
CTP: A New Constraint-Based Formalism
for Conditional, Temporal Planning

IOANNIS TSAMARDINOS ioannis.tsamardinos@vanderbilt.edu

Department of Biomedical Informatics, Vanderbilt University

THIERRY VIDAL thierry@enit.fr

Production Engineering Laboratory (LGP) - ENIT, France

MARTHA E. POLLACK pollackm@eecs.umich.edu

Computer Science and Engineering, University of Michigan

Abstract. Temporal constraints pose a challenge for conditional planning, because it is necessary for a

conditional planner to determine whether a candidate plan will satisfy the specified temporal constraints. This can

be difficult, because temporal assignments that satisfy the constraints associated with one conditional branch may

fail to satisfy the constraints along a different branch. In this paper we address this challenge by developing the

Conditional Temporal Problem (CTP) formalism, an extension of standard temporal constraint-satisfaction

processing models used in non-conditional temporal planning. Specifically, we augment temporal CSP

frameworks by (1) adding observation nodes, and (2) attaching labels to all nodes to indicate the situation(s) in

which each will be executed. Our extended framework allows for the construction of conditional plans that are

guaranteed to satisfy complex temporal constraints. Importantly, this can be achieved even while allowing for

decisions about the precise timing of actions to be postponed until execution time, thereby adding flexibility and

making it possible to dynamically adapt the plan in response to the observations made during execution. We also

show that, even for plans without explicit quantitative temporal constraints, our approach fixes a problem in the

earlier approaches to conditional planning, which resulted in their being incomplete.

Keywords: temporal reasoning, constraint-based planning, conditional planning

1. Introduction

Classical planning [20] assumes that a plan can be generated off-line, prior to its

execution, and that execution consists in the straightforward activation of the steps in the

plan, in an order that is consistent with the plan’s temporal constraints. This assumption

is satisfied in domains in which the planning agent is omniscient, and thus knows at

plan time everything required about the possible evolution of the world during execution.

In many real-world domains, this assumption is violated.

One way to handle this difficulty is to build the plan on-line, making all decisions in a

reactive fashion. However, the reactive approach has a number of shortcomings; in

particular, when there are real-time requirements to be satisfied, a reactive approach

typically cannot guarantee that they will be met (nor can it determine that they are

unsatisfiable). In addition, a reactive approach will fail to take preparatory steps that

might be required for the continuation of the plan in unexpected circumstances.

Consequently, an alternative approach has been to develop conditional planning

capabilities [14, 15, 17]. In the conditional planning approach, plans are generated

prior to execution, but they include both observation actions and conditional branches,

Constraints, 8, 365–388, 2003
2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

which may or may not be executed, depending on the execution-time result of certain

observations.

In addition to omniscience, classical planning also assumes instantaneous, atomic

actions. However, modern planning systems [8, 11] indicate the growing need to represent

and reason with metric temporal information and constraints. Temporal constraints pose a

challenge to conditional planning. In particular, it is necessary for a temporal conditional

planner to determine whether a candidate plan can possibly satisfy the specified temporal

constraints. This can be difficult, because temporal assignments that satisfy the constraints

associated with one conditional branch may fail to satisfy the constraints along a different

branch.

In this paper we address this challenge by developing the Conditional Temporal

Problem (CTP) formalism, an extension of standard temporal constraint-satisfaction

processing models used in non-conditional temporal planning. Specifically, we augment

the previous models by (1) adding observation nodes, which correspond to the time-points

at which observation actions end, and (2) attaching labels to all other nodes in the network.

A node’s label indicates the situation(s) in which the event it denotes (the start or the end

of a plan’s action) will be executed.

As we will show, our extended framework allows for the off-line construction of

conditional plans that are guaranteed to satisfy complex temporal constraints. Importantly,

this can be achieved even while allowing for the decisions about the precise timing of

actions to be postponed until execution time, in a least-commitment manner, thereby

adding flexibility and making it possible to adapt the plan dynamically, during execution,

in response to the observations made. We also show that, even for plans without explicit

quantitative temporal constraints, our approach fixes a problem in the earlier approaches to

conditional planning, which resulted in their being incomplete.

In Section 2 we review the temporal constraint models that inspired our conditional

model, which itself is depicted in Section 3. Three levels of consistency in conditional

temporal problems are then defined in Section 4. Each is developed, in turn, in the three

subsequent sections, which provide algorithms, discuss theoretical complexity issues, and

describe the usefulness of each form of consistency to planning. In particular, in Section 8,

we explain how the use of our approach in conditional planning corrects a problem in the

earlier approaches. We conclude this article with a discussion of related and future work.

2. Background

A variety of planning systems [8, 11], often referred to as temporal planners, use an

underlying constraint model to query and check the temporal aspects of a plan. One of the

most popular models is the Temporal Constraint Satisfaction Problem (TCSP) and its

graph-based counterpart, the Temporal Constraint Network (TCN) [5]. A TCN is a

constraint graph < V, E > where the nodes V represent time-points (i.e. instantaneous

events associated with the start or end of actions), while the edges E represent binary

constraints on the duration between two time-points xi, xj 2 V of the form:

ðl1 � xj � xi � u1Þ _ . . . _ ðln � xj � xi � unÞ
where l1, . . . , ln, u1, . . . , un 2 < are the lower and upper bounds of the constraint. In other

I. TSAMARDINOS, T. VIDAL AND M. E. POLLACK366

words the time from xi to xj must lie in one of the intervals [l1, u1], [l2, u2], . . . [ln, un]. For

example, if x and y represent the start and end time-points of action A then the constraint

(5 � y � x � 10) _ (20 � y � x � 25) specifies that the duration of A is between 5 and

10 time units (e.g. minutes) or between 20 and 25 time units.

An interesting case is when only one interval [l, u] is allowed for each edge. This

is the Simple Temporal Problem (STP) restriction, whose graph counterpart is the

Simple Temporal Network (STN). Checking the consistency of a TCN is known to be

NP-complete, while in an STN, consistency can be determined in polynomial time, for

instance using a local path-consistency propagation algorithm [9].

On the other hand, TCSPs may be generalized by allowing non-binary constraints.

This is the Disjunctive Temporal Problem (DTP) [21], which formally is a constraint-

satisfaction problem < V, E > such that the constraints E are arbitrary disjunctions of

STP-like constraints, i.e. each member of E has the form

ðl1 � xi1 � xj1 � u1Þ _ . . . _ ðln � xik � xjk � unÞ

where again l1, . . . , ln, u1, . . . , un 2 <. DTPs are thus conjunctions of n-ary disjunctive

constraints: ^i(_jcij), where the cij are of the form l � x � y � u. As such, they can

represent any other formula that we can construct with propositions cij (e.g. c11) c12).
1

The most frequently used way to solve a DTP is to convert it to a problem of selecting one

disjunct, (lk � xi � xj � uk) from each disjunctive constraint, such that the set of selected

disjuncts forms a consistent STP. The DTP is consistent if and only if at least one of such

component STPs is consistent. Checking the consistency of a DTP is NP-hard, and because

DTPs include non-binary constraints, it is difficult to use path-consistency on them to

increase efficiency [3]. However, several recent papers have presented heuristic techniques

that significantly decrease the typical time needed to check DTP consistency [1, 13, 21, 22].

Recently, STPs have also been extended to take into account temporal uncertainty. In

STPs (as in TCSPs and DTPs), the constraint between any two time-points x and y

specifies an interval that is controllable: i.e. the execution agent can choose for (y � x) any

of the values within the allowed bounds given by the constraint. In realistic planning

applications, however, the durations of some tasks or the time of occurrence of some

events may depend on external parameters, and thus the actual value can only be observed

by the agent at execution time (e.g., [11]). Such contingent values may be seen as being

assigned by Nature while the other values are assigned by the executing agent. A Simple

Temporal Problem/Network with Uncertainty (STPU/STNU) [26] is similar to a STP/STN

except that the edges are divided into contingent and requirement edges. The finishing

time-point of contingent intervals are controlled by Nature and hence observed, while

others are controlled and hence executed by the agent. We will refer to this model later in

the paper, as there is a strong relationship between consistency in an STNU (called

controllability in the STNU setting) and consistency as we define it for CTPs.

3. Conditional Temporal Problems

We now introduce the Conditional Temporal Problem (CTP) formalism. Both in this

section and throughout the remainder of the paper, we will illustrate our approach with a

CTP: A NEW CONSTRAINT-BASED FORMALISM 367

simple example derived from the one used in the original CNLP conditional-planning

paper [15]. The example models a plan for going skiing, either at Snowbird or at Park

City, starting from home, and traversing the roads (shown as dashed lines) depicted in

Figure 1. As in the CNLP paper, it is possible that the road from point B to Snowbird

and/or the road from point C to Park City will be covered with snow and impassable.

However, the condition of those roads can only be observed from points B and C,

respectively. For the purposes of the current paper, we also introduce two temporal

constraints:

– If the agent skis at Snowbird, it should arrive after 1 p.m., because they offer great

discounts in the afternoons.

– If the agent skis at Park City instead, it should arrive at point C no later than 11 a.m.,

because traffic is very heavy afterwards.

In our formalism, we will denote propositions with capital letters from the beginning of

the alphabet, e.g. A, B, C. We will denote literals as A, or :A, and conjunctions of literals

as lists of literals, e.g. AB:C denotes A ^ B ^ :C.

Definition 3.1. A label l is a conjunction of literals, e.g. l ¼ ABC.

Definition 3.2. Two labels l1, l2 are inconsistent (denoted as Inc(l1, l2)) iff l1 ^ l2
is False. E.g. l1 ¼ AB and l2 ¼ :B:C are inconsistent. Two labels l1, l2 are consistent

(denoted Con(l1, l2)) iff :Inc(l1, l2)). A label l1 subsumes label l2, (equivalently, l1 is

more specific than l2), iff l1) l2. E.g. if l1 ¼ AB:C and l2 ¼ A:C, then l1 subsumes l2
(denoted Sub(l1, l2)).

Definition 3.3. The set of all possible labels defined with respect to a set of propositions

P, is the label universe of P, P*.

We are now ready to formally define Conditional Temporal Problems, inspired by the

definitions of the TCSP, STP and DTP.

Figure 1. The map for the CNLP plan.

I. TSAMARDINOS, T. VIDAL AND M. E. POLLACK368

Definition 3.4. A Conditional Temporal Problem (CTP) is a tuple< V, E, L, OV, O, P >,
where:

P is a finite set of propositions A, B, C, . . .
V is a set of nodes (interchangeably called variables, time-points, events) {x, y, z, . . .}
E is a set of constraints between nodes in V

L : V ! P* is a function attaching a label to each node, e.g. L(n) ¼ AB

OV
 V is the set of observation nodes

O : P ! OV is a bijection associating a proposition with an observation node. O(A) is the

node that provides the truth-value for proposition A.

CTPs can be interpreted as follows. When a value is assigned to a time point in V, it

indicates the time of occurrence of that event. In planning problems, the time of occurrence

is the time at which an action is executed.2 The times assigned to the nodes in a CTP must

satisfy the constraints in E. A major difference from other non-conditional temporal

problems is that a node �2 V should only be executed if its label’s value becomes True. At

the time of their execution the observation nodes provide the truth-value of propositions,

which in turn determine the truth-value of labels. Note that each proposition has an

implicit time point associated with it. Suppose that A is a fluent whose value may change

over time (for example battery-level-low), and further suppose that the value of A

needs to be observed at two different times. Then the CTP will include two distinct

propositions, e.g. AT1 and AT2, each associated by the function O to a different observation

node. Therefore for each proposition in P there exists a unique observation node.

It is reasonable to assume that in any well-defined CTP there should not be any

constraint relating nodes with inconsistent labels, since those nodes will never be executed

under the same circumstances. Also, it is reasonable to require that when we execute a

node �, we have to know the truth-value of its label L(�). This in turn implies that (i) all

nodes observing a proposition in L(�) are executed in all cases in which � is executed, and
(ii) they are executed before �. To ensure these requirements for any node � for which

A appears in L(�), we can statically check that Sub(L(�), L(O(A)) and add the constraint

O(A) < � to the temporal problem definition.

We now define three types of CTPs, which differ in the types of constraints they allow.

Definition 3.5. A Conditional Simple Temporal Problem (CSTP) is a CTP where the

constraints in E are STP-like constraints, i.e. binary constraints (called edges) of the form

(l � y � x � u). We similarly define Conditional Disjunctive Temporal Problems (CDTP)

and Conditional Temporal Constraint Satisfaction Problems (CTCSP), by analogy to

DTPs and TCSPs.

Example 3.1. Figure 2 shows a CSTP that encodes part of the ski-trip example. (To keep

the example small, we omit the part of the plan that involves traveling from point C to Park

City.) The vertices V represent three types of events:

– The start and end points of the go actions; (go x y) denotes the action of going from

location x to location y. A node labeled (go x y)S, i.e. with subscript S, indicates the

event of starting the action (go x y); similarly (go x y)E denotes the event of ending such

an action (and arriving at y).

CTP: A NEW CONSTRAINT-BASED FORMALISM 369

– The observation events; (obs (road x y)) denotes observing the condition of the road

from x to y, while located at x. For clarity of presentation, we treat observation steps in

our examples as if they were instantaneous, although in general this is not a

requirement.

– The special Start event, which is associated with a specific arbitrary point in time: in our

example, 12 a.m. It is used to encode absolute time constraints, for example, that if the

agent goes to Snowbird, he should not arrive there until 1 p.m. (13 hours after Start). In

the temporal-reasoning literature, the Start node is usually denoted ‘‘TR,’’ for Temporal

Reference point.

We will follow the convention that all non-annotated edges in the figures are assumed to

have bounds [0, 1] and the labels of the unlabeled nodes are True. There is exactly one

observation action (obs (road b s)) that provides the truth-value of A, namely whether the

road from b to s is open: thus, O(A) ¼ (obs (road b s)). Notice that this node satisfies the

two conditions identified above: it is executed in every context in which steps labeled with

A or :A are executed (in fact, in this example, it is always executed), and it is executed

before any of the steps that are labeled with A or :A (note the implicit [0,1] constraint on

the outgoing arcs from it).

Definition 3.6. An execution scenario s is a label that partitions the nodes in V into two

sets V1 and V2 : V1 ¼ {n 2 V : Sub(s, L(n))} and V2 ¼ {n 2 V : Inc(s, L(n))}, i.e. the set of

nodes that will be executed because s implies their label is True, and the set of nodes that

will not be executed because s implies their label is False. An execution scenario contains

all the information (i.e. the value of all necessary propositions) to decide which nodes to

execute and which not to execute. We will use SC to denote the set of scenarios for a given

CTP.

Theorem 3.1 Any complete truth-assignment to the propositions in P is an execution

scenario (we will call it a complete scenario). (See Appendix for proof).

Definition 3.7. A scenario projection of the CTP < V, E, L, OV, O, P > of an execution

scenario s, denoted as Pr(s), is the temporal non-conditional problem < V1, E1 >, where

Figure 2. The skiing plan as a Conditional Simple Temporal Problem. All non-annotated edges are assumed

[0, 1] and all non-annotated nodes are assumed labeled True.

I. TSAMARDINOS, T. VIDAL AND M. E. POLLACK370

V1 ¼ {n 2 V : Sub(s, L(n))} and E1 ¼ {(�1; �2) 2 E : �1; �2 2 V1}. This will be an STP,

DTP, or TCSP depending on the constraints in E. Put simply, the scenario projection of an

execution scenario s is the set of nodes of the CTP that will be executed under s and all the

constraints among them.

Example 3.2. In our skiing example, there are only two possible execution scenarios: A

and :A, where Pr(A) includes, intuitively, all the nodes that are executed when the road

to Snowbird is clear and the agent skis there, and, similarly, Pr(:A) includes all the

nodes that are executed when the road to Snowbird is closed and the agent instead heads

towards Park City via point C. For a more interesting example, consider the CSTP in

Figure 3, which has nodes {TR, y, z, w, u, �, q} with labels {True, A, :A, AB, A:B,
:AC, :A:C}, respectively. Suppose that TR ¼ O(A) observes A, y ¼ O(B) observes B,

and z ¼ O(C) observes C. The CSTP thus has the typical structure of a conditional plan

in which TR is initially executed and A is observed; if it is true y is executed, otherwise

z is executed; and so on. The execution scenarios AB, ABC and AB:C all refer to the

same execution, i.e. under each of them, the nodes TR, y, and w, but no other nodes, will

be executed.

Definition 3.8. Two execution scenarios are equivalent execution scenarios if they

induce the same partition on the set of nodes. The ‘‘equivalent execution scenarios’’

relation induces an equivalence class relation R. A class in R contains all scenarios that are

equivalent.

Definition 3.9. A scenario is a minimum execution scenario if it contains the minimum

number of propositions compared to all other scenarios in its ‘‘equivalent execution

scenario’’ class.

In Example 3.2 above, scenarios ABC, AB:C, and AB all belong to the same

equivalence class, with AB being the minimum execution scenario of the class. For this

example, there are four minimum scenarios: {AB, A:B, :AC, :A:C}.

Figure 3. The CTP of the Example 3.2.

CTP: A NEW CONSTRAINT-BASED FORMALISM 371

4. Notions of Consistency

CTPs have a different notion of consistency than their non-conditional counterparts

TCSPs, DTPs, STPs, and most other temporal reasoning problems. In the conditional

case, consistency cannot be defined simply as the existence of an assignment to the time-

points (nodes) that satisfies the constraints. This interpretation fails to take account of the

fact that in the CTP modeling a temporal plan, propositions are usually only observed at

execution time. We thus present three notions of consistency, which differ from one

another in the assumptions made about when observation information is known.

In the first case, we require a notion of consistency that allows for off-line scheduling,

i.e. allows precise times for all events to be determined before execution begins. Here it is

reasonable to assume that the scheduling algorithm has no information about the outcome

of the observations. Therefore it should schedule the nodes in such a way that the

constraints are satisfied no matter how the observations turn out. If such a schedule exists,

then we will say that the CTP is Strongly Consistent.

As a second case, consider an agent that plans for a number of initial future states. Each

initial state corresponds to a set of initial truth-values of some propositions, i.e. an

execution scenario. The specific scenario is unknown at planning time, but it will be

known to the execution agent prior to execution. Then, it is necessary for the planning

agent to verify that no matter which initial state turns out True, the execution agent has a

way to execute the plan. If this is possible, the CTP is Weakly Consistent.

The third, most complicated and typical case, assumes that information about the

outcome of observations becomes known during execution. Unlike the first case,

however, it allows the decisions about the timing of events to be made dynamically at

execution time. We will call a CTP Dynamically Consistent if it can be executed so that

no matter what the outcome is for the upcoming observations, the current partial solution

(i.e. the assignment of values to time-points) can be extended so that all constraints are

satisfied.

These notions of consistency are similar to those developed for STPUs, where

consistency is defined in terms of controllability [26]. Essentially, a network is control-

lable if there is a strategy for executing the timepoints under the agent’s control that

satisfies all requirements. Three primary levels of controllability had also been identified.

In Strong Controllability, there is a static control strategy that is guaranteed to work in all

situations. In Weak Controllability, for all situations there is a ‘‘clairvoyant’’ strategy that

works if all uncertain durations are known when the network is executed. And in Dynamic

Controllability, it is assumed that each uncertain duration becomes known (is observed)

just after it has finished, and it requires that an execution strategy depend only on the past

outcomes. Strong and Dynamic Controllability have been shown to be tractable [10, 26],

while Weak Controllability is conjectured to be co-NP-complete [26].

Definition 4.1. A schedule T of a CTP < V, E, L, OV, O, P > is a mapping V ! <, i.e. a
time assignment to the nodes in V. We denote with T(�) the time assigned to node �.

Definition 4.2. An execution strategy St is a function from the set of scenarios for a CTP

to a schedule St : SC ! T. A viable execution strategy is one such that St(s) is a solution

to the projection Pr(s) for each scenario s 2 SC.

I. TSAMARDINOS, T. VIDAL AND M. E. POLLACK372

Definition 4.3. Given a scenario s and a schedule T, for each node x in the projection

scenario of s, we can determine the set of all observations performed before time T(x),

along with their outcomes. We will call the set of the observation outcomes before time

T(x) the observation history of x relative to scenario s and schedule T and will denote it as

H(x, s, T).

Definition 4.4. A CTP < V, E, L, OV, O, P > isWeakly Consistent if there exists a viable

execution strategy for it, i.e. every projection Pr(s) is consistent in the STP/DTP/TCSP

sense.

Definition 4.5. A CTP < V, E, L, OV, O, P > is Strongly Consistent if there is viable

execution strategy St such that, for every pair of scenarios s1 and s2, and variable x

executed in both scenarios,

½Stðs1Þ�ðxÞ ¼ ½Stðs2Þ�ðxÞ

Thus, an execution strategy that satisfies the definition of Strong Consistency assigns a

fixed time to each executable timepoint irrespective of the observation outcomes. The idea

behind finding a single schedule is similar to that of finding a conformant plan [7].

Definition 4.6. A CTP < V, E, L, OV, O, P > is Dynamically Consistent if there is a

viable execution strategy St such that, for every variable x and pair of scenarios s1 and s2,

Conðs2;Hðx; s1; Stðs1ÞÞ _ Conðs1;Hðx; s2; Stðs2ÞÞÞ
) ½Stðs1Þ�ðxÞ ¼ ½Stðs2Þ�ðxÞ

In the definition above,3 Con(s2, H(x, s1, St (s1))) means that the set of observation

outcomes uncovered before x in scenario s1 forms a label that is still consistent with

scenario s2 at the time at which x is to be performed in s1. Thus, at time point x, the agent

has not yet distinguished between scenarios s1 and s2. Therefore it must assign to x the

same time in s1 and s2. The same arises in the opposite case (x in scenario s2 while s1 is

still feasible). An execution strategy that satisfies the above definition ensures that the

scheduling decisions that are taken (while executing) only use information available from

previous observations.

To compare the three notions of consistency, reconsider the CSTP of Figure 2 as defined

in Example 3.1. Is the network Strongly Consistent? We can immediately see that, if A

is True (i.e. the agent observes that the road to Snowbird is open), then it must arrive

and then immediately leave point b no sooner than noon, i.e. (go home b)E � 12, given

the constraints 13 � (go b s)E – Start � 1, 0 � (go b s)S – (go home b)E � 0, and 1 �
(go b s)E – (go b s)S � 1. That is, because the agent must not arrive in Snowbird before

1p.m., there is no place to wait at point b, and it takes an hour to get from b to Snowbird, it

must arrive at b no earlier than noon. An analogous argument lets us deduce that if A is

False the agent must arrive at b no later than 10 a.m., i.e. (go home b)E � 10 Thus, there is

no way to construct a schedule for this network without knowing the truth-value of A.

Hence, the CTP is not Strongly Consistent.

However, it is Weakly Consistent. To prove this we just have to provide a consistent

schedule for each scenario. In this example there are two execution scenarios, s1 ¼ A and

CTP: A NEW CONSTRAINT-BASED FORMALISM 373

s2 ¼ :A, which means only the truth-value of A discriminates between possible scenarios.

One consistent schedule for s1, which we will call T1, assigns (go home b)S a time of 10

a.m. (with all the other time points being directly derivable from that, e.g., (go home b)E is

assigned noon). A consistent schedule for s2, T2 assigns (go home b)S a time of 8 a.m. The

execution strategy St, where St (s1) ¼ T1 and St (s2) ¼ T2 is viable. So, provided only that

the value for A is known before execution starts, the agent simply needs to pick the

corresponding schedule T1 or T2.

Is the network Dynamically Consistent? In the discussion above we showed that

T((go home b)E) must be greater than or equal to 12 if A is observed True, and less than or

equal to 10 if A is observed to be False. In turn, this forces T((go home b)S) to be greater

than or equal to 10 if A is True, and less than or equal to 8 if A is False. If we could

observe A before starting out on the journey, i.e. before event (go home b)S, then we could

distinguish between the two scenarios, determine which one we fall into, and schedule our

departure from home accordingly. However, the problem is set up such that being at point

b is a precondition for the observation action. Thus, there is no way to perform the

observation, and determine the value of A, ‘‘in time’’ to schedule the departure. The

example is not dynamically consistent.

Let us now state an obvious property of the three notions of consistency that is similar

to the corresponding one in STPU:

Theorem 4.1 Strong Consistency) Dynamic Consistency) Weak Consistency.

5. Strong Consistency

We now present an important property of Strong Consistency for CTPs.

Theorem 5.1 A CTP < V, L, E, OV, O, P > is Strongly Consistent if and only if the (non-

conditional) temporal problem < V, E > is consistent. (See Appendix for proof).

The implication of the above theorem is that we can perform Strong Consistency

checking by using specialized algorithms for non-conditional temporal problems such as

IDCP [4] for STPs, known techniques [18] for TCSPs, and Epilitis [22] for DTPs.

5.1. Uses of the Strong Consistency Concept for Planning

A plan that is represented as a strongly consistent CTP can be executed according to a fixed

schedule, in the sense that every action it includes has an assigned, specific time. Not all of

the actions will occur in every scenario. Thus, the plan is contingent in the same sense as

plans generated by CNLP [15]: Certain actions may or may not be executed, depending on

the results of execution-time observations. A contingent plan with a fixed schedule should

be contrasted with temporally contingent plan, in which the times at which actions are

performed also depends upon such observations. Plans with necessary temporal contingen-

cies will be dynamically consistent (as discussed in Section 7) but not strongly consistent.

Thus, Strong Consistency is a restrictive type of consistency, meaning that a CTP might

not be Strongly Consistent but nonetheless can be executed. Nevertheless, since we can

I. TSAMARDINOS, T. VIDAL AND M. E. POLLACK374

employ existing algorithms and systems for determining Strong Consistency it is possible

to build a temporal and conditional planner using those systems. Such a planner performs a

search in the plan space adding appropriate actions, observations and temporal constraints

to resolve the conflicts (threats) in the CNLP style. The consistency of the underlying

temporal constraints in the CTP representing the current plan can then be determined.

6. Weak Consistency

6.1. Weak Consistency Checking

It is easy to design a brute force algorithm for checking Weak Consistency. The task

involves finding a solution to the temporal subproblem Pr(si) for every execution scenario

si. Thus, the two steps of the algorithm are:

1. Find the set of execution scenarios SC.

2. Check the consistency of the non-conditional problem Pr(s), bs 2 SC.

Let us examine a specific example of the above, on the CSTP of Figure 2. The two

projections Pr(A) and Pr(:A) and all the constraints in these two projections are shown in
Figure 4. Consistency can be easily proven in each projection.

We can improve on this algorithm by noticing that Pr(si) ¼ Pr(sj) for every two

equivalent scenarios si and sj. Thus, we only need to select one scenario si from each class

in R of Definition 3.8 and check the consistency of Pr(si). It might even be desirable to

select the minimum execution scenario as the representative of its class. Then the first step

of the algorithm is the problem of finding the set of minimum execution scenarios. We

solve this problem in [22] where we present an algorithm that calculates this set without

explicitly enumerating all possible scenarios. We also prove the complexity result that

Weak CSTP Consistency is co-NP-Complete (see Theorem A.3 in the Appendix).

Figure 4. The projected STPs of Figure 2 for all scenarios. Pr(:A) is shown in the top part and Pr(A) in the

bottom part.

CTP: A NEW CONSTRAINT-BASED FORMALISM 375

Another way to improve the Weak Consistency checking algorithm is to perform the

second step of the algorithm incrementally. For example, when solving the sequence of

problems Pr(s1), Pr(s2), . . . there is often shared computation between problems Pr(si) and

Pr(siþ1). The order of consideration of each Pr(s) highly influences the amount of

computation that can be shared. An algorithm that employs this idea and calculates an

appropriate order of incremental consistent checks for the series of Pr(si) is again

presented in [22] (Chapter 6) for the CSTP case.

6.2. Uses of the Weak Consistency Concept for Planning

If a plan is represented as a weakly consistent CTP that is not also dynamically or strongly

consistent, this means that there is always a non-contingent plan for any set of obser-

vations, but to execute that plan, we must know the observations at the start of execution.

We now suggest a possible use of Weak Consistency for planning purposes, namely in

planning architectures that are based on plan-merging. Examples of such architectures are

Workflow Management Systems [6], PRS [12], the Plan Management Agent [25], and

Autominder [16] to name a few. In these systems, there is a library of plan (or workflow)

schemata, and whenever a new goal arrives, a plan from the plan library is selected and

subsequently merged with the system’s existing commitment structure, i.e. the set of

(partially) instantiated plans which it has already adopted. The plan to be merged in the

context will depend both upon the new goal to satisfy and the current set of commitments.

The conditions set by the latter form a ‘‘scenario’’ for which there should exist a corre-

sponding schedule, which makes Weak Consistency relevant. The plan library may include

a number of different schemata that achieve a given goal G. A CTP can be used to com-

pactly represent all such schemata. For example, if P1 achieves goal G when A is True, and

plan P2 achieves G when :A, then we can build a CTP that simultaneously represents both

P1 and P2 by attaching appropriate labels A and :A on the temporal variables in the plans.

Now assume that P1 and P2 share a large part of their structure and differ only in a few

preparatory steps. It is easy to see that the CTP representation can attach the label True to all

common steps and this way both display the shared structure and remove the redundancy.

As a simple example consider the CTP shown in Figure 5(a), which encodes the four

non-conditional plans in Figure 5(b). (Imagine that label A denotes ‘‘fuel tank empty’’ and

label B denotes ‘‘load over 2000 lbs’’). Not only is the CTP encoding more compact, but

checking its consistency using efficient Weak Consistent checking algorithms will be

faster, by definition, than individually checking the consistency of each of the non-

conditional temporal plans.

7. Dynamic Consistency

7.1. Dynamic Consistency Checking

We now turn to Dynamic Consistency. In order to distinguish between the execution of the

same node in different scenario projections, we use N(x, s) to denote node x in Pr(s). Also,

let us denote with Diffs2(s1) the set {N(�, s1)} of all nodes � in s1 that provide observations

with outcomes that differ from the corresponding ones in s2.

I. TSAMARDINOS, T. VIDAL AND M. E. POLLACK376

To prove Dynamic Consistency of a CTP we need to identify a viable execution strategy

St satisfying the conditions of Definition 4.6. The condition Con(s2, H(x, s1, St (s1))) is

satisfied if and only if at the time N(x, s1) is executed, there is no observation node N(�, s1)
in Diffs2(s1) that has been executed yet; otherwise, we could distinguish between the two

scenarios. This directly translates to the following equation for Con(s2, H(x, s1, St (s1))):

Conðs2;Hðx; s1; Stðs1ÞÞÞ ,
^

Nð�;s1Þ2Diffs2 ðs1Þ
Nðx; s1Þ � Nð�; s1Þ

and similarly for Con(s1, H(x, s2, St (s2)). Thus, we can rewrite the condition in Definition

4.6 as:

f
V

Nð�;s1Þ2Diffs2 ðs1Þ
Nðx; s1Þ � Nð�; s1Þg

W
f

V
Nð�;s2Þ2Diffs1 ðs2Þ

Nðx; s2Þ � Nð�; s2Þg

) Nðx; s1Þ ¼ Nðx; s2Þ ð1Þ

On the left-hand side of the implication, we have simply replaced each of the two Con

conditions from Definition 4.6 with a conjunction over times of observation nodes; the

right-hand side of the implication has remained unchanged.

Figure 5. (A) A CTP encoding four different plan schemata. (B) The non-conditional plan schemata represented

by the CTP in (A).

CTP: A NEW CONSTRAINT-BASED FORMALISM 377

The main idea behind the consistency checking algorithm is to view the above condition

of the definition as a (disjunctive) constraint between nodes N(x, s): These together with

the set of all nodes N(x, s) for every node x and scenario s of the original CTP define a new

temporal problem, namely a DTP D. With this reformulation, an execution strategy St

defines a schedule T of D and vice versa by setting [St(s)](x) ¼ T(N(x, s)). The aim is to

add appropriate constraints to D so that a solution schedule of D will correspond to a

dynamic execution strategy and vice versa. So, in addition to the constraints resulting

from Equation (1), we need to impose on the nodes of D all the constraints in every

projection Pr(s). Then, every solution to D will satisfy both the constraints in each

projection (thereby guaranteeing that the corresponding strategy will be viable), and

the Dynamic Consistency conditions. These ideas lead to the design of the algorithm

in Figure 6, where DC(x, s1, s2) (called a DC constraint) is used as a shorthand of

Equation (1) above.

Let us trace the algorithm on a specific example such as the CSTP of Figure 2 where

O(A) ¼ (obs (road b s)). Line 1 of the algorithm creates a DTP with all the nodes and

edges in the two projections Pr(A) and Pr(:A). The result is shown in Figure 7 (with

Figure 6. The dynamic consistency algorithm.

Figure 7. The DTP created by the Dynamic Consistency algorithm, including Pr(:A) (top part), Pr(A) (bottom

part), and DC constraints between them.

I. TSAMARDINOS, T. VIDAL AND M. E. POLLACK378

some additional constraints explained below). To simplify the equations we renamed the

nodes (go home b)S, (go home b)E, (obs (road b s)), (go b s)S, and (go b s)E as x, y, z, w,

and �. We notice that Diff:A(A) ¼ {N(z, A)} and DiffA(:A) ¼ {N(z, :A)} and so the DC

for Start, DC(Start, A, :A), is

NðStart;AÞ � Nðz;AÞ _ NðStart;:AÞ � Nðz;AÞ
) NðStart;AÞ ¼ NðStart;:AÞ:

Since Start is before z in both cases, N(Start, A) ¼ N(Start, :A). Similarly, we find that

N(x, A) ¼ N(x, :A), N(y, A) ¼ N(y, :A), and N(z, A) ¼ N(z, :A). For nodes w and � the

antecedent of the DC implication is always False (they occur after z in both scenarios) and

so the DC constraint is already satisfied. The result after adding all the DC constraints in

Line 4 of the algorithm is shown in Figure 7. The resulting DTP is actually an STP and it is

inconsistent, indicating that the original CTP is not Dynamically Consistent.

Suppose instead that the constraints ordering z after y are dropped and z can now be

executed any time after Start. In particular, other constraints permitting, it could be

scheduled before x and y. Then, the DC constraint for x specifies that either x occurs before

z in which case N(x, A) ¼ N(x, :A), or it occurs after z in both scenarios. Thus, the DC

constraints are disjunctive in general (recall that a) b is equivalent to :a _ b). In the case

where z is allowed to be executed before x and y the CTP is Dynamically Consistent.

Semantically this corresponds to the case where we observe whether the road from b to s is

open before we leave home. In that case, we can decide when to start the trip for each

different scenario.

Notice that in Equation (1) if the observation nodes in all scenarios are constrained to be

ordered with respect to each other, then the conjunctions over all N(�, si) 2 Diffsj(si) can be

substituted with the single minimum of the order. Then Equation (1) becomes

Nðx; s1Þ � Nðn; s1Þ _ Nðx; s2Þ � Nðm; s2Þ) Nðx; s1Þ ¼ Nðx; s2Þ ð2Þ

n and m being the nodes for which N(n, s1), N(m, s2) are minimum in the order of the

nodes in Diffs2(s1) and Diffs1(s2) respectively. In general, observation nodes that are

constrained to be scheduled after others in the sets Diffs2(s1) and Diffs1(s2) are ruled out

of the conjunctions in Equation (1).

A more complicated example is shown in Figure 8 where two observation nodes

O(A) ¼ x and O(B) ¼ y are unordered with each other so Equation (1) cannot be

simplified to the form of Equation (2). Let us consider node x and scenarios s1 ¼ AB and

s2 ¼ A:B. Then, Diffs2(s1) ¼ {N(y, s1)} while Diffs1(s2) ¼ {N(y, s2)}. Thus, DC(x, s1, s2)

is the constraint N(x, s1) � N(y, s2) _ N(x, s2) � N(y, s2)) N(x, s1) ¼ N(x, s2). If

we decide to perform the observation for A first, i.e. x < y, then DC(x, s1, s2) becomes

N(x, s1) ¼ N(x, s2). The resulting STP is shown in Figure 9(a). In the other case (where

we defer the observation of A) we end up with the STP in Figure 9(b) where there is

no constraint between N(x, s1) and N(x, s2). Since the observations are unordered, the

DC constraints are disjunctive and represent in a DTP both of these alternative STPs of (a)

and (b). The original CTP is Dynamically Consistent, if and only if one of these

alternatives is consistent.

It is important to note that we reduced the consistency checking problem to a DTP

because DTPs can represent n-ary disjunctive constraints. TCSPs and STPs do not allow

CTP: A NEW CONSTRAINT-BASED FORMALISM 379

this, and thus would not satisfy our requirements. Constraints of this type are typical of

Dynamic Consistency in CTPs and make the problem intractable in general. This contrasts

with Dynamic Controllability in STPUs in which constraints can be reduced to simple STP

constraints, hence allowing the design of polynomial-time solution algorithms. Thus, DTP

solving algorithms such as Epilitis [22], which include a number of highly effective

heuristic pruning techniques, will have a direct effect on Dynamic Consistency checking in

CTPs.

Figure 8. A CTP with two observation nodes unordered with respect to each other.

Figure 9. The STP projections with DC constraints for each order of observations. Directed edges are assumed

[0, 1] and undirected edges denote [0, 0] constraints.

I. TSAMARDINOS, T. VIDAL AND M. E. POLLACK380

Regarding the complexity of the DTP D, notice that D contains O(|V | |SC|) variables,

where V is the set of variables in the CTP and SC the set of (minimal) scenarios whose

number is in the worst case exponential to the number of propositions |P|. In the worst case

the constraints are disjunctive and, when put in Conjunctive Normal Form, may create an

exponential number of disjunctive clauses. Nevertheless, some structural properties of the

CTP help in reducing the complexity.

First, as we have noted above, when the observation nodes are ordered with respect to

each other in every scenario, the DC constraints are given by Equation (2), which is a great

simplification over Equation (1). Additionally, if each node is ordered with respect to

every observation node in all scenarios, then the antecedent of each DC constraint can be

statically checked. In this case, the DC constraint either becomes N(x, s1) ¼ N(x, s2) or it is

already satisfied. For instance a CSTP can then be made equivalent to a larger STP, since

no disjunctive constraints are added to the problem, which allows very efficient Dynamic

Consistency checking.

7.2. Uses of Dynamic Consistency Concept for Planning

Dynamic Consistency checking can be used to build a temporal and conditional planner. It

is easy to see that by appropriately modifying the CNLP algorithm [15] it is possible to

allow the simultaneous representation of and reasoning with quantitative temporal

constraints and conditional branches. When a temporal constraint x < y is added to the

CTP representing the conditional plan (e.g. to resolve a conflict), the Dynamic Consist-

ency algorithm can determine whether the resulting plan is executable. Moreover, this

notion of ‘‘executable’’ goes beyond that of traditional planning systems, because it allows

for observations to be made at execution time in plans in which timing constraints depend

on observation outcomes. Dynamic Consistency checking can also support the merging of

such richly expressive plans at execution time, e.g. to handle new goals that arise during

execution [22] (Chapter 7).

In order to execute a Dynamically Consistent plan we can instead execute the DTP D to

which we reduced the problem. Notice that we should execute only one node N(x, si) for

every scenario si since all such nodes semantically correspond to the same event and the

same CTP node. Of course, the algorithm guarantees thatN(x, si)¼N(x, sj) in all appropriate

cases and avoids confusion. We can identify at least three ways D can be executed: (i) We

compute a solution toD and execute that. This is the least flexible approach since it commits

to a specific schedule (solution) of D. (ii) We find and flexibly execute a consistent compo-

nent STP of D. Consistent components STPs are returned by DTP solvers such as Epilitis

[22] and can be flexibly executed with algorithms such as in [23]. (iii) We flexibly execute

the DTP directly, retaining all possible scheduling flexibility, using the algorithm in [24].

Finally, we note that because typical conditional plans satisfy both of the conditions

mentioned at the end of the previous subsection, the performance of the DC algorithm

during plan construction and merging is likely to be higher than in the general case. In

addition, conditional planners generate plans where the number of distinct execution

scenarios is linear in the number of propositions. We suspect that in this case the Dynamic

Consistency algorithm we presented is actually polynomial in the number of original CTP

variables and propositions [22] (Chapter 6). We intend to formalize these ideas on

performance improvements in our future work.

CTP: A NEW CONSTRAINT-BASED FORMALISM 381

8. Improved Conditional Planning

In the previous section, we noted that by using a Dynamic Consistency algorithm, one can

extend traditional conditional planners to support quantitative temporal constraints. It is

essential to manage those constraints; if they are ignored, then the planner risks generating

incorrect plans. For instance, a CNLP-style planner would generate a conditional plan for

our skiing example if it simply ignored the two additional temporal constraints (either arrive

at Snowbird after 1 p.m., or else arrive at point C on the way to Park City before 11 a.m.).

But such a plan would be useless, because, as we have already seen, given the temporal

constraints the plan is dynamically inconsistent and there is no way of executing it.

Of course, the traditional conditional planners [14, 15, 17] were not designed to deal with

quantitative temporal constraints. But they do perform a limited form of temporal reasoning,

in order to deal with ordering constraints, and it turns out that even for plans with only

ordering constraints, there are clear advantages to using the dynamic consistency approach.

CNLP propagates context information only along causal links and conditioning links,

but not along ordering constraints. We assume that this choice was made so that if a step x

with context True is promoted after a step y of context A, then the context of x remains

True and so x can be reused to provide causal links to steps in other contexts, thereby

potentially reducing the amount of planning required and resulting in smaller plans.

Nevertheless, this method might reject valid (i.e. executable) plans. An example is

shown in Figure 10(a). The bold edges correspond to causal links, and the lighter edges

Figure 10. (a) A CNLP plan whose handling by CNLP reasoning falsely induces that s is necessarily before z.

(b) The two projections of the plan: z is allowed before s in both.

I. TSAMARDINOS, T. VIDAL AND M. E. POLLACK382

denote ordering constraints added by threat resolution. We suppose that step � clobbers

both the causal link t ! u and the causal link x ! y; hence � has been promoted and

demoted respectively to resolve the conficts. We further suppose that z clobbers the latter

causal link and has been promoted after y.

When CNLP checks whether an ordering constraint exists between a pair of nodes s and

z, it essentially computes the transitive closure and determines whether s < z holds. Since

the context information is ignored in this calculation, CNLP essentially calculates Strong

Consistency of the induced CTP. However, in Figure 10(b) the two projections of the plan

are shown, and it is easy to see that s and z are actually unordered with respect to each

other.

As already mentioned in Section 5, Strong Consistency is a restrictive type of

consistency and plans that are executable (i.e. Dynamically Consistent) might not be

Strongly Consistent. Thus, CNLP is not complete and it might reject valid plans, unlike

what is conjectured in the original CNLP paper. In the above example, if z is ordered

before s and this is the only valid plan, CNLP will reject it as inconsistent even though it is

Dynamically Consistent (assuming A is observed before this portion of the plan).

9. Related Approaches and Conclusions

As far as we know only two approaches might be compared to our work. The first, a paper

by Schwalb et al. [19], separates propositional and temporal reasoning, addressing ex-

pressive propositional and temporal constraints, to process deduction and hypothetical

reasoning on knowledge bases. The authors define a ‘‘Conditional Temporal Network’’

model, in which some constraints are dependent on a condition and are only used if that

condition is True. The aim is to make queries in the base such as ‘‘is formula F consistent

with the current constraints?’’ Although such a model may be seen as a general logical

framework for doing conditional temporal reasoning, it is insufficient for our purpose for

two reasons. First, the approach is static and does not deal with the dynamic aspects of

plan execution: the time at which a condition is known to be True or False is not con-

sidered, which for planning purposes is crucial. Second, unlike Weak Consistency, which

determines whether all scenarios are consistent, they determine whether there is at least

one consistent scenario. This is sufficient when processing queries on a knowledge base,

when one interpretation is searched for, but in our planning context that would only mean

there exists one unique scenario in which the plan will not fail.

The second and more interesting paper is that of Barber [2], which combines

quantitative temporal constraints and alternative contexts in a kind of networks that we

will call BarN.4 Barber defines a temporal problem where constraints (instead of nodes)

are annotated with a label (in his terminology a context). Consistency in a BarN

corresponds to Weak Consistency in a CTP.

A primary difference between BarNs and CTPs is thus that the former is based on

conditional constraints while the latter is based on conditional events. In the Appendix

(Theorem A.4) we show that we can use the latter to represent the former and thus our

formalism is at least as general as Barber’s. Because contexts in BarNs are associated with

labels, not nodes, the translation from conditional planning is not as clear as with CTPs,

which very naturally associate an observation with a node and attach appropriate labels to

CTP: A NEW CONSTRAINT-BASED FORMALISM 383

subsequent nodes. CTPs can then readily check various forms of consistency, using the

techniques described earlier. In contrast, with a BarN representation, the planner has to

construct the context hierarchy itself given the observations. Perhaps the most important

ramification of this implicit treatment of observations is that the notion of Dynamic

Consistency cannot be defined for BarNs. This is because the truth value of the contexts is

not associated with a particular time-point.

Unlike BarNs, our new Conditional Temporal Problem formalism is geared towards

planning and execution purposes. It is a constraint-based formalism for temporal reasoning

in the face of uncertain–or contingent–events, and we have described its usefulness for

conditional planning. There are many avenues for future research, of which we highlight a

few. CTPs deal with temporal uncertainty arising from the outcome of observations, while

STPUs handle uncertainty regarding the timing of uncontrollable events. Obviously, a

hybrid model and algorithms that handle both sources of uncertainty would be highly

desirable. We are also working on identifying minimal structural requirements for CTPs

that will enable polynomial-time Dynamic Consistency algorithms. In parallel, we are also

investigating efficient Weak Consistency algorithms.

Acknowledgments

Work on this project by the first and third authors has been partially supported by the

United States Air Force Office of Scientific Research (F49620-01-1-0066), by the Defense

Advanced Research Projects Agency (DARPA) and Air Force Research Office, Air Force

Materiel Command, USAF (F30602-00-2-0621), by the National Science Foundation

(IIS-0085796), and by Andrew Mellon Predoctoral Fellowship. The views and con-

clusions herein are those of the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either expressed or implied, of AFOSR,

DARPA, AFRL, or the U.S. Government. We would also like the anonymous reviewers for

their constructive comments.

Appendix

Theorem A.1 Any complete assignment to the propositions in P is an execution scenario.

Proof: Let s be a complete truth-assignment to the propositions in P, l be a label and p1 . . . pn be the

propositions that appear in l (either positive or negated). The set of pi will also appear in s since s is complete. If

any pi appears with different sign in s and l then s and l are inconsistent. Otherwise, if all pi appear with the same

sign in s and l then s subsumes l. So, every node, no matter what its label is, will either belong to V1 or V2 in

Definition 3.6. 5

Theorem A.2 A CTP < V, L, E, OV, O, P > is Strongly Consistent if and only if the (non-conditional) temporal

problem < V, E > is consistent.

Proof: The theorem states that we can determine Strong Consistency by ignoring the label and the observation

information of the nodes in the CTP and just calculate consistency as we would for an STP, TCSP, or DTP

depending on the kind of constraints in E.

I. TSAMARDINOS, T. VIDAL AND M. E. POLLACK384

‘‘(’’ Suppose that the CTP is Strongly Consistent. Then we will show that the temporal problem < V, E > is

also consistent. Let T be a schedule of all nodes, such that T(x) ¼ [St(si)](x), where si some scenario where x is

executed. T(x) is a function because (i) x appears in at least one scenario (or it can be removed from the CTP), and

(ii) a Strong execution strategy specifies a unique value to every [St(si)](x) for all scenarios si where x appears.

Because St is viable, T satisfies the constraints in all Pr(si) ¼ < Vi, Ei >, for every scenario si. Since T satisfies the

constraints in every set Ei it satisfies the constraints in their union [iEi ¼ E. Thus, T is a solution to < V, E > and

so the latter is consistent.

‘‘)’’ Suppose that the temporal problem< V, E> is consistent; we will prove that the CTP< V, E, L,OV,O, P>
is Strongly Consistent. Let T be any solution of < V, E > (it has to have at least one since it is consistent). For

every si, T is also a solution of Pr(si) ¼ < Vi, Ei > (ignoring any irrelevant assignments T(x) where x does

not appear in Vi) since Ei
 E. The execution strategy St (si) ¼ T is viable (since T is a solution to every Pr(si) ¼
< Vi, Ei >) and also [St(si)](x) ¼ [St(sj)](x) ¼ T(x), bx as the definition of Strong Consistency requires. 5

Theorem A.3 Weak CSTP Consistency checking is co-NP-complete.

Proof: We will prove the result by translating in polynomial time and space a SAT problem to the co-problem

of checking Weak Consistency, the co-problem being finding a scenario si such that Pr(si) is inconsistent.

Specifically, we will create a CSTP given a SAT problem such that the SAT problem has a solution, if and only if

there is a scenario si such that Pr(si) is inconsistent.

Given the SAT problem with Boolean variables B ¼ {x, . . . , y} and clauses of the form Ci ¼ (x _ . . . _ y _
:z . . . :w), i ¼ 1 . . . K we create a CSTP < V, E, L, ON, O, P > as follows: The set of propositions is P ¼
B ¼ {x, . . . , y}. For each clause Ci ¼ (x _ . . . _ y _ :z _ . . . _ :w) and each variable appearance x or :x in

Ci we create a time-point X that we include in V, with label L(X) ¼ x or L(X) ¼ :x respectively. Let us denote
with Clause(Ci) the nodes of the CSTP that were included because of Ci. Since we are checking for Weak

Consistency it does not matter which nodes are observation nodes. The last thing to define are the constraints

between the nodes. There is an constraint between a variable X 2 Clause(Ci) to each variable Y with consistent

label in Clause(C(iþ1)modK): Y � X ¼ �1 (we will drop the modK clause in the rest of the proof for clarity; just

remember that the nodes in the last Clause(Ci) are connected to the nodes in the first Clause(C1)). The

translation is obviously linear in the number of SAT variables and linear in the number of clauses of the SAT

problem.

Figure 11 illustrates the proof concept. It presents an example, by showing the resulting CSTP from the SAT

problem (x _ y _ z) ^ (x _ :y _ z) ^ (:x _ :y _ :z) ^ (:y _ z). The labels of each node appear on its top right

corner. Notice that there are three propositions in the CSTP for the three SAT variables x, y, z that appear in

the labels, either as positive or negative literals, and eleven CSTP nodes one for each appearance of a variable

in any clause. The nodes in the CSTP are arranged in columns corresponding to Clause(Ci), i ¼ 1 . . . 4 and

are named with the variable of the corresponding proposition and the index i. The edges are connected from a

node in Clause(Ci) to all the nodes in Clause(Ciþ1). The order of appearance of clauses in the SAT problem is

arbitrary. Also recall that all the edges from a node X to a node Y correspond to the constraint Y � X ¼ �1 not

Figure 11. The CSTP resulting from translating a simple example TSAT problem.

CTP: A NEW CONSTRAINT-BASED FORMALISM 385

shown in the figure for clarity. Notice also that there are no edges between nodes with inconsistent labels, e.g. x

and :x.
Let us assume that the SAT problem has a solution {x ¼ True, . . . , y ¼ True, z ¼ False, . . . , w ¼ False}.

Since this solution makes True at least one variable in a clause, it will make True the label of at least one CSTP

time-point within Clause(Ci). We will call a time-point whose label becomes True in Clause(Ci) Li (there may be

more than one). Notice that each Li has to have an edge to Liþ1 because it cannot be the case that Li has a label x

and Liþ1 a label :x by the way the SAT solution is constructed (it never assigned x both True and False at the

same time). Thus the set {Li, i ¼ 1 . . . K} forms a negative cycle (with weight (�1) � K). There must be at least

one scenario s that makes all the nodes in {Li, i ¼ 1 . . . K} True. Namely, let s be the complete scenario that

corresponds to the SAT solution (s is a scenario by Theorem 3.1). In other words, Pr(s) is an inconsistent

projected STP. In the above example, the SAT solution {x ¼ True, y ¼ False, z ¼ True} makes the labels of the

CSTP nodes x1, x2, y2, y3, y4, z1, z2, and z4 True and all the rest False. The former set forms at least one negative

cycle, e.g. {x1, x2, y3, z4}. This completes the proof that if the SAT problem has a solution, the CSTP is not

Weakly Consistent.

We will now prove the converse, namely that if the SAT problem has no solution, then the CSTP is Weakly

Consistent. Take any complete assignment to the SAT variables. Any such assignment also corresponds to a

scenario of the CSTP (by Theorem 3.1). If SAT has no solution, for every such assignment/complete scenario s

there is at least one clause Ci that is not True, or in other words, all the SAT literals of Ci have to be False too.

Thus, all the time-points of Clause(Ci) are inconsistent (not executed) under scenario s. But, by the way the CSTP

is constructed, every cycle (negative or not) has to go through all clauses. Since no time-point in Clause(Ci)

becomes True under s, there can be no negative cycle in Pr(s) for any scenario s.

The above argument shows that checking Weak CSTP Consistency is co-NP-hard. Since checking if an STP

is consistent is a polynomial problem, co-Weak Consistency is also in co-NP and thus the problem is co-

NP-complete. 5

Theorem A.4 Every (conditional) constraint of the form l1 � x1 � y1 � u1 _ . . . _ lk � xk � yk � uk that

should hold only when label l is True, can be represented with only conditional events.

Proof: For any constraint that we want to represent of the form l1 � x � y � u1 _ l2 � s � t � u2 with

condition (label) l, we create the dummy nodes w, z, u, � all having label l. We then insert constraints requiring

that the pairs of time-points {x, w}, { y, z}, {s, u}, and {t, �} co-occur (e.g. 0 � x � w � 0), and we also add

the (unconditional) constraint l1 � w � z � u1 _ l2 � u � � � u2. This way when l is True, nodes w, z, u and �

will be executed and, because they co-occur, the original (conditional) constraint on nodes x, y, s and t will be

imposed. 5

Notes

1. Note that this is true despite the fact that DTPs do not include negated literals, because :cij : l � x � y � u

can always be rewritten as x � y < l _ x � y > u, approximated as close as desired by x � y � l � � _ x �
y � u þ �.

2. If the action has temporal duration, the model includes two nodes for every action: one that denotes the time at

which execution of the action begins, and another that denotes the time at which it ends.

3. We point out that our consistency definitions and algorithms would still be valid had we defined labels as any

propositional formula on P*. We chose to restrict labels to conjunctions only for illustration purposes. Also,

note that although they are symmetric, both disjuncts Con(s2, H(x, s1, St(s1)) and Con(s1, H(x, s2, St(s2))) are

required for the definition to cover only the set of plans that are actually executable. Here is an example that

shows that using only one of the disjuncts is not enough. Consider the CTP with nodes x, y, z, w, L(z) ¼ A,

L(w)¼ :A, L(x)¼ L(y)¼ True, and O(A)¼ y, and constraints x� y 2 [�5, 5], z� y¼ 5, w� y ¼ 15, z� x ¼
10, and w � x ¼ 10. If A is True, only the schedule T1(x) ¼ 0, T1(y) ¼ 5, and T1(z) ¼ 10 and all of its

translations T1 þ t are consistent. If A is False, only the schedule T2(y) ¼ 0, T2(x) ¼ 5, and T2(w) ¼ 15 and all

of its translations are consistent. T1 and T2 define the execution strategy St with St(A) ¼ T1 and St(:A) ¼ T2.

The CTP is obviously not dynamically consistent since we need to know the value of A before execution in

order to decide whether we should follow T1 or T2, but A is known only after x has been executed in T1.

I. TSAMARDINOS, T. VIDAL AND M. E. POLLACK386

However, H(x, :A, T2) ¼ :A and so :Con(A, H(x, :A, T2)). If only this disjunct was used in the definition, the
antecedent of the implication would be False, and the constraint always satisfied and thus St would satisfy the

definition, falsely implying the CTP is dynamically consistent.

4. BarN denotes Barber Networks.

References

1. Armando, A., Castellini, C., & Giunchiglia, E. (1999). SAT-based procedures for temporal reasoning. In 5th

European Conference on Planning (ECP-99).

2. Barber, F. (2000). Reasoning on interval and point-based disjunctive metric constraints in temporal contexts.

Journal of Artificial Intelligence Research, 12: 35–86.

3. Bessiere, C. (1999). Non-binary constraints. In Principles and Practice of Constraint Programming (CP’99).

Springer, Alexandria, Virginia, USA.

4. Chleq, N. (1995). Efficient algorithms for networks of quantitative temporal constraints. In Proceedings of

the Workshop CONSTRAINTS’95, pages 40–45.

5. Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artificial Intelligence, 49:

61–95.

6. Georgakopoulos, D., Hornick, M., & Sheth, A. (1995). An overview of workflow management: from pro-

cess modeling to workflow autonomation infastructure. Distributed and Parallel Databases, 3: 119–153.

7. Goldman, R. P., & Boddy, M. S. (1996). Expressive planning and explicit knowledge. In Proceedings of the

3rd International Conference on Artificial Intelligence Planning Systems, pages 110–117.

8. Laborie, P., & Ghallab, M. (1995). Planning with sharable constraints. In Proceedings of the 14th Interna-

tional Joint Conference on A.I. (IJCAI-95), pages 1643–1649.

9. Mackworth, A., & Freuder, E. (1985). The complexity of some polynomial network consistency algorithms

for constraint satisfaction problems. Artificial Intelligence, 25(1): 65–74.

10. Morris, P., Muscettola, N., & Vidal, T. (2001). Dynamic control of plans with temporal uncertainty. In

Proceedings of the 17th International Joint Conference on A.I. (IJCAI-01), pages 494–499.

11. Muscettola, N., Nayak, P. P., Pell, B., & Williams, B. C. (1998). Remote agent: to boldly go where no AI

system has gone before. Artificial Intellience, 103: 5–47.

12. Myers, K. L. (1997). Procedural reasoning system: user’s guide. Technical report, SRI International.

13. Oddi, A., & Cesta, A. (2000). Incremental forward checking for the disjunctive temporal problem. In

European Conference on Artificial Intelligence (ECAI-2002).

14. Onder, N., & Pollack, M. E. (1999). Conditional, probabilistic planning: a unifying algorithm and effective

search control mechanisms. In Proceedings of the 16th National Conference on Artificial Intelligence, pages

577–584.

15. Peot, M., & Smith, D. E. (1992). Conditional nonlinear planning. In Proceedings of the First International

Conference on AI Planning Systems (AIPS-92), pages 189–197. College Park, MD.

16. Pollack, M. E., McCarthy, C., Ramakrishnan, S., Tsamardinos, I., Brown, L., Carrion, S., Colbry, D., Orosz,

C., & Peintner, B. (2002). Autominder: a planning, monitoring, and reminding assistive agent. In 7th

International Conference on Intelligent Autonomous Systems, pages 265–272.

17. Pryor, L., & Collins, G. (1996). Planning for contingencies: a decision-based approach. Journal of Artificial

Intelligence Research, 4: 287–339.

18. Schwalb, E., & Dechter, R. (1997). Processing disjunctions in temporal constraint networks. Artificial

Intelligence, 93: 29–61.

19. Schwalb, E., Kask, K., & Dechter, R. (1994). Temporal reasoning with constraints on fluents and events. In

Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94), Vol. 2, pages 1067–1072.

AAAI Press/MIT Press, Seattle, Washington, USA.

20. Smith, D., Frank, J., & Jónsson, A. (2000). Bridging the gap between planning and scheduling. Knowledge

Engineering Review, 15: 61–94.

21. Stergiou, K., & Koubarakis, M. (2000). Backtracking algorithms for disjunctions of temporal constraints.

Artificial Intelligence, 120: 81–117.

22. Tsamardinos, I., (2001). Constrained-Based Temporal Reasoning Algorithms with Applications to Planning.

Ph.D. thesis, University of Pittsburgh, PA.

CTP: A NEW CONSTRAINT-BASED FORMALISM 387

23. Tsamardinos, I., Morris, P., & Muscettola, N. (1998). Fast transformation of temporal plans for efficient

execution. In Proceedings of the 15th National Conference on Artificial Intelligence, pages 254–261.

24. Tsamardinos, I., Pollack, M. E., & Ganchev, P. (2001). Flexible dispatch of disjunctive plans. In 6th Euro-

pean Conference in Planning, pages 417–422.

25. Tsamardinos, I., Pollack, M. E., & Horty, J. F. (2000). Merging plans with quantitative temporal constraints,

temporally extended actions, and conditional branches. In Proceedings of the 5th International Conference

on Artificial Intelligence Planning and Scheduling, pages 264–272.

26. Vidal, T., & Fargier, H. (1999). Handling contingency in temporal constraint networks: from consistency to

controllabilities. Journal of Experimental & Theoretical Artificial Intelligence, 11: 23–45.

I. TSAMARDINOS, T. VIDAL AND M. E. POLLACK388

