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Abstract. Decomposition of large engineering system models is desirable since increased model size reduces
reliability and speed of numerical solution algorithms. The article presents a methodology for optimal model-based
decomposition (OMBD) of design problems, whether or not initially cast as optimization problems. The overall
model is represented by a hypergraph and is optimally partitioned into weakly connected subgraphs that satisfy
decomposition constraints. Spectral graph-partitioning methods together with iterative improvement techniques
are proposed for hypergraph partitioning. A known spectralK -partitioning formulation, which accounts for
partition sizes and edge weights, is extended to graphs with also vertex weights. The OMBD formulation is
robust enough to account for computational demands and resources and strength of interdependencies between
the computational modules contained in the model.
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Nomenclature

A = adjacency matrix
C(PK ) = total weight of hyperedges cut by partitionPK

D = diagonal degree matrix
deg(i ) = degree of vertexvi

diag( ) = diagonal matrix of vector components
Ec

H (PK ) = set of hyperedges cut by partitionPK

EG = set of edges in graphG
EH = set of hyperedges in hypergraphH
ei = hyperedge or edge
ew = entrywise
f = objective function
FDT = functional dependence table
FM = Fiduccia-Mattheyses partitioning algorithm
G = graph
g = vector of inequality constraints
GDP = general design problem
H = hypergraph
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h = vector of equality constraints
In = n × n identity matrix
K = number of partitions
KL = Kernighan-Lin partitioning algorithm
L = Laplacian matrix
λi ( ) = eigenvalue of matrix, such thatλi ( ) ≤ λi +1( )

M = diag(m)
M = number of hyperedges
m = partition load (or size) vector
MDO = multidisciplinary optimization
N = number of vertices
ODP = optimal design problem
OMBD = optimal model-based decomposition
P = number of terminals in hypergraph, or set of partition representatives
P = partition matrix
p = cardinality of a hyperedge
PK = partition of a set intoK disjoint subsetsV1, . . . , VK

RK = orthonormalK × (K − 1) matrix spanning{M1/2uK }⊥
SN = orthonormalN × (N − 1) matrix spanning{w}⊥
tr( ) = trace of matrix
uK = (1, . . . , 1)t ∈ R

K

V = set of vertices
vi = vertex
W = diag(w)
w = (ωv(v1), . . . , ωv(vN))t

ω = edge weight for hyperedge model
ωe(ej ) = weight of hyperedgeej

ωv(vi ) = weight of vertexvi

X = assignment matrix of a partition
X = set constraint
x = vector of design & state/behavior variablesxi

X f = feasible assignment matrix of a partition
xk = vector of variables local to partitionk
y = vector of linking variables
‖3‖F = Frobenius norm of matrix3
J = set of feasible assignment matricesX
R

M = M-dimensional Euclidean space

1. Introduction

The following classical forms for thegeneral design problem(GDP) andoptimal design
problem(ODP) are assumed in this article:
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Figure 1. Generic coordination strategy for (a) hierarchically and (b) non-hierarchically partitioned problems.

General Design Problem Optimal Design Problem

find x ∈ X ⊆ R
M find x ∈ X ⊆ R

M

such that such that
h(x) = 0 h(x) = 0
g(x) ≤ 0 g(x) ≤ 0

and f (x) is minimized

where f , h, and g are the design objective, and vector equality and inequality design
constraints, respectively, expressed as mathematical functions of the vector of design and
state/behavior variablesx, and X is the set constraint. Typically, these functions can be
evaluated through mathematical models based on physical principles and empirical data
and expressed as computational simulations.

Optimization methods have been successfully applied to design system components using
well-developed and calibrated simulations with about one hundred variables [61]. Diffi-
culties arise when we start considering design of the overall system. The size of the
problem becomes too large to expect reliable results from numerical optimization algo-
rithms, given known model nonlinearities. Even when numerical results are obtained, one
may not adequately interpret the engineering trade-offs implied. Decomposition of the
optimization model into smaller submodels becomes necessary, and coordination strategies
must be employed (see figure 1 and further discussion below). Problem decomposition
may result in (or may allow) a conceptual simplification of the system, reduced subproblem
dimensionality, parallel/distributed computation, reduced programming/debugging effort,
different solution techniques for individual subproblems, modularity in parametric studies,
and multicriteria analysis with single/multiple decision makers.

Three types of decomposition are commonly found in the design and optimization litera-
ture: object, aspect, and sequential decomposition.Object decompositiondivides a system
into physical components.Aspect decompositiondivides a system according to the different
specialties involved in its modeling, and it is the basis for multidisciplinary optimization
(MDO). Sequential decompositionis applied to problems involving flow of elements or
information.

Object and aspect decomposition assume a “natural” decomposition of the problem.
A drawback of object decomposition is that in large, highly integrated systems drawing
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“boundaries” around physical components and subassemblies is very subjective. Aspect
decomposition, often defined by management considerations, may fail to account for disci-
plinary coupling. Sequential decomposition presumes unidirectionality of design informa-
tion flows that contradicts the cooperative behavior desirable in concurrent engineering. A
drawback common to the three approaches is that available computational resources may
not match the naturally generated system decomposition.

This article presents a formal method foroptimal model-based decomposition(OMBD)
of design optimization problems that aims at advancing the use of nonlinear optimization
techniques in the solution of large-scale design problems. Model-based decomposition
allows identification of weakly connected model substructures that satisfy demands of
parallel computation and availability of computational resources. Moreover, as shown
in [30] for overlapping coordination, there is evidence that weakly connected submodels
improve the convergence properties of coordination strategies used to solve the partitioned
ODP/GDP.

Hypergraphs are used to represent design models, and the OMBD problem is formulated
as a hypergraph partitioning problem. The representation and formulation are robust enough
to account for computational demands of the modules in the model and the strength of their
interdependencies. Hyperedge models allow mapping hypergraph into graph representa-
tions for spectral graph partitioning. A spectral graph partitioning technique is extended to
included weighted vertices. The approach makes use of recent advances common to such
diverse areas as graph theory, VLSI design, computational mechanics, and parallel com-
puting. An application of the methodology to powertrain design is presented in Section 10.

The proposed OMBD method consists of the following steps:
• Represent design model with a hypergraph, and formulate the OMBD problem as a

hypergraph partitioning problem (Sections 3 and 4).
• Substitute a graph for the hypergraph representation, using a hyperedge model, and

reformulate the OMBD problem as a graph partitioning problem (Sections 5 and 6).
• Find the OMBD by solving the graph partitioning problem as following:

— Formulate graph partitioning as a 0-1 quadratic programP1 (Eq. (5), Section 8).
— ReplaceP1by continuos quadratic programsP2andP3(Eqs. (6) and (7), Section 8).
— Obtain the graph geometric representation by solving a relaxed version ofP3(Eqs. (8)–

(10), Section 8).
— Generate the (global) partition from the graph geometric representation (Section 9).
— Refine the (global) partition using an iterative improvement algorithm (Section 7.1).

2. Related work on decomposition in design

The operations research community has extensively studied structured, partitioned problems
to improve computational efficiency and robustness; however, identification of the parti-
tioned problem model has remained a largelyad hoctask. Ordering heuristic algorithms
have been used to improve or to identify sparsity patterns corresponding to a finite-element
or finite-difference approximation over a region [17]. In engineering design, problem de-
composition has received considerable attention to reduce multidisciplinary design cycle
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time [6, 13, 54–56] and to streamline the design process by adequate arrangement of the
tasks [19, 20, 37, 38, 50, 57, 58].

Steward [57, 58], Rogers [50], Eppinger [19, 20], and Kusiak and Wang [37, 38] applied
sequential decomposition to the design sequence. Design structure and incidence matrices
are used to represent precedence relationships between the tasks. An(i, j )-entry in a
design structure matrixindicates that taskj contributes information to taski . Therefore,
for tasks ordered according to the structure matrix’s row/column ordering, marks below
the diagonal represent information transferred to later tasks; conversely, marks above the
diagonal represent information fed back to earlier tasks. An(i, j )-entry in adesign incidence
matrix indicates that informationj is needed to perform taski . Groups of tasks are ordered
in a feed-forward sequence by detecting “circuits” among task interdependencies.

Steward used matrix transformations to minimize design iterations. Rogers used a rule-
based system to generate a triangular form of the design structure matrix. Eppinger’s work
is based on Steward’s matrix reordering; however, it includes subjective quantifiers for task
dependencies. Kusiak and Wang proposed triangularization and diagonalization algorithms
for the design structure and incidence matrices, respectively. They also proposed a branch
and bound algorithm to identify overlapping design tasks or variables whose removal makes
a design incidence matrix decomposable. The need to define the input-output relation for
each task may impair the use of most of these techniques in situations where causality
between tasks is non-existent or ill-defined. Heuristics or personnel interview data are used
to identify “tears” of dependence relations between tasks if the problem structure is not
sequentially decomposable.

Wagner and Papalambros [65, 66] used an undirected graph representation of the opti-
mal design problem. Mathematical relations and design and state/behavior variables are
depicted by the vertices and edges of the graph, respectively. Identification of “linking” or
“coordinating” variablesy leads to independent design subproblems that correspond to con-
nected components in the graph when linking variables are deleted. The remaining variables
in each subgraph are “local” variablesxk of the corresponding subproblemk. Heuristic
acceptability criteria were used to select appropriate linking variables. A mathematical
programming coordination strategy is then used to solve the original problem as a set of
smaller subproblems solved independently but coordinated by a master problem.

Figure 1(a) shows a generic coordination strategy for hierarchically partitioned problems.
A hierarchical decomposition usually leads to separate optimizations, supported by their
own sensitivity analyses, for each subproblem and master problem. The master problem is
solved for the linking variablesy∗ which are then input as parameters to the subproblems
(solid arrows). Information on the dependence of the local variables with respect to the link-
ing variables (i.e.,xk(y∗)) is fed back to the master problem (dashed arrows). Subproblems
may be recursively partitioned to generate a multilevel hierarchy.

In a non-hierarchical decomposition, figure 1(b), a subspace optimization takes place
in each subproblem. Bidirectional intervention between subproblems may exist and, in
general, global sensitivities and model approximations provide the means to quantify influ-
ences of one subproblem on another. We refer the reader to [64, 65] for a complete review
of hierarchical and non-hierarchical coordination schemes.

Michelena and Papalambros [41] have also modeled the decomposition problem as a
network optimization problem. Mathematical relations are modeled as processing units of
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a communication network and design and state/behavior variables as the communication
links between these units. The optimal decomposition problem is then formulated as one
of finding the communication links whose failure lessens the most the network reliability,
which is a measure of network connectivity.

3. Hypergraph representation of a design problem

Function dependence on variables may be represented by a Boolean matrix termed the
functional dependence table(FDT), rows labeled with design relation/function names and
columns labeled with design and state/behavior variable names. The entry in theith row
and jth column is “True” if theith function depends on thejth variable; otherwise, it is
“False”. Consider the following optimization problem, a modification of No. 55 from Hock
and Schittkowski [33]:

min
x∈[0,1]6

f = f1 + f2

subject to f1 = x1 + exp(x1x4) h3 = x4 + x6 − 2 = 0
f2 = 2x2 + 4x5 h4 = x1 + x4 − 1 = 0
h1 = x1 + 2x2 + 5x5 − 6 = 0 h5 = x2 + x5 − 2 = 0
h2 = x1 + x2 + x3 − 3 = 0 h6 = x3 + x6 − 2 = 0

(1)

Figure 2(a) shows the corresponding FDT. A shaded box indicates a “True” Boolean
value. Figure 2(b) shows the FDT for the same problem afterx1 andx3 have been selected
as linking variables and rows and columns have been reordered to reveal two partitions
of the problem: subproblem 1 with functions{ f1, h3, h4, h6} and local variables{x4, x6},

Figure 2. Functional dependence tables for example problem. (a) Original form and (b) after reordering rows
and columns to identify two subproblems.



            

P1: EHE/SRK P2: KCU/ P3: SSK/ QC:

Computational Optimization and Applications KL457-04-Michelena June 3, 1997 14:23

OPTIMAL MODEL-BASED DECOMPOSITION OF DESIGN PROBLEMS 179

Figure 3. (a) Hyperedge representation of function dependence on variablesx3 and x5, and (b) hypergraph
representation of example problem.

and subproblem 2 with functions{ f2, h1, h2, h5} and local variables{x2, x5}. In the case
of hierarchical coordination, the linking variablesx1 and x3 are held constant and the
subproblems are solved independently with respect to the local variables. The solution to
each subproblem is traced out as a function ofx1 andx3, and a two-variable master problem
is solved to update their values, which are then fed back to the subproblems.

A design problem may also be represented by ahypergraph H= (V, EH ) in which
hyperedges inEH are subsets ofV . Vertices inV represent design functions (i.e., objective
and constraints) or simulation modules, and hyperedges represent design and state/behavior
variables. A hyperedgeei ∈ EH represents a variablexi if and only if for every vertex
vi ∈ ei , the function associated withvi depends onxi . The edge-valency or cardinality
of a hyperedge is equal to the number of vertices contained in the hyperedge (which is
also equal to the number of nonzero entries in the corresponding column of the FDT). A
hyperedge of cardinalityp will be termed ap-hyperedge. The vertex-valency or degree of
a vertex is equal to the number of hyperedges containing the vertex (which is also equal to
the number of nonzero entries in the corresponding row of the FDT). Figure 3(a) shows the
2- and 3-hyperedges associated with variablesx3 andx5 in the FDT of figure 2, respectively.
Figure 3(b) shows the hypergraph representation of the problem of Eq. (1). For our purposes
of problem decomposition, 1-hyperedges will be excluded from the representation since
they do not contribute to the connectivity of the problem model.
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4. Optimal model-based decomposition as a hypergraph partitioning problem

Optimal decomposition of a design problem calls for (i) minimizing the interconnection
between subproblems and (ii) balancing the size of the subproblems. The former is aimed
at reducing the size of the master problem and the effort to coordinate individual subprob-
lems, and the latter is aimed at matching available computational resources. Hence, the
OMBD problem is formulated as the following hypergraph partitioning problem in which
vertices represent design functions or simulation modules, and hyperedges depict design
and state/behavior variables.

Hypergraph K-partitioning problem.Given a hypergraphH = (V, EH ) containingN
verticesV = {v1, v2, . . . , vN} with positive weightsωv(vi ), andM hyperedgesEH =
{e1, e2, . . . , eM} with positive weightsωe(ej ), a constant 2≤ K ≤ N, and a partition load
(or size) vectorm = (m1, . . . , mK ) such thatmk ≥ mk+1 and

∑K
k=1 mk = ∑N

i =1 ωv(vi ),
find a partition ofV into K disjoint subsetsPK = {V1, V2, . . . , VK } that minimizes
(i) the total weight of the hyperedges cut byPK , C(PK ), and (ii) |∑vi ∈Vk

ωv(vi ) − mk|
for everyk in {1, 2, . . . , K }. The hyperedges cut byPK areEc

H (PK ) = {ej ∈ EH : there
existvi1, vi2 in ej , vi1 ∈ Vj1 ∈ PK , vi2 ∈ Vj2 ∈ PK , and j1 6= j2}. Thus, the total weight
of the hyperedges cut byPK is C(PK ) = ∑

ej ∈Ec
H (PK ) ωe(ej ).

When this formulation is applied to the OMBD problem,vertex weightsrepresent time to
evaluate a function or execute a simulation,edge weightsdepict strength of function-variable
dependence or amount of transferred data between simulation modules, andpartition loads
represent processing capabilities in a distributed computational environment. In this article,
the terms hypergraph and graphK -partitioning imply some sort of constraint on the partition
sizes (loads), as oppose to the unrestricted common meaning of the terms.

5. Hyperedge model

Some partitioning methods found in the literature are applicable only to graphs. (A [linear]
graph is a hypergraph in which the cardinality of every hyperedge is equal to two.) Specif-
ically, spectrum-based methods have only been developed for graphs, their extension to
hypergraphs being a major challenge. Thus, partitioning of a design problem and, thereby,
its hypergraph representation may require approximating the hypergraph by a graph.

Hypergraphs are also used to model circuit netlists in VLSI design, where the vertices
of the hypergraph represent modules or cells, and the hyperedges represent signal nets. A
method used by VLSI designers to approximate a hypergraphH by a graphG consists in
defining the vertex set ofG the same as the vertex set ofH . The edge set ofG is obtained
by replacing each hyperedge ofH by the edge set of a clique containing the vertices of
the hyperedge. That is, a clique ofCp

2 weighted edges, which will be called ap-clique,
replaces everyp-hyperedge, as shown in figure 4 forp= 4. Weighted edges are needed to
estimate the number of hyperedges ofH cut by a vertex set partition from the weights of
the edges ofG cut by the same partition. Resulting parallel edges inG are replaced by a
single edge whose weight is determined by adding the weights of the parallel edges.
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Figure 4. Hyperedge of cardinalityp = 4 and its clique model.

Four hyperedge models can be found in the circuit and graph partitioning literature, each
assigning different edge weights to the associated cliques.

(a) The “standard” clique model [39] replaces everyp-hyperedge by a clique with edge
weightsω = 1

(p−1)
. Since the minimum number of edges needed to be cut to partition

the vertex set of ap-hyperedge is(p − 1), the total weight of cut edges will be at least
one. Thus, the standard hyperedge model overestimates the number of hyperedges cut
by a partition. For example, in figure 4 withω = 1

3, the estimated number of hyperedges
cut by the partitionP2 = {{v1, v4}, {v2, v3}} is 4

3 instead of 1.
(b) Hadley et al. [28] proposed a hyperedge model in which the total weight of the edges of

graphG that are cut by any vertex partition is not greater than the number of hyperedges
of the associated hypergraphH cut by the same partition. (So this hyperedge model
underestimates the number of hyperedges cut by a partition.) Eachp-clique edge is
assigned the weightω = 1

φ(p,k)
, whereφ(p, k) is the maximum number of edges cut

by ak-partition of ap-clique. φ(p, k) is given by

φ(p, k) =
(

p

2

)
−

(⌊ p
k

⌋
2

)(
k

(
1 +

⌊
p

k

⌋)
− p

)
−

(⌊ p
k

⌋
2

)(
p − k

⌊
p

k

⌋)
(2)

Whenp is exactly divisible byk, ω = 2k
(k−1)p2 . For the 4-hyperedge of figure 4,ω = 1

4
whenk = 2, andω = 1

6 whenk = 4.
(c) Alpert and Kahng [1] proposed a “middle of the road” approach whereby any cut

hyperedge will make an expected contribution of one to the weighted cut cost function.
By enumerating all possible bipartitions of ap-hyperedge and assigning a uniform
distribution to each bipartition, they showed that each edge of thep-clique should
receive a weightω = 4

p(p−1)
· 2p−2

2p . For the hyperedge of figure 4,ω = 7
24.

(d) Bolla [7] modeled the hypergraph partitioning problem by constructing aK -dimensional
geometric representative of the hypergraph, whereby vertices and hyperedges are mapped
onto theK -dimensional Euclidean space. The geometric representative of a hyperedge
is then replaced by the center of gravity of the geometric representatives of the vertices
contained in the hyperedge. The mathematical formulation results in edge weights
ω = 1

p for a p-clique substituting for ap-hyperedge. For the hyperedge of figure 4,
ω = 1

4.
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In this article, we propose a hyperedge model that generalizes Alpert and Kahng model
(see (c) above) to consider up to aK -partition of a hyperedge, instead of only a bipartition.
The proposed clique edge weights are given in the following Lemma.

Lemma 1 (Proposed hyperedge model). Assume that the set of p vertices of a p-
hyperedge can be partitioned in up to k subsets such that each one of the(kp − k) possible
assignments of vertices to the subsets that generates a cut hyperedge is equally likely. Then,

a cut p-hyperedge will make an expected contribution of one to the weighted cut cost function
if and only if the edges of the associated p-clique have weightsω = 2k

p(p−1)(k−1)
· kp−k

kp .

Proof: Consider the partition of ap-hyperedge vertex set into k subsets of sizesm1, m2,

m3, . . . , mk. The expected size of the cut setφ is

φ = 1

kp − k

∑
mi ∈N∑k

i =1 mi =p

(∑
i < j

mi mj

) (
p!

m1! m2! m3! · · · mk!

)

= p(p − 1)

kp − k

∑
mi ∈N∑k

i =1 mi =p

(∑
i < j

(p − 2)!

m1! · · · (mi − 1)! · · · (mj − 1)! · · · mk!

)

= p(p − 1)

kp − k

∑
i < j

kp−2 = p(p − 1)(k − 1)

2k

kp

kp − k

Clique edge weightsω are defined as1
φ

. 2

A comparison of the five hyperedge models is shown in figure 5 fork ≥ 5. As mentioned
above, model (a) overestimates the size of cut set, whereas model (b) underestimates it. The
proposed model and model (c) give intermediate values for the size of the cut set; however,
model (c) shall overestimate the size of the cut set every time that the vertices in a hyperedge
are divided among more than two vertex partitions.

Figure 5. Comparison of four existing and proposed hyperedge models.
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6. Optimal model-based decomposition as a graph partitioning problem

Given a hypergraph representation of a design problem, a graph representation may be
constructed using one of the hyperedge models explained above. The OMBD problem can
then be formulated as the following graph partitioning problem with verticesV representing
design functions and (cliques of) edgesEG representing design and state/behavior variables.

Graph K-partitioning problem.Given a graphG = (V, EG) containingN verticesV =
{v1, v2, . . . , vN} with positive weightsωv(vi ), andM edgesEG = {e1, e2, . . . , eM} with
positive weightsωe(ej ), a constant 2≤ K ≤ N, and a partition load (or size) vectorm =
(m1, . . . , mK ) such thatmk ≥ mk+1 and

∑K
k=1 mk = ∑N

i =1 ωv(vi ), find a partition ofV
into K disjoint subsetsPK = {V1, V2, . . . , VK } that minimizes (1) the total weight of the
edges cut byPK , C(PK ), and (2)|∑vi ∈Vk

ωv(vi )−mk| for everyk in {1, 2, . . . , K }. The
edges cut byPK areEc

G(PK ) = {{vi1, vi2} ∈ EG : vi1 ∈ Vj1 ∈ PK , vi2 ∈ Vj2 ∈ PK, and
j1 6= j2}. Thus, the total weight of the edges cut byPK is C(PK ) = ∑

ej ∈Ec
G(PK ) ωe(ej ).

In the above graph partitioning formulation, an edge weight is computed by multiplying
the weight defined by the hyperedge model and the weight of the associated hyperedge
(which depicts strength of function-variable dependence or amount of transferred data be-
tween simulation modules). As mentioned above, minimizing the total weight of cut hyper-
edges is equivalent to minimizing the total weight assigned to linking variables. However,
minimizing the weight of cut edges in a graph representation is equivalent to minimizing
not only the weight of linking variables but also the number of functions on which these
variables depend.

7. Review of graph and hypergraph partitioning techniques

Hypergraph and graphK -partitioning problems have been studied for applications where a
large network or system must be partitioned into subsystems such that elements in the same
subsystem are strongly interconnected, whereas elements in different subsystems are weakly
interconnected. Such applications include computer logic and page partitioning [15, 23],
VLSI layout and packaging of circuits [1, 18, 49, 67], machine layout in manufacturing
systems [62, 63], assignment of computations to multiple processors [31], and domain
decomposition of finite- element or finite-volume grids for parallel computation [3, 22, 53].

Both hypergraph and graphK -partitioning problems are NP-hard, even if edge and vertex
weights are one, and the number of partitions is two. If the number of partitionsK is fixed
and there isno restriction on the size of the partitions, then the problem is solvable in
polynomial timeO(NK 2

), whereN is the number of vertices in the graph [27]. However,
this case has no practical application since the resulting partitions could be very unbalanced.

Partitioning methods include iterative improvement and global techniques. Iterative im-
provement algorithms, also know as local search algorithms, make local changes to an initial
partition to minimize the total weight of the edges cut while keeping the parts balanced.
These algorithms are quite robust because they can deal with graphs and hypergraphs, and
arbitrary vertex and edge weights and balance criteria. For global methods, the partition-
ing problem is formulated as an optimization problem and solved using approximation
techniques.
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7.1. Iterative improvement partitioning methods

Most iterative improvement algorithms are based on a heuristic procedure devised by
Kernighan and Lin for graph bisection [35]. Variants to this algorithm have extended it
to K -partition of hypergraphs containing weighted vertices and edges with improved run-
ning times.

Kernighan-Lin algorithm. Kernighan and Lin [35] first proposed a local search method
to solve the graph bisection problem. Their algorithm (KL) starts with an initial (balanced)
partition and exchanges pairs of vertices across the cut of the bisection. To reduce the risk
of being trapped in a local minimum, the KL procedure determines the vertex pair whose
exchange results in the largest decrease of the cutsize or in the smallest increase, if no
decrease is possible. The original KL algorithm can handle edge weights.

Dunlop and Kernighan [18] extended the KL algorithm to hypergraph bisection. Overall
time complexity of this partitioning algorithm isO(N2 log N) (per pass), whereN is the
number of vertices in the hypergraph.

Fiduccia-Mattheyses algorithm. Fiduccia and Mattheyses [24] proposed a bipartition
algorithm based on the KL algorithm that could handle vertex and edge weights, unequal
partitions, and hypergraphs. In the Fiduccia-Mattheyses (FM) algorithm a single vertex
is moved across the cut in a single move. Thus, the algorithm can deal with partitions of
different sizes and nonuniform vertex weights. Partition balance is enforced by a bound
on the partition sizes. Bucket sort is used for selecting the vertices to be moved between
partition and results in the principal characteristic of the FM algorithm: an average running
time of O(P) (per pass), whereP is the total number of terminals in the hypergraph. The
total number of terminals in a hypergraphH = (V, EH ) is P = ∑

e∈EH
|e|.

Other iterative improvement algorithms.Variants to the KL and FM algorithms continue
to appear in the graph and hypergraph partitioning literature. Krishnamurthy [36] introduced
the concept oflevel gainsinto the FM heuristics, using gains in later moves to distinguish
between equal gain vertices. Krishnamurthy’s algorithms runs in timeO(L P) (per pass),
whereL is the number of levels used. Suaris and Kedem [59] extended the FM algorithm
to hypergraph quadrisection. Barnes et al. [5] determined sets of vertices to interchange
between partitions from solving a transportation (linear) problem. Sanchis [51, 52] adapted
Krishnamurthy’s bipartition algorithm to the hypergraphK -partitioning problem. The
time complexity of Sanchis’ algorithm isO(L P K(log K + L Dmax)) (per pass), where
Dmax is the maximum vertex degree in the hypergraph. Hendrickson and Leland [32] have
implemented FM-HL, an iterative improvement graph partitioning algorithm patterned after
the FM algorithm but generalized in several ways: First,K -partitioning is possible. Second,
the algorithms can handle an arbitrary interset cost metric. Third, robustness is improved
by including an element of randomness. Fourth, the algorithm implementation reuses
computations in a manner that reduces the overall running time toO((K − 1)M), where
M is the number of edges.
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7.2. Global partitioning methods

Iterative improvement algorithms as those described above are quite good at finding locally
optimal answers, but unless they are initialized with a “good” partition, the local optimum
may be far from the global. Global partitioning methods start with an encoding of a problem
instance, such as a graph adjacency matrix or list, or a hypergraph incidence matrix, and
compute an approximation to the optimal partition that can be used as input to an iterative
improvement algorithm.

Network-reliability-based method. Michelena and Papalambros [41] have modeled the
hypergraph partitioning problem as a network optimization problem. Hypergraph vertices
are modeled as the processing units of a communication network. Hyperedges are com-
munication links between these units. The optimal partitioning problem is then formulated
as one of finding the communication links that have the most effect on the overall network
reliability, i.e., links whose failure lessens the most the network reliability—which is taken
as a measure of the hypergraph connectivity. A pair-connected reliability measure was
chosen to generate balanced partitions.

Spectral methods. Spectral partitioning methods identify a good approximation to a graph
K -partition from global information about the structure of the graph extracted from a
matrix spectrum. Specifically, aK -dimensional geometric representation of the graph is
constructed from theK eigenvectors that correspond to the smallest eigenvalues of the graph
Laplacian matrix. A drawback of these methods is that they cannot be directly applied to
hypergraphs, so a hyperedge model is needed to approximate the hypergraph by a graph.
The relation between the spectrum of a graph and other graph properties has been an area
of active research [4, 8, 16, 25, 26, 43], but only recently spectrum-based methods have
been successfully applied to graph partitioning [1, 2, 21, 31, 46, 47, 53]. We present below
a spectral graphK -partitioning formulation that extends Rend and Wolkowicz’s to graphs
containing weighted vertices.

Other global methods. Simulated annealing (SA) has been used for graph partitioning by
Johnson et al. [34] and Bui et al. [10] with mixed results. They showed that SA usually
needs much more time than iterative improvement methods, specifically when used on
graphs generated with a built-in geometric structure. Bui and Moon [11] presented a hybrid
genetic algorithm that combines a variation of the Fiduccia-Mattheyses algorithm with
genetic space exploration to give competitive performance. Bui et al. [9] applied network-
flow techniques to graph bisection with good results for small-degree graphs.

8. Spectral graph partitioning formulation

As described in Section 6, theK -partitioning problem entails finding a partition ofV into
K disjoint subsetsPK = {V1, V2, . . . , VK } such that the vector of weighted sizes of the
partitions is close tom componentwise and the total weightC(PK ) of edges cut by the
partition is minimized.
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The following spectral formulation of the graph partitioning problem is similar to that
given by Rendl and Wolkowicz [47] and Falkner et al. [21]; however, it also accounts for
weighted vertices. TheN × N adjacency matrixA of a graphG is defined asA = (ai j ),
whereai j = ωe({vi , v j }) if {vi , v j } ∈ EG, andai j = 0 if no such edge exist. Letdeg(i ) =∑N

j =1 ai j be the degree ofvi . TheN × N diagonal degree matrixD is given bydii = deg(i )
anddi j = 0 if i 6= j . TheN × N Laplacian matrix ofG is defined asL = D − A. Properties
of a graph Laplacian matrix include:

• L is positive semidefinite.
• L ’s rows and columns add up to zero.
• L ’s smallest eigenvalueλ1 = 0 and has a corresponding eigenvector(1/

√
N, . . . , 1

√
N)t .

• If the graph is connected, thenL ’s second smallest eigenvalueλ2 > 0. The multiplicity
of zero as an eigenvalue ofL equals the number of connected components of the graph.

Let X ∈ R
N×K be the assignment matrix forPK , i.e.,xik = 1 if vertexvi is assigned to

partitionVk, andxik = 0 otherwise. Thekth column ofX is denoted byxk. The weighted
edge cut is

C(PK ) = 1

2

K∑
k=1

∑
vi ∈Vk

∑
v j 6∈Vk

ai j = 1

2

K∑
k=1

∑
vi ∈Vk

[
N∑

j =1

ai j −
∑
v j ∈Vk

ai j

]

= 1

2

K∑
k=1

N∑
i =1

xik

[
deg(i ) −

N∑
j =1

xjkai j

]

= 1

2

K∑
k=1

N∑
i =1

xik xikdeg(i ) − 1

2

K∑
k=1

N∑
i =1

N∑
j =1

xik x jkai j

= 1

2

K∑
k=1

N∑
i =1

N∑
j =1

xik x jkδi j deg(i ) − 1

2

K∑
k=1

N∑
i =1

N∑
j =1

xik x jkai j

= 1

2

K∑
k=1

N∑
i =1

N∑
j =1

xik x jk [δi j deg(i ) − ai j ]

= 1

2

K∑
k=1

xt
kLx k = 1

2
tr(XtLX ) (3)

whereδi j = 1 if i = j , andδi j = 0 otherwise. Moreover, the elements ofX have to satisfy
the following constraints to ensure both a balanced partitioning and assignment of each
vertex to a single partition:

N∑
i =1

xikωv(vi ) = mk, k = 1, . . . , K

K∑
k=1

xik = 1, i = 1, . . . , N

(4)
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The graphK -partitioning problem then becomes

(P1)


Minimize 1

2tr(XtLX ) such that
Xtw = m
XuK = uN

X is a 0-1N × K matrix

(5)

wherew = (ωv(v1), ωv(v2), . . . , ωv(vN))t andul = (1, . . . , 1)t ∈ R
l . Note that any two

column vectors ofX are orthogonal.

Lemma 2. The feasible set of problem(P1) J = {X ∈ R
N×K : xi j is 0 or 1, Xtw = m,

and XuK = uN} is equal toJ
′ = {X ∈ R

N×K : xi j ≥ 0, Xtw = m, XuK = uN, and
XtWX = M}, whereW is the N× N diagonal matrix diag(w), and M is the K × K
diagonal matrix diag(m). (By problem assumption, tr(W) = tr (M).)

Proof: ThatJ ⊆ J
′ is clear. LetX ∈ J

′. Sincexi j ≥ 0 andXuK = uN , then 0≤ xi j ≤ 1
andx2

i j ≤ xi j . tr(XtWX) = ∑
i, j ωv(vi )x2

i j = tr(M), andut
NWXu K = ∑

i, j ωv(vi )xi j =
ut

NWuN = tr(W) = tr(M). Hence,
∑

i, j ωv(vi )x2
i j = ∑

i, j ωv(vi )xi j , soxi j is 0 or 1, and
X ∈ J. 2

Therefore, an equivalent formulation of (P1) is

(P2)


Minimize 1

2tr(XtLX ) such that
Xtw = m
XuK = uN

XtWX = M
X is a nonnegative element-wiseN × K matrix

(6)

Let X = uNut
K M

tr(M)
+ W−1/2SNYRt

K M1/2, whereY is a (N − 1) × (K − 1) matrix, SN

is a orthonormalN × (N − 1) matrix spanning{W1/2uN}⊥, so St
NW1/2uN = 0 and

St
NSN = I N−1, andRK is a orthonormalK × (K − 1) matrix spanning{M1/2uK }⊥, so

Rt
K M1/2uK = 0 andRt

K RK = I K−1. As suggested in [47],SN andRK may be obtained by
applying the Gram-Schmidt orthogonalization process to matrices [W1/2uN : (0 : I N−1)t ]
and [(M1/2uK ) : (0 : I K−1)

t ], respectively. Any matrixX defined as above satisfies the first
two constraints in (P2). The third constraint and nonnegativity condition in (P2) are re-
duced toYtY = I K−1 andW−1/2SNYRt

K M1/2 ≥ew − uNut
K M

tr(M)
, respectively. The objective

function is reduced to12tr(Rt
K MR K YtSt

NW−1/2LW −1/2SNY). Therefore, (P1) and (P2)
are equivalent to

(P3)


Minimize 1

2tr(Rt
K MR K YtSt

NW−1/2LW −1/2SNY) such that
YtY = I K−1

W−1/2SNYRt
K M1/2 ≥ew − uN ut

K M
tr(M)

(7)
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An approximate solution to (P3) and a lower bound forC(PK ) may be obtained by
relaxing the constraints toYtY = I K−1 and using the followingRepresentation Theoremto
computeY, with A = Rt

K MR K andB = St
NW−1/2LW −1/2SN . This approximate solution

provides a graph geometric representationV → R
K given by the rows ofX.

Representation Theorem

LetA andB be symmetric matrices. TheP×Q (P ≥ Q) matrix that minimizes tr(AY t BY)
subject to the constraintYtY = I Q is the matrixY = PQt , whereQ is theQ× Q orthogonal
matrix whose columns contain the eigenvectors ofA, andP is theP×Q orthonormal matrix
whose columns contain the eigenvectors ofB corresponding to theQ smallest eigenvalues
of B. The order of the columns ofQ andP is such that the corresponding eigenvalues of
A andB are in nonincreasing and nondecreasing order, respectively. Also, the minimum
of tr(AY t BY) such thatYtY = I Q is

∑Q
i =1 λi (B)λQ−i +1(A), whereλi (·) ≤ λi +1(·). (This

theorem is an extension of Theorem 3.1 by Rendl and Wolkowicz [48].)

Corollary 1. For the K-partitioning of a graph with Laplacian matrixL , vertex weight
vectorw (W = diag(w)), and partition load vectorm (M = diag(m)),

C(PK ) ≥ 1

2

K−1∑
k=1

λk
(
St

NW−1/2LW −1/2SN
)
λK−k

(
Rt

K MR K
)

(8)

whereRK is the orthonormal K× (K − 1) matrix spanning{M1/2uK }⊥, and SN is the
orthonormal N× (N − 1) matrix spanning{W1/2uN}⊥. The lower bound is attained
for X = uNut

K M
tr(M)

+ W−1/2SNPQtRt
K M1/2 (that defines a K-dimensional representation of

the graph). Q is the(K − 1) × (K − 1) orthogonal matrix whose columns contain the
eigenvectors ofRt

K MR K , and P is the (N − 1) × (K − 1) orthonormal matrix whose
columns contain the eigenvectors ofSt

NW−1/2LW −1/2SN corresponding to the(K − 1)

smallest eigenvalues ofSt
NW−1/2LW −1/2SN. The order of the columns ofP and Q is

defined as for the Representation Theorem above.

The following Corollary 2 applies to equal load partitions, i.e.,m = tr(diag(w))

K uK —the
case when processing resources assigned to each subproblem are planned to be identical.
Corollary 3 applies when, in addition, vertex weights are equal to one, i.e.,w = uN and
m = N

K uK —the case when function evaluation and simulation running times are assumed
to be the same.

Corollary 2. For the K-partitioning of a graph with Laplacian matrixL , vertex weight
vectorw (W = diag(w)), and partition load vectorm = tr(diag(w))

K uK ,

C(PK ) ≥ tr(diag(w))

2K

K−1∑
k=1

λk
(
St

NW−1/2LW −1/2SN
)

(9)
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whereSN is the orthonormal N× (N − 1) matrix spanning{W1/2uN}⊥. The lower bound

is attained forX = 1
K uNut

K +
√

tr(diag(w))

K W−1/2SNYRt
K , whereRK is the orthonormal

K × (K − 1) matrix spanning{uK }⊥. Y is the(N − 1) × (K − 1) orthonormal matrix
whose columns consist of the eigenvectors ofSt

NW−1/2LW −1/2SN corresponding to the
(K − 1) smallest eigenvalues in nondecreasing order.

Corollary 3. For the K-partitioning of a graph with Laplacian matrixL , vertex weight
vectorw = uN, and partition load vectorm = N

K uK ,

C(PK ) ≥ N

2K

K∑
k=2

λk(L) (10)

The lower bound is attained forX = 1
K uNut

K +
√

N
K SNYRt

K , whereRK is the orthonormal
K × (K − 1) matrix spanning{uK }⊥, andSN is the orthonormalN × (N − 1) matrix
spanning{uN}⊥. Y is the(N−1)×(K −1)orthonormal matrix whose columns consist of the
eigenvectors ofSt

NLSN corresponding to the(K −1) smallest eigenvalues in nondecreasing
order.

Under the assumptions of Corollary 3, letZ be theN × (K − 1) matrix whose columns
consist of the eigenvectors ofL corresponding toL ’s (K −1) smallest positive eigenvalues
in nondecreasing order (soSNY = Z), then the lower bound is attained forX = 1

K uNut
K +√

N
K ZRt

K . Solutions that relax all but the third constraint in (P2), e.g., due to Barnes [4],
Bolla [7], and Chan et al. [12], result in the geometric representationX = [ uN√

N
: Z] instead.

The most efficient algorithm for computing the eigenvalues and eigenvectors of a large,
sparse, and symmetricN × N matrix is the Lanczos algorithm withO(N1.4) runtime [14,
45]. Thus,O(N1.4) is the running time for solutions that relax all but the third constraint in
(P2). Corollary 1 requires computation ofRK (O(K 3) runtime) andSN(O(N3) runtime),
and matrix multiplications withO(N2K ) runtime. Hence, the running time for obtaining the
geometric representationX using Corollary 1 isO(N3). The running time for Corollary
2 is alsoO(N3) sinceSN has yet to be computed. The running time for Corollary 3 is
O(N K3 + N2) sinceRK andSN can be given in closed form [29].

9. Generation of partition from the geometric representation

Corollaries 1, 2 or 3 allows mapping theN vertices of a graph toN points (or geometric
representatives) in theK -dimensional Euclidean space, which are given by theN rows of
the assignment matrixX. However, entries in matrixX may not be 0 or 1 since the second
constraint in (P3) was ignored. It is evident that vertices with geometric representatives
close in Euclidean metric tend to have several incident edges in common and should,
therefore, belong to the same partition. Moreover, these geometric clusters already account
for size constraints on partitions. The following approaches have been proposed to construct
a (feasible) partitionX f of a vertex set from the geometric representationX obtained by
spectral methods.
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Closest in Frobenius norm. Rendl and Wolkowicz [47] suggested looking for a feasible
matrixX f that is as close as possible toX in Frobenius norm. Because we are considering
weighted vertices, we findX f by minimizing‖W1/2(X − X f )‖F . Since

‖W1/2(X − X f )‖2
F = tr(XtWX) + tr

(
Xt

f WX f
) − 2tr(XtWX f )

= 2tr(W) − 2tr(XtWX f ) (11)

the linear problem (P4): MaxX f {tr(XtWX f ) : X f ∈ J} produces a feasible partitionX f

that is close to the geometric representationX. (J is the feasible set defined in Lemma 2.)

Linear approximation. Alternatively, since

tr
(
Xt

f LX f
) = tr(XtLX ) + 2tr(XtL(X f − X)) + tr((X f − X)tL(X f − X)) (12)

a feasible partitionX f can be obtained by neglecting the quadratic term in Eq. (12) and
solving the linear problem (P5): MinX f {tr(XtLX f ) : X f ∈ J}. Note that ifw = uN and
N is divisible by K , then (P4) and (P5) becometransportation problemsand, therefore,
nonnegativity constraintsxi j ≥ 0 can substitute for the Boolean constraints on the feasible
setJ. This approach, also suggested by Rendl and Wolkowicz [47], corresponds to Barnes’
method [4].

Minimum cost assignment. Hendrickson and Leland [31] identify a feasibleX f by solv-
ing a mapping problem that we modify as follows. LetV be the set ofN weighted vertices
in the original graph andP be a set ofK vertices representing partitions. A weighted
edge connects each vertex invi ∈ V to each vertexpk ∈ P, with weight equal to the
square of the Euclidean distance between thei th row of X and (0, . . . , 0, 1k, 0 . . . , 0)t .
The optimal mapping is given by the minimum cost of assignment fromV to P with the
constraint that the sum of the vertex weights of the elements ofV mapped topk is mk,
for eachk in {1, . . . , K }. Algorithms for solving this assignment problem terminate in
O(K 3N + K 2N log N) time [60].

KC technique. Alpert and Kahng [1] suggested the following KC algorithm:

Initialize W, a set of partition centers, to empty
Choose some random v from V and add it to W
While |W| ≤ K , find v ∈ V such that minw∈W d(v, w) is maximized,

and add it to W
Form partitions V1, V2, . . . VK each containing a single point of W;

add each v ∈ V to the partition of the closest wi ∈ W

The distance between two vertices,d(v, w), is the Euclidean distance between the cor-
respondingK-dimensional vertex representatives (rows ofX). The running time of this
algorithm is O(N log K ). A variation of this technique is theK -means classification
method [40] in which each new vertex is added to the partition with the nearest mean. The
mean of a partition is the mean of its vertex geometric representatives.
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KP technique. Chan et al. [12] suggested the KP algorithm which is based on information
from theN × N partition matrixP= XX t . pi j is one ifvi andv j are in the same partition,
and zero otherwise. A set of partition centers is obtained as in the KC algorithm; however,
placement of a new vertexvi in a partition with centerv j is based on how closepi j is from
one. The running time of this algorithm isO(N K2 + N K log N).

10. Application to powertrain system design

The above hypergraph representation and partitioning techniques have been applied to a
powertrain system model proposed by Wagner [64]. This model represents one of the most
comprehensive powertrain system studies available in the open literature, containing 87
design relations, 57 design variables, and 62 state/behavior variables. Additional results,
although limited to unitary vertex weights, have been presented in [42].

Seven design criteria are considered by Wagner: (1) Fuel consumption and (2) emissions
directly affect profits since a vehicle that cannot be certified to meet emissions cannot be
sold. (3) The distance a vehicle travels from rest in four seconds and (4) the 5–20 mph time
correlate with initial acceleration. (5) The 0–60 mph time correlates with average vehicle
acceleration over the speed range of the engine. (6) Starting gradeability is important for
markets with hilly or mountainous terrain. (7) Cruising velocity at grade is the speed at
which a vehicle can climb a six percent grade in fourth gear.

Design variables describe either geometry or a control strategy. A design relation may be
an equality or inequality constraint or the objective function in the powertrain optimization
model. A design relation may entail direct evaluation of an algebraic function, access to
response surface data, or some kind of simulation. Wagner’s powertrain model includes
computation of 1 simulation, access to 19 response surface data, and evaluation of 67
algebraic functions. To account for different computational times, we assign the following
weights to the corresponding vertices: 1 for algebraic functions, 5 for response surfaces,
and 15 for simulation.

The software packageChaco[32] was used to identify optimal partitions of the powertrain
model. Chacoimplements several methods for finding small edge separators in weighted
(nodes and edges) graphs. We use the spectral method (with minimum cost assignment)
together with the FM-HL algorithm described in Section 7.1. In this article we present
results for model quadrisection.

Previously to runningChaco, a hyperedge model was used to generate a graph adjacency
list from the FDT of the model. The hypergraph representation of the powertrain problem
contains 87 nodes and 119 hyperedges. The graph representation of the powertrain model
contains 87 nodes and 560 edges.

Quadrisection of the powertrain model resulted in four subproblems of sizes 45, 46, 41,
and 45 (where the size of a subproblem equals the sum of its design relation weights). Par-
titioning time was 0.65 sec. on a Sun SPARCstation. The reordered functional dependence
table depicted in figure 6 shows that 14 linking variables are needed for model quadrisection.
Subproblem 1 contains the torque converter model as well as accessories torque, transmis-
sion, and powertrain geometry design relations Subproblems 2 and 4 contain the engine
model in addition to the fuel consumption and emissions criteria. Subproblem 3 contains
the wheel model together with powertrain geometry, transmission, and vehicle geometry
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Figure 6. Functional dependence table after quadrisection of powertrain design model.

design relations. Subproblem 3 also includes the acceleration, starting gradeability, and
cruising velocity at grade criteria.

11. Conclusions

The article presented a graph-/hypergraph-based methodology for optimal model-based
decomposition of design problems. The design problem is represented by a hypergraph
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that is then partitioned to identify weakly connected structures implicit in the mathematical
design model. Hyperedge models are used to approximate hypergraphs by graphs. Spec-
tral graph-partitioning methods and iterative improvement techniques are proposed for
graph/hypergraph partitioning. A known spectralK -partitioning formulation, which ac-
counts for partition sizes and edge weights, is extended to graphs with also vertex weights.
The decomposition formulation and solution are robust enough to account for partition
loads, function evaluation and simulation times, and the strength of function dependence
on variables. Hence, the optimal problem partition may be forced to meet an existing anal-
ysis and simulation environment. A vehicle powertrain model was used as example and
divided into four parts, two subproblems containing the engine model and the other two
being assigned the rest of the model. A typical object or aspect decomposition of this model
cannot generate the decomposition obtained by OMBD.
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