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Abstract. Minimizing the Lennard-Jones potential, the most-studied model problem for molecular conformation,
is an unconstrained global optimization problem with a large number of local minima. In this paper, the problem
is reformulated as an equality constrained nonlinear programming problem with only linear constraints. This
formulation allows the solution to approached through infeasible configurations, increasing the basin of attraction
of the global solution. In this way the likelihood of finding a global minimizer is increased. An algorithm for
solving this nonlinear program is discussed, and results of numerical tests are presented.
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1. Introduction

The molecular conformation problem consists of finding a configuration of atoms in a cluster
or molecule whose potential energy is a minimum. This problem is important in the study
of molecular dynamics, in which its solution is thought to provide the zero-temperature
configuration or ground-state of the molecule. The solution of the molecular conformation
problem is also of interest in the study of protein folding, in which the tertiary structure of
the protein is sought.

In its simplest form, the potential energy of the molecule is modeled by the sum of
the potential energies between pairs of atoms. Even in this case, the problem of finding
a global minimum of the energy can be extremely difficult due to the excessive number
of non-global minima. The characteristic difficulty of a true global optimization problem
must be faced: while efficient algorithms are well-known which will converge to a local
minimizer from almost any starting point, algorithms for finding a global minimizer are not
so well-developed.

∗Contribution of the National Institute of Standards and Technology and not subject to copyright in the United
States.
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Researchers have therefore proceeded in one of three ways. Physical knowledge or
intuition can be used to generate starting configurations which are likely to represent low-
energy states. These configurations are then used as starting points for local minimization
algorithms. The hope is that carefully chosen starting points will be more likely to lie
in the region of convergence of a global minimizer. This approach, of course, is highly
problem-specific in that it requires some knowledge of likely configurations.

At the other end of the spectrum are attempts to apply Monte-Carlo or stochastic algo-
rithms, which can be expected to find the global minimizer with a high probability given
enough random searches. Included in this category are the intelligent Monte-Carlo meth-
ods such as simulated annealing and genetic algorithms, as well as local minimization from
multiple random starting points. These methods are general in the sense that they can be
applied to any global optimization problem with; no specialized knowledge of the problem
or its likely solutions is required.

Intermediate to these extremes are attempts to use the structure of the problem to refor-
mulate the optimization problem into one which is somehow more tractable. These methods
can be applied to other problems that have structure which can be exploited, although they
provide no solution to the general global optimization problem. This current work falls
into this last category; in it, the naturally unconstrained minimization problem is reformu-
lated as a constrained problem. It will be shown by example that the global minimizer is
somehow easier to find when approached through infeasible (i.e., physically impossible)
configurations.

The outline of the paper is as follows. In Section 2, we discuss various methods which
have been used to find low-energy configurations and summarize some of the significant
finding of these methods. Section 3 contains a description of our method for reformulating
the problem. In Section 4, we present an algorithm to solve the reformulated problem, with
numerical results appearing in Section 5. We discuss our conclusions in Section 6.

2. Approaches to molecular conformation

For the purpose of finding the ground-state of a cluster of atoms, the potential energy
is usually modeled by the sum of the pairwise energies. Although more complicated
interactions (e.g., three-body forces) are ignored, it is believed that this assumption allows
a reasonable approximation to the true state of affairs (see, for instance, [11]). Moreover,
this simplification leaves some hope that the necessary computations can be carried out,
although we shall see that even the simplified problem is very difficult.

The potential energy function we use is given by

E(X) =
m−1∑
j=1

m∑
i= j+1

vL J(‖xi − xj ‖), (2.1)

wherex1, x2, . . . , xm are the positions of them atoms,X = (x1, x2, . . . , xm), andvL J is the
Lennard-Jones 6–12 pair-potential:

vL J(r ) = 1

r 12
− 2

r 6
. (2.2)
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HerevL J(r ) has been scaled so that it is minimized atr = 1 with minimum energy−1.
This gives a crude lower bound of−m(m − 1)/2 for E(X). We takex1 = (0, 0, 0),
x2 = (x21, 0, 0), andx3 = (x31, x32, 0) in order to remove the translational and rotational
degrees of freedom from the cluster. (It should be noted that there is still a great deal of
symmetry left in the model, particularly in the representation of the atoms. Since, apart
from the first three, the atoms are not distinguished except by enumeration, any physical
configuration can be represented in(m− 3)! different ways simply by renumbering the
atoms.) The review article [10] may be consulted for more information about the Lennard-
Jones pair-potential and other pair-potentials which have been considered.

2.1. Generation of likely configurations

A number of researchers have searched for global minimizers of the Lennard-Jones poten-
tial by constructing configurations which are expected to represent low energy states and
using these as starting points for local minimization routines. In particular, Hoare and Pal
[11] found all the local minimizers for a small value ofm and used the corresponding con-
figurations as ‘seed’ structures; that is, they began with the minimal energy configurations
for m= 6 and added one atom at a time to gradually build starting configurations for larger
clusters. The configurations they produced were then relaxed by local minimization into lo-
cally minimal energy configurations. In this way they produced low-energy configurations
for m from 6 to 46. Northby [18] searched through various lattice-based configurations and
used the lowest-energy configurations thus found as starting points for local minimizations.
He found low-energy configurations in the rangem= 13, . . . ,147.

It should be emphasized that in none of the work cited above or below is there any
assertion that a global minimum has been found. Instead, low-energy configurations are
compared with one another and with the lowest given in the literature. Indeed, Xue [24] has
recently given a parallel version of Northby’s algorithm and used it to improve on several
of Northby’s solutions.

In an investigation by Hoare and McInnes [12], problems withm varying from 6 to 13
were exhaustively studied, with the result that 2, 4, 8, 18, 57, 145, 366, and 988 physically
distinct local minimizers were discovered form = 6, 7, 8, 9, 10, 11, 12, and 13 atoms,
respectively. This gives some idea of the difficulty of the problem, especially when it is
noted that many of the minimal energy configurations have energy very close to the globally
minimal energy, and that a realistic problem may have 1000 to 10000 atoms.

2.2. Stochastic methods

For problems of realistic size, exhaustively searching for the global minimizer is so com-
putationally intensive as to be out of the question. A popular alternative is to use some
type of random search strategy. Numerous researchers have applied some variant of the
simulated annealing algorithm (see, e.g., [13, 15, 21, 22]). Various degrees of success have
been reported. Wille [21] found the putative global minimizer in problems of size up to
m = 25. Li and Scherage [15] and Judson et al. [13] have applied simulated annealing
to other forms of the molecular conformation problem with mixed success at finding the
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best-known minimizers. The last reference also contains results of applying two genetic
algorithms to the problem studied by Judson et al.

Byrd et al. [1, 2] have developed a general parallel algorithm for global optimiza-
tion. It consists of multiple local minimizations from random starting points, together with
refinements of the local minimizers via low-dimensional perturbations and further local
minimization. They report a high rate of success in finding the best-known minimizer for
problems withm≤ 30, but their algorithm is unable to find the minimizer in many problems
with a larger number of atoms.

2.3. Reformulation of the problem

The approach taken in this paper is to reformulate the problem in order to make the global
minimizers more accessible to local minimization. Several researchers have taken similar
approaches. Pielaet al. [14, 19] have applied the time-dependent diffusion equation to
the potential energy surface to smooth it, in hopes that the global minimum will be the last
minimum to survive. In this way a problem with a unique minimum can be produced. Using
a homotopy-like method, this minimum can then be traced back to a minimum (hopefully
global) of the original problem. In the second reference above, a good rate of success in
finding the putative global solution is reported.

Colemanet al. [4], see also [23] have implemented another method for smoothing the
potential energy surface. A parameterized integral transform (similar to convolution with a
Gaussian) is applied to the Lennard-Jones potential in a similar attempt to smooth out the
local minima while leaving the global minima intact. The method also involves a homotopy-
like aspect. Once a smoothed version of the problem has been solved, it is necessary to
follow a path as the problem is transformed back to the original. By combining this
idea of reformulating the energy function with a version of simulated annealing and local
minimization, the global minimum has been found in a large proportion of attempts for
problems withm≤ 27 (see [4]).

Crippen and Havel [5] reformulate the problem by allowing the atoms to move in a
higher-dimensional Euclidean space. A constraint which enforces the condition that the
atoms are actually in 3-space is then added, and the constrained problem is then solved
by an augmented Lagrangian algorithm. Although this approach does not always find the
global solution, it is reported that it tends to find low-energy configurations consistently
(see [5] and the references therein).

3. An infeasible point approach

3.1. Motivation

The incredible multiplicity of minima of the Lennard-Jones potential is due to the fact that
each atom interacts with every other atom. The pair-potential itself is relatively simple,
having a unique minimum (see Figure 1). The difficulty arises when all of the atom-atom
interactions are included.
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Figure 1. Lennard-Jones pair potentialvL J.

Our approach is to directly address the difficulty described above by decoupling the
interactions of the atoms. We split each atom intom − 1 ‘artificial’ atoms, and then
designate exactly one of them − 1 atoms spawned by thei th physical atom to interact
with a corresponding representative of thej th physical atom. Specifically, let̃xi j be the
coordinates of the artificial atom which is spawned by thei th original atom and which
interacts with an atom spawned by thej th original atom (sõxi j interacts withx̃ j i ). We let
X̃ represent the collection of allx̃i j ’s and defineẼ by

Ẽ(X̃) =
m∑

j=1

∑
i> j

vL J(‖x̃i j − x̃ j i ‖).

It is easy to find the global minimum of̃E; any configurationX̃ in which‖x̃i j − x̃ j i ‖ = 1
for all i and j satisfiesẼ(X̃) = −m(m− 1)/2.

In order to recover the original problem, we must impose the constraint that all of the
artificial atoms corresponding to any one of the original atoms have the same coordinates,
that is, that

x̃i j = x̃ik, 1≤ j < k ≤ m, i = 1, . . . ,m. (3.1)

We letW be a linear operator with the property that the only configurationsX̃ in the null
space ofW are those satisfying constraint (3.1).

An equivalent formulation of the original problem is the following:

minimize Ẽ(X̃)

s.t.WX̃ = 0
(3.2)
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The advantage of this formulation, as discussed below, is that it seems to be easier to
approach the global minimizer along a path of infeasible configurations.

Of course, the approach we outline above involves a great increase in the number of
variables. After removing the rotational and translational degrees of freedom, 3m − 6
variables describe the coordinates ofm particles in 3-dimensional space. Our approach
requires 3m(m− 1)− 6 variables for the same problem. However, the increase in problem
size is somewhat mitigated by the fact that both the Hessian ofẼ and the constraint matrix
W are very sparse. In the algorithm we present below, we take advantage of this sparsity.

This method of reformulating the problem is inspired byDifferential Semblance Opti-
mization(DSO), which was introduced by Symes [20] to address difficulties in the standard
approach to seismic velocity inversion. The goal of seismic velocity inversion is the esti-
mation of parameters which represent the material properties of the subsurface, particularly
seismic wave velocities, by means of measurements made at the surface. The standard
formulation of a typical application takes the following abstract form:

minimize
∑
i∈I

‖Si (x, y)− Di ‖2L2

x ∈ X, y ∈ Y
(3.3)

wherex and y represent the parameters to be determined. The difficulty arises because
the parameters must be chosen to fit data from multiple experiments (indexed byi ). The
natural objective function is observed to be very nonconvex with multiple minima (see, for
example, [8]).

In the DSO technique, the data from different experiments are fitted using different
parameters (so that the experiments are decoupled). The requirement that all the data
be explained by the same parameters is then enforced by a constraint. Specifically, the
parametery ∈ Y is replaced by a parameterỹ ∈ YI (so that each experiment is being
explained independently). Then the constraintWỹ = 0 is imposed, where the null space
of W is the diagonal ofYI (that is,Wỹ = 0 implies thatỹi = ȳ ∈ Y for all i ∈ I ).

In this way, the original problem (3.3) is reformulated as the following equality con-
strained nonlinear program:

minimize
∑
i∈I

‖Si (x, ỹi )− Di ‖2L2

s.t.Wỹ = 0.
(3.4)

The similarity between the DSO approach to velocity inversion and our reformulation of
the Lennard-Jones problem should be clear. In both cases, the original objective function
is expressed in terms of an expanded parameter set and a linear constraint is imposed to
recover the original problem.

3.2. The quadratic penalty function

In velocity inversion applications, the advantage of the constrained version of the problem
becomes evident when it is solved by the quadratic penalty method. In certain cases [9],
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it can be shown that for sufficiently small values of the penalty parameter, the penalty
function has a unique minimum. Moreover, it is possible to follow a path, parameterized
by the penalty constant, to the global constrained minimum.

The quadratic penalty function for the general equality constrained nonlinear program

minimize f (x)

s.t.g(x) = 0
(3.5)

(whereg(x) is d-dimensional) is

P(x; r ) = f (x)+ 1

2
σ 2g(x)T g(x). (3.6)

The theory for such penalty functions is well-known (see [7]). Under appropriate conditions,
given any local minimizerx∗ of (3.5), there exists a positive number6 such that a path
x(σ ) exists forσ ∈ [6,∞) with x(σ ) ∈ argmin{P(x; σ)} andx(σ ) → x∗ asσ → ∞.
In particular it should be noted that the standard theory addresses only the case whereσ

is large. The novel aspect of Differential Semblance Optimization is that it demonstrates
that allowing infeasible iterates can sometime expand the basin of attraction of the global
minimizer.

Our approach to the Lennard-Jones problem is modeled after the above discussion. We
attempt to find the global minimum of the constrained problem (3.2) by allowing infeasible
iterates and following a path asσ →∞.

4. Algorithm

The penalty function for problem (3.2) is

P(X̃; σ) = Ẽ(X̃)+ 1

2
σ 2X̃T WT WX̃.

We take a starting configuration, embed it in the larger dimensional space, and minimize
P(X̃; σ) for some value ofσ . This finds a point on a path of minimizers parameterized by
σ . We then use a predictor-corrector method for following the path. After increasingσ to
a ‘large enough’ value, we project the current configuration onto the smaller dimensional
(feasible) subspace, and perform an unconstrained minimization on the original Lennard-
Jones potentialE. As is typical in penalty function methods, there are no firm rules
upon which to base the choice of the starting or ending value ofσ . The numerical results
presented in the following section show, however, that even simple choices can lead to good
results.

The initial minimization (to find a point on the path) is accomplished with the limited
memory BFGS algorithm of Nocedal [17]. The predictor-corrector algorithm is based on
following the solution of

∇P(X̃; σ) = 0.
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Differentiating with respect toσ , we obtain the following ordinary differential
equation:

{∇2Ẽ(X̃)+ σ 2WT W}dX̃

dσ
= −2σWT WX̃.

As discussed above, the existence of a solution is guaranteed provided the initial value of
σ is sufficiently large.

For the predictor step, we use the RKF45 code developed by Watts and Shampine in single
step mode; this uses a Runge-Kutta-Fehlberg 4th/5th order scheme to achieve automatic
step size control. The corrector step is performed using Newton’s method. It is important to
note that in our formulation of the problem, the potential energy function has an extremely
sparse Hessian. Moreover, the matrixWT W is also sparse, so both the predictor step and
the Newton correction step involve the solution of sparse linear systems. We used a sparse
Choleski algorithm to solve these systems.

In order to generate reasonable starting points, we took the solutions to the problems
and replaced each coordinatec by c + ρuc, whereu is taken from a (pseudo-)random
uniform distribution on [−0.5, 0.5] and ρ measures the relative size of the perturba-
tion.

Algorithm 1

1. Chooseσ1 > 0 andσfinal > σ0

2. ChooseX̃0

3. Find X̃σ1 ∈ argmin{P(X̃; σ1)}
4. repeat untilσk > σfinal

1. Setk := k+ 1
2. PredictX̃σk by a call to RKF45
3. CorrectX̃σk usings steps of Newton’s method

5. Project X̃ onto the feasible set by setting.xi := 1
m−1

∑
j 6=i x̃i j for i = 1, . . . ,m,

obtainingX0

6. FindX∗ ∈ argmin{E(X)} usingX0 as the starting point.

In order to provide a basis for comparison, we also attempted to minimizeE(X) directly.
One difficulty was encountered when starting a local algorithm from a random starting
point. If the starting point corresponded to a high energy state, frequently a long step was
taken in an early iteration, which led to one or more atoms ‘escaping’ from the cluster
(referring back to figure 1, it is clear that once the distance between a particular atom
and the rest of the cluster is large, there is almost no interaction which will tend to pull
it back). Therefore, we used the following two-step algorithm. The first step includes
a penalty on the size of the coordinates, so that atoms cannot escape the Lennard-Jones
forces.
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Algorithm 2

1. ChooseX0 andε > 0
2. FindXreg ∈ argmin{E(X)+ 1

2ε
2XT X} usingX0 as the starting point

3. FindX∗ ∈ argmin{E(X)} usingXreg as the starting point

5. Numerical results

We tested Algorithm 1 on problems corresponding tom = 5, . . . ,30 atoms, running the
algorithm 10 times on each problem beginning from 10 different perturbations of the global
solutions. To define the perturbations, we usedρ = 0.75, that is, the coordinates were
perturbed by up to 37.5% each. The following version of the constraintWX̃ = 0 was used

xi 1 = xi 2

xi 2 = xi 3
...

xi,i−2 = xi,i−1

xi,i−1 = xi,i+1
...

xi,m−1 = xim


i = 1, . . . ,m. (5.1)

For comparison purposes, Algorithm 2 was applied to each problem using the same
starting points. We usedε = 0.01 in Algorithm 2.

All computations were performed on a Sun SPARCstation 10 in IEEE double precision
(64 bit) arithmetic. Machine epsilonεM is about 2.2× 10−16. The minimizations using
limited memory BFGS were halted when the relative norm of the gradient was reduced to
10−8.

In Table 1, the results of the numerical experiments are summarized. We record the
number of times each algorithm finds the putative global minimum versus the number of
attempts, and the mean energy at the solution for each algorithm. Also listed is the value
of the putative global minimum. Note that Algorithm 1 succeeded in locating the global
minimum in every attempt, while in 15 of the problems, Algorithm 2 did not succeed in
any attempt.

We interpret these results to mean that the infeasible formulation increases the size of the
basin of attraction of the global minimizer. It is possible that this ability to expand the basin
of attraction, together with good starting points provided by chemical knowledge, could be
used to solve larger Lennard-Jones problems.

On the problem with 21, 25 and 30 atoms, Algorithm 2 performed unusually well, locating
the optimal structure on every attempt. To explore this anomaly, we ran both algorithms on
this problem, while increasing the relative perturbationρ. The results are shown in Tables
2, 3 and 4. Algorithm 2 began to fail whenρ reached 0.85 (42.5% perturbation), while
Algorithm did not fail untilρ reached 1.35 (62.5% perturbation). Thus, although the basin
of attraction of the optimal configuration is relatively large form= 21, these results show
that it is still much larger for the infeasible approach.
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Table 1. Comparison of infeasible point algorithm (IPM) with local minimization (LM) with a starting point
equal to global solution with % 75 percent perturbation to each coordinate.

m Success/try (IPM) Mean energy (IPM) Success/try (LM) Mean energy (LM) Putative minimum

5 10/10 −9.10385 10/10 −9.10385 −9.10385

6 10/10 −12.7121 0/10 −12.7121 −12.7121

7 10/10 −16.5054 4/10 −16.5054 −16.5054

8 10/10 −19.8215 4/10 −19.2084 −19.8215

9 10/10 −24.1134 0/10 −22.9690 −24.1134

10 10/10 −28.4225 1/10 −26.8424 −28.4225

11 10/10 −32.7656 0/10 −31.5629 −32.7656

12 10/10 −37.9676 3/10 −36.3692 −37.9676

13 10/10 −44.3268 1/10 −41.1379 −44.3268

14 10/10 −47.8452 1/10 −44.3883 −47.8452

15 10/10 −52.3226 2/10 −49.7777 −52.3226

16 10/10 −56.8157 0/10 −54.5608 −56.8157

17 10/10 −61.3180 0/10 −57.6631 −61.3180

18 10/10 −66.5309 1/10 −62.4705 −66.5309

19 10/10 −72.6598 0/10 −68.7679 −72.6598

20 10/10 −77.1770 0/10 −71.5516 −77.1770

21 10/10 −81.6846 10/10 −81.6846 −81.6846

22 10/10 −86.8098 0/10 −80.5738 −86.8098

23 10/10 −92.8445 0/10 −85.4309 −92.8445

24 10/10 −97.3488 0/10 −90.5833 −97.3488

25 10/10 −102.3727 0/10 −98.6382 −102.3727

26 10/10 −108.3156 2/10 −102.0618 −108.3156

27 10/10 −112.8736 0/10 −104.4727 −112.8735

28 10/10 −117.8224 0/10 −111.2948 −117.8224

29 10/10 −123.5874 0/10 −115.0656 −123.5874

30 10/10 −128.2866 0/10 −123.2344 −128.2866
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Table 2. Comparison of infeasible point algorithm (IPM) with local minimization (LM) on problemm = 21
with varing perturbation to each coordinate.

ρ Success/try (IPM) Mean (IPM) Success/try (LM) Mean (LM) Putative minimum

.70 10/10 −81.6846 10/10 −81.6846 −81.6846

.75 10/10 −81.6846 10/10 −81.6846 −81.6846

.80 10/10 −81.6846 10/10 −81.6846 −81.6846

.85 10/10 −81.6846 9/10 −81.2645 −81.6846

.90 10/10 −81.6846 3/10 −77.9603 −81.6846

.95 10/10 −81.6846 0/10 −75.0916 −81.6846

1.00 10/10 −81.6846 0/10 −75.7976 −81.6846

1.05 10/10 −81.6846 0/10 −75.2229 −81.6846

1.10 10/10 −81.6846 0/10 −76.2532 −81.6846

1.15 10/10 −81.6846 0/10 −76.1845 −81.6846

1.20 10/10 −81.6846 0/10 −75.0138 −81.6846

1.25 10/10 −81.6846 0/10 −76.1396 −81.6846

1.30 10/10 −81.6846 0/10 −75.6178 −81.6846

1.35 8/10 −81.3678 0/10 −76.1242 −81.6846

1.40 9/10 −81.6796 0/10 −76.7100 −81.6846

1.45 4/10 −81.5004 0/10 −76.5249 −81.6846

1.50 0/10 −81.0764 0/10 −76.7679 −81.6846

Table 3. Comparison of infeasible point algorithm (IPM) with local minimization (LM) on problemm = 25
with varing perturbation to each coordinate.

ρ Success/try (IPM) Mean (IPM) Success/try (LM) Mean (LM) Putative minimum

.70 10/10 −102.373 10/10 −102.373 −102.373

.75 10/10 −102.373 10/10 −102.373 −102.373

.80 10/10 −102.373 0/10 −101.829 −102.373

.85 10/10 −102.373 1/10 −101.533 −102.373

.90 10/10 −102.373 0/10 −101.193 −102.373

.95 10/10 −102.373 0/10 −101.507 −102.373

1.00 10/10 −102.373 0/10 −100.185 −102.373

1.05 10/10 −102.373 0/10 −100.798 −102.373

1.10 10/10 −102.373 0/10 −100.195 −102.373

1.15 10/10 −102.373 0/10 −100.022 −102.373

1.20 10/10 −102.373 0/10 −101.421 −102.373

1.25 10/10 −102.373 0/10 −101.829 −102.373

1.30 10/10 −102.373 0/10 −100.888 −102.373

1.35 0/10 −101.971 0/10 −100.742 −102.373

1.40 8/10 −102.289 0/10 −100.081 −102.373

1.45 7/10 −102.089 0/10 −100.823 −102.373

1.50 0/10 −100.321 0/10 −99.9988 −102.373
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Table 4. Comparison of infeasible point algorithm (IPM) with local minimization (LM) on problemm = 30
with varing perturbation to each coordinate.

ρ Success/try (IPM) Mean (IPM) Success/try (LM) Mean (LM) Putative minimum

.70 10/10 −128.287 8/10 −128.202 −128.287

.75 10/10 −128.287 0/10 −127.619 −128.287

.80 10/10 −128.287 0/10 −127.772 −128.287

.85 10/10 −128.287 0/10 −127.431 −128.287

.90 10/10 −128.287 0/10 −126.529 −128.287

.95 10/10 −128.287 0/10 −126.758 −128.287

1.00 10/10 −128.287 0/10 −126.324 −128.287

1.05 10/10 −128.287 0/10 −126.419 −128.287

1.10 10/10 −128.287 0/10 −126.275 −128.287

1.15 10/10 −128.287 0/10 −126.129 −128.287

1.20 10/10 −128.287 0/10 −125.943 −128.287

1.25 10/10 −128.287 0/10 −125.874 −128.287

1.30 0/10 −127.341 0/10 −125.805 −128.287

1.35 0/10 −127.524 0/10 −126.155 −128.287

1.40 0/10 −127.456 0/10 −126.423 −128.287

1.45 1/10 −127.349 0/10 −126.221 −128.287

1.50 0/10 −126.863 0/10 −125.172 −128.287

6. Conclusions

We have presented a reformulation of the Lennard-Jones problem as a linearly constrained
nonlinear program. This reformulation is an attempt to improve the global characteristics
of of the problem, thereby making it easier to locate a global minimizer. The basic idea is
that it may be easier to approach global minimizers through infeasible points.

In order to test this idea, we have conducted experiments using a naive implementation
of an infeasible point algorithm (the quadratic penalty function method). For the purpose
of comparison, a straightforward feasible point method has also been implemented and
tested. The results show that the infeasible point approach is biased toward very low energy
configurations, and, in particular, that it is more likely to locate a global minimizer.
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