram shown in Figure
5.1. Assume that s; is S2 and sj is $3, eq is S2. If instead e4 was assumed to be SO then a transaction
path that does not include S2, S0-S3 will be considered when generating equations that establish the
relationship between S2 and S3.

Given an ancestor event e4 and a pair of events e ] and e 2 whose reference events are e; and e js
associated with bus states s; and sj, respectively, the timing equations that define the temporal relation
of e ; with regard to e2 are determined as follows.

The equation t(ej/e2) is to be generated. The symbol t(e;/e2) refers to the separation of e ] relative
to e2; tej/e2) = - He2/e]). Without loss of generality let egq = ¢, then t(e1/e2) = t(e]/ej) + t(ei/ej) -
t(ez/ej).

The equation r(ej/ej) is established as follows. There are as many timing equations defining the
relation between e; and ej as paths from sj to s;. The paths from s; to s; are determined by
examining the transaction paths to s;. These transaction paths have the form sgos sti2. There are as
many paths from s; to s; as unique state sequences B. Each of these paths yields a timing equation
from sj to s;. Each timing equation is composed of the state-transition times associated with the
sequence of states that form s jB. In addition, if any of the states in the sequence s j|3 are part of a loop
in the state-transition graph (recognized using the state-transition-graph-traversal algorithm), then the
timing equation is also composed of the transition time of the loop. The transition time of a loop is
the sum of the transition times of the states in a loop, multiplied by a unique constant associated with
each loop. Each loop is factored into a timing equation only once. The transition time of loops that
include the state s; are not added to the equation. This is because the timing equation establishes the

temporal relation between the last occurrence of ej and the first occurrence of e;.

The equation between a non-reference event and a reference event (z(ej/e;) and t(ez/ej)) is
established by examining the arc in the traversed-causal-event-graph connecting a non-reference
event with a reference event.

Consider, for example, the CEG shown in Figure 4.4 and the state diagram shown in Figure 3.3. The
timing equation between DATAg] (e]) and ADDRg] (e?2) is established as follows. First note that ¢,

2 and B denote a concatenation of a sequence of states.



the reference event for DATAg; is CLKy3, and is associated with bus state S4. The reference event for
ADDRg], €j, is CLKy], and is associated with bus state SO. The transaction path from S0 to 54 is $§0-51-
$2-53 with a loop at §3. The equation (e /ej) is therefore 2xT3+(2+n])xT2. The equation t(e]/e;) is
-T27 and the equation - t(e2/ej) is -T6. Therefore, the equation (e j/e2) is 2XT3+(2+n])xT2-T27-T6.

7. Summary

In this paper, we have discussed a technique for generating symbolic timing equations from a
graphical specification of interface behavior. This technique employs a scheme for the representation
of temporal and sequencing information using casual-event-graphs and state-transition graphs. Some
of the important characteristics of a CEG are that it has a single component, and either a single
reference event, or as many reference events as sequencing events with out-degree greater than one.

We have outlined algorithms used to traverse a CEG to establish timing equations of non-reference
events relative to a reference event, and to determine state-transition times. The
resolve_reference_event algorithm handles the situation wherein a non-reference event has multiple
reference events. The state-transition-graph-traversal algorithm determines all paths to a state and
loops in a state diagram. It, in effect, establishes the temporal relation of reference events with regard
to the start of a bus cycle. Finally, we have discussed an algorithm that determines the timing equation
between arbitrary events. The symbolic-timing-equation generation tool is functional and uses
components of the SpeclIT [10] suite of tools (Xwave and Xstate) for the specification of interface
behavior.
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