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o(r, ) = wN(zr, Q)
o'(zx, 9) = ' (z, Q)

\E(E) Q) = CD(_E) Q)"(D'(E) Q)

— —

NOMENCLATURE

A vector indicating a position in space.
A vector of unit length with the direction of r.

A unit vector indicating the direction of motion
of a neutron.

The average speed of a neutron population in
thermal equilibrium with its surrounding.

The number of neutrons in a volume dr about point
r with directions of motion in solid angle d
about { before the detector is put in place.

The: number -of neutrons in a volume dr about point
r with directions of motion in solid angle df
about () after the detector is put in place.

This quantity will be called the angular flux, or
simply flux, before the detector is put in place.

This quantity will be called the angular flux, or
simply flux, after the detector is put in place.

This quantity will be called the angular differ-
ence flux, or simply the difference flux.

This quantity will be called the scalar flux

before the detector is put in place.

This quantity will be called the scalar flux after
the detector is put in place.

This quantity will be called the scalar difference
flux.

D when the detector is considered.

0 or not present when the surrounding medium 1s

considered.

The probability of an absorption collision per

centimeter of path length, for small paths.

The probability of a scattering collision per
centimeter of path length, for small paths.

ix



NOMENCIATURE (CON'T)

% The probability of any type of a collision
occurring per centimeter of path length, for
small paths.

S(r, Q) drd® ' The number of neutrons being supplied to
volume element dr about r with direction of
motion in solid angle as ~about ) due to
scattering from higher energies “per second

cs(w - Q) a The probability per centimeter per nucleus per
square cubic centimeter that a neutron having
suffered a scattering collision while traveling
in direction w will be scattered into solid
angle d§) about Q.

S (o -0) = o (w-0)x Atomic density.

The following Green's functions denoted by G are all for an
infinite homogeneous scattering and absorbing medium.

G(E‘, Q' -, Q) drdQ The speed v times the number of neutrons in
- dr sbout r with directions of motion in df
about O due to a source of neutrons of speed
v at p01nt r' which emits one neutron per
second in direction Q'.

6z >z, 2) =fG(£',9—>£:9.) an’
& The speed v times the number of neutrons in
dr sbout r with direction of motion in dQ
about Q due to a source of neutrons of speed
v at point r' isotropically emitting b
neutrons per second.

G(z', 9" >1) =fG(r_',9_' -1,0) 40

& The speed v times the number of neutrons in
dr about r due to a source of neutrons of
speed v at point r emitting one neutron per
second in direction Ql.

o »x) = [olrg )

The speed v times the number of neutrons in
dr about r due to a source of b isotropic
neutrons of speed v per second at point r'.



NOMENCLATURE (CON'T)

The following, denoted by a script.éy, is the Green's function
for an infinite homogeneous medium where all collisions result in removal

from the population.

f (z', 9" 5r, )ardg

a;b|c|z
Fo(K, ) = fe‘ZtXJa
x=0
Ja(Z)
Ty (@

The neutron speed v times the number of neutrons
in dr with directions of motion in 40 about Q due
to a source emitting one neutron per “second at
polnt r! in direction Q'in an infinite purely
absorbing medium,

The Hypergeometric function, discussed Appendix
I, Part 2,

A special function discussed in Appendix I, Part 2,

The spherical Bessel function, discussed in
Appendix I, Part 3,

The spherical harmonic function, discussed in
Appendix I, Part L,

xi



INTRODUCTION

When & thermal neutren absorber 1s used to measure a thermal
neutron density, the extent to which the detector disturbs the neutron den-
sity must be considered. One methed for investigating this problem is to
derive an snalytical expression which relates the neutrbn population which
exists when a detecﬁor is present to the population when a detector is not
present. Then the effect on this expression of such quantitiés as detector
composition, detector geometry, composition of the surrounding medium, and
many others may be investigated.

In deriving the expression relating the steady state detector
absorption and the unpérturbed neutron population there are no restrictive
assumptions. In adapting the problem for a numerical solution the number of
assumptions has been kept as small as possible while still allowing the prob-
lem t0 be handled on a large digital computer. There are two general re-
strictive assumptions which are made throughout this paper. First, the
nevtron énergy spectrum in and around the detector is assumed to be inde-
pendent of position and to be the same energy spectrum that exlsts when the
detector is not present. Second, it ie assumed that the detector 1s located
in & largevhomogeneous medium. Further, the detector is assumed to be
several mean free paths fram any boundaries of the medium,

There are seéveral features which are built into the analytical
relationship between the detector activation and the unperturbed neutron

density. These features which are investigated for the first time are:

-lo
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1. The initial unperturbed neutron density is allowed to be
non<isotropic in angular distribution, Thils implies that the
initial neutron density i1s non-uniform in space,

2, The scatter of thermal neutrons 1s allowed to be non~isotrople
in the laberatory coordinate system,

3. The detector may have up to three independent dimensions and
it may be of any arbitrary slze and shape,

L, Isotropic scatter in the laboratory coordinate system of
thermal neutrons by the detector is allewed,

5, The neutron density at points inside and outside the detector

1s avallable as a result of the calculation,



CHAPTER I

FORMULATION OF THE PROBLEM

The time independent neutron transport equation is assumed to be
applicable to the neutron population both before and after the neutron
detector is in place, It will be assumed that the thermal neutron energy
spectrum is independent of position both before and after the detector is put
in place, The energy dependence of the transport equation can now be inte=
grated out and all cross~sections will be average cross sections, averaged
over the neutron spectrum,

Define N(r, 0)drdQ = number of neutrons in unit volume dr about
r with directions of motion in dQ about Q. Let v = average thermal neutron
speed in centimeters per second, Define o(r, Q)= v N(r, @) and call it
angular flux or simply flux,

Let the neutron flux before the detector is put in place be called
@(3, Q) and the neutron flux after the detector 1s put in place be called

o'(r, Q) o Finally define a difference flux as
V(g @) =0(, 2 -0 (z 0

This difference flux is not necessarily small compared to ¢ (r, Q) . The
transport equation which ¢ (r, ) must satisfy before the detector is put

in place is:

0-vo( Q)+th>(_r;,_§g)-f® (£, ©) T, (0-9) d

w

= 8 (I‘, Q) ) (l)
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8 (r, Q) = source of thermal neutrons due to slowing down of

neutrons,

The transport equation which @f (g, Q) must satisfy after the

detector is present is:

2-vo (z 9) +[Zt-A<Zt-ZE)] o (z, O - (2)

Qf ot (z, o) [Zs (@ - 2)-4 {Z‘s (@ - 9) o (@ - Q)Hdm
=5 (z, ﬂ>~{s (z, 9)"(z, 9)]

Where the superscript D indicates detector and no superscript indicates

surrounding medium,

A = 0 when r 1s outside Detector
1 when r is inside Detector

By subtracting one transport equation from the other and introducing the

difference flux notation one obtains:

— — — —

8 VY (5 D)+ T Y (0 - Y

w

Q) ZS (w - Q) do

8 (CE) ¥ (@ 0) -8 C-Do (e, 0 - (3)

A f@ (z, 9_>>[ZS(9—>§) - sz) <9~»Q>] do -
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- AfT (z, @) [ZS(O_HQ) - 22@%@} de -

w

D
olsmn-P e |
Now define the Green's function G(r', Q' ¥>£, Q) as the solution to Equation (k).

Qvo(r, 8 -, 0) + Iy 6z, 2 -, 0) -

(%)

- [t g on 0) 5 @ 0) @ = () s(a0)

w

Where & is the Dirac delta function.

The function G(r', Q' -, 2) can be given a physical meaning.

G(E‘, Q' -»r, g) drdQ is the number of neutrons in dr about r with directions
of motion in dQ about Q times the average speed v, due to a source located at
point r' emitting one neutron per second in direction Q' into an infinite
homogeneous medium of total cross-section 2, and scattering cross-section
Tg(w - Q) dQ. Where og(w —» Q) dQ is the differential scattering cross-section
in the laboratory system and Z (w »Q) = o5(w > Q) x the atomic density.

Using the general properties of Green's functions Equation (2) can

be converted into an integral equation:

Y(r,0) = (£-5) [ o, e)c(z, -z 0)daw

EAFIN (5)

+ (2 - 22) f ¥ (r', 9') G (r', 2" >r, 2) dr'aQ' +



+ f G (z'y 8" >r,y 9) f o (z') @) [Zs (2 S 0)-Z (999')}5@5'@

! t
rtyQ @

- Jotety 2on, 0 [y 0] B+ 002 (0 90 ] asmran

12 t
rty8 @

+Jo ooz 0fse, 295", 0
r',a!

From this point on it will be understood that all spatial inte~
grations over vectors r, r' etc. are limited to integration over the detecor
volume,

Conversion of the differential-integral Equation (2)to the integral
Equation 5 by means of the Green's function has effectively separated the
problem into two separate problems, The first problem is that of formulating
the Green's function in some useable form, The second problem is that of
carrying -out the spatial integrations over the detector volume,

Equation 5 will now be converted to an iterative equation by merely

appendingvsubscripts to the ¥ (r, Q) terms,

) = (Zi - Z%)\/p©(£'y anezt, o ;’E: £) dr'dg
rty o

\En (Eﬁ ‘(_2

D ,
P - D) e 9 6 @, aox, 0) arag +

Ekv’Qs



Jow, 2 o5, 0 foe, 85 @92 (@9 wire

rha ®

- Jetw, aon 9 [ 6 93){28(9 59T, (@ 4»9)] dudr tag!

1 '
r',0 w

+fG(£', 2 >z, 2>[S(£', 28"z, 9')] ar 'ag’
r',a!

Any initial guess for YO(E, Q) can be used in Equation (6) to

generate a series of functions Y, (3, Q) for n > 0, Further, as n goes

to infinity ¥, (r, Q) -will approach ¥ (r, 0) the solution of Equation (5).

The proof of this convergence 1s discussed in Appendix III,

Apparently no analytic expression for the Green's function

G (r'y ' -»r, Q) is known, however the somewhat less complex Green's

function G (5'—y£, Q) has been expressed in analytical form, Where

¢t oz 9= [o(, 2o, 0 ap (7)
Ql

G (r' »r, Q) satisfies the equation which is obtained by integrating

Equation (4) over all & .

as

In appendix T it is shown that G (Efa—ag, Q) can be expressed

b=a
con®=) G-y @ ) %@ Q
a=0

b==a



o]
ija (Kx) e~z% X ax
o]
gf o (KR) x =0
T Zs '
-1
K=0 1- —— tan X

K T
- The function Eé (|R|) will clearly depend upon |R| and upon the
ifgﬁzgéiés ;f gﬂé ééternal medium, Except for the assymptotic limits the
function Ea ([R]) has not been expressed in a simple analytical form, how-
ever a numerical evaluation is coded for the IBM 704. Details of the
numerical evaluation are given in Appendix I, Thus G, ([R|) may be

considered a known function of R once the external medium has been specified.

Using the reciprocity theorem it is easily shown that

G (r', 2'-»r) =G (r »r',-0!) = (10)

Due to the fact that only the Green's function G (r', Q'-r)
is available rather than the complete G (E’, Q' »>r, Q) only a few
iterations can be carried out using Equation (6). Thus it is desirable to
use the best possible guess for YO (E) Q) the starting function in the
series Y, (r, Q) .

In order to obtain a good starting guess for YO (E: Q) expand

Yo - ) @@ (11)



Assume that all Yg (r) for any r ant for "a' > 0 are small compared to

o
¥, (3) and thus can be neglected, This is equivalent to assuming that

the difference flux is nearly isotropic, Simllarly expand

0 (p 9= ) o @@
a,b

S0 =) 5 @1 ® (12)
a,b

Pz, 9) Z Py () T (9)

and assume that all terms for "a" > 0 are small compared to the corresponding
Mgt = 0 %erm,
Now combine Equations (6), (11), and (12), and integrate over all

{) and Q' to obtain:

m@=4ﬁhﬁ@m<@ynw
v - _
+uﬂIMWMEwW@ (13)



=10~

Where
o (z) =f®(z,_9> ag =k o, (z)

T
=
S
\
0
G

9) ag ="k 57 (z) (14)

=
N
1=
~—r
n
33
—
I=
A

9) a0 = ¥3(x)

If it is assumed that the sperical harmonic expansions for

¥ (r, 2, @ (x, &), S (z; £) and sP (r, 2)

can resonably be cut off after "a" = 0 then

e oa- v

In the sense that ¥ (_:g, Q) is a separable function of r and ( and is

isotropic in Q then V¥ (r) glves an approximation to the spatial form of
¥ (ry Q).

An iterative form of Equation (13) can be written as

¥, (@ =§—%~—Za- ’qu (z1) G, (Jz - z'[) az!
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2;-22 A ' 1
+wa_l<;>eo<|; -xl) o W)

* i fao (|z - z'l)[x& (x?) -28 D(y)] ax!

rt

In Appendix III it 1s shown that the series of functions Wn (z)
generated by Equation (15) convergeé to V¥ (r) the solution of Equation (13)
as n goes to infinity. Since the function 55 (|lr = zt|) is completely
known as many iterations of Equation (15) as are necessary may be carried
out, The integrations and iterations of Equation (15) are actually carried
out on a digital computer, The details of this numerical work are presented
in Appendix V, Now that V (3) has been calculated it may be used for the

initial guess ¥  (r, 2) in Equation (6).



CHAPTER IT

UNIFORM, ISOTROPIC INITIAL FLUX

The effects outlined earlier will be considered one at a time,
The first case considered is that of an initial flux which is uniform in
space and isotropic in angular distribution. First V¥ (r) the solution of
Equation (13) will be obtained by the iterative solution of Equation (15).
This function ¥ (r) will then be used as an initial guess in Equation (6)
and ¥ (r, ©) will be calculated using Equation (6). Integration of the

equation for ¥ (r, Q) over Q will show that

v @ = n 9

Q

if it is assumed that the source due to slowing~down of neutrons .in the
detector is zero and that the source due to slowing=down of neutrons in the
surrounding medium

(g, ) =2 Jo @ 9

- by
Q

Thus it is seen that the first iteration of Equation (6) produces angular
information about ¥ (r, Q) . The function 1 (ry, ) is not calculated
explicitly.  but it is implicit in the expression for Yg (gj,g) o Although
the function Yl (g,‘g) is not explicitiy evaluated numerically this
calculation could be cayried out to give the detalled r and ( dependence of
v, (ry, Q) . Equation (6) is applied a second time to produce a function

v, (£, 9 from ¥, (r, 8) . Examination of this equation for ¥, (r, Q)
v (r) = fwl (r, Q) 40 identically,
Q

-1o-
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will show that it contains the Green's function G (r', @ -»r, Q) which is

not available, Since the absorption rate is related to f ¥ (_r_, Q) aQ

!
the detailed dependence of V¥ (3, Q) upon { 1s not necessary in order to
calculate absorption rate, Thus the equation for ‘l’2 (3‘_, Q) ‘may be integrated

over to produce:

0

E':Q'
(16)
G- %) % o fe oz, a0 @ () 07 ) arlariag:
EAPEPIIA
ZD L)
ZP fG (z" »>r?) G (' »r) dr"ar' -
r'r!

Dy
.@t~&3 /}(ﬂ ) ¢ (z" 51", 04)G(rf;0i~'8)dr e 0
Ly

b3
r'rt,Q

Note that

It is seen that Equation (16) now contains only the Green's functions of the
form G (2f, Q' »r) or G (r" - ', Q') , both of which are known.

The spherical harmonic expansion for G (E'. ty O —>£) and for
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G (£" -r', Q') are now inserted in equation and the integration over Q'

is carried out to produce:

'f“fe (z, ) @ =T, 0 faov(lﬁ"f.ll) ar' +

Q

@-2]3)22@; [ode-eh et =

. v - ) }; Eﬁzhg’(zn) ag (|Jzr - z"]) x

a,b
X
b A o
T, (2 =1r") Gy (|z 2 ') YZ (z - zf) dar'dr’ +

_ (- -
(kP

1t t
r, r

Due to the complexity of the numerical problem it is not practical

to obtain f Y5 (r, Q) d2 , but f Y5 (r, 0) drdQ is obtained, This

Q T, Q

X _ _
¥ f"’ (z") G (Jz* - 2"NTe(|z = x']) ax'az’
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integral is all that is necessary to calculate detector activation,

Terminating the summation over "a" in Equation (17) at some value

A is equivalent to termination of the spherical harmonic expansion for

¥ (r, Q) at "a" = A, When Jf Y5 (r, 9) drd@ 1is calculated numerically,
r, &

A will be used as a parameter and varied in order to determine how many terms
in the spherical harmonic expansion must be retained in a given case so that

the neglected higher order terms will have only small effect upon

[ 0 au

r, &

The results of the numerical calculations show that for small de=~

tectors, l.e. thin coins or small diameter wires, the value of k/P ¥ (r, Q)drdQ
Iy &

calculated from Equation (17) will be independent of the value of A, the cut
off point for the spherical harmonic expansions, For detectors of this small
size the spherical harmonic expansions may be terminated at the zeroth term,

thus in this case

V() bn=¥ (r, ) =% (z, ) =¥, (z, Q)

When the value of k/pwg (r, Q) drd? is insensitive to "a" for

r, &

some "a" > A but

Jv@wa + [0 e
L I, &
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it is clear that including higher order spherical harmonics will not effect

the value of f Yo (r, ©) ddr. But since the value -of f ¥y (r, Q) drdg

I, & ' Ty &
<yh1ch is the same as wa(r dr) may be different from | ¥, (r, Q) drdQ
Iy &

then the question arises of how much would Y¥3 (r, Q) differ from ¥, (r, 2)?
Since WB ( Q) canlnot be calculated due to lack of information about
G (z', ' »1)) the magnitude of ¥5 (r, ©) will have to be estimated.
In Appendix I it is shown that
41 (25 D= (z D < Kl[¥y(zy 2)-¥,4(z, D) (18)
where K < 1

2z, 0 Iy for ey g OF |£(s D} (19)

For the cases where ‘¥ (r, @) is not a sharply peaked function of
r or of 0 the maximum differences may be replaced approximately with

differences of averages.

le5 (x5 9) = %2 I <
K| f\yg (r, Q)dardQ -fwl (r, 2)drdg I/fdrdQ
Iy & Iy § ry &

For the case of a nearly isotropic Y (;, Q) it was noted above that

Equation (6) reduced to Equation (15) and thus
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[ Va1 (@) = v @) <] v (2)= v (@) ]

The norms || ¥p(r)= ¥p.1(z)| for all iterations of Equation (15) are avail=
able and can be used to get a good estimate of the value of K, So, given
the difference between

f ¥y (zy Q)arde and f ¥ (z, 0)arag
Ty § _ Iy &

which results from the caltulations, an estimate of the difference between

f Y5 (z, 0)drd@ and f Yo (z, Q)dran
ry & Iy &

can be obtained,

All of the formalism is now set up to evaluate the average neutron
flux within the detector compared to the flux which existed before the
detector was put in place,

Since all of the above integrations over the detector volume are
carried out numerically a completely arbitrary three dimensional detector
geometry could be treated, Practical limitations dictated the choice of a
right circular cylindrical geometry for consideration here, This cylinder
can be in one extreme case a finite length wire or in the other extreme a
thin coin, depending upon the dimensions chosen, Thus the effect of finite
length of a wire detector and of finite radius of & coin detector are built
into this model,

The function (g) will be available as a result of the numerical

calculations at a large number of points throughout the detector volume and
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at a few select points outside the detector, For those detectors that are

small enough so that ¥ (r) and f ¥5(r, 2)dQ are reasonably close to
§)

each other the function ¢ (r) will give a good picture of the spatial

dependence of k/PY (r, Q)ag .
Q



CHAPTER III
NON~ISOTROPIC SCATTER AND
NON-ISOTROPIC INITIAL FLUX ¢ (r, 9)

Consider the problem of a detector placed in a medium which has non-
isotropic scatter in the laboratory system, Assume that the initial flux ¢
({, Q) is uniform in space and isotropic in direction., The Green's function
G(z', Q! —93) for the case of non-isotropic scattering is availaﬁie in analyt-
ical form which is similar to but more complex than the form of G(E;, Q' >r)
for the isotropic scattering ca;ee A complete discussion of the derivation
Qf the Green's function for [ # 0 is given in Appendix II,

Here §# is defined as:

T =f25 (@-0) © - 20/ fZS(U_HQ) ag
Y &

If it is assumed that terms ngcan be neglected compared to terms

in [ then the zeroth term in the spherical harmonic expansion for the Green's

function can be calculated for the case of non-isotropic scatter, i.e,

Jetr, 0r o) anr =7, (- 2')) (21)

Ql K=0

This function Gg (R)H is evaluated in a numerical manner very

gimilar to that discussed in Appendix I, Part L,

-19-
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Equation (15) may now be rewritten replacing Go (|r - r'|) with
(|x - _x;'l)-LI . The solution to this equation will be called (5)E

to denote the pressence of non-isotropic scatter,

In Chapter II the procedure was discussed for determining how small
a detector must be in order that the solution to Equation (13), V (r) , be
essentially the same as the solution to Equation (5), ¥ (r, 2) .

For small detectors Equation (22) can now be evaluated numerically
using the mnon-isotropic 55 (| - £’|)_LI and a comparison of ¥ (r) with
v (E)E will show the effect of non-isotropic scattering in the external
medium upon the average flux in the detector,

Next consider the case where scattering is isotropic and the

departure of the initial flux ¢ (r, Q) from isotropy is small enough sO

that
1

biredd
2

Y
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Putting this expansion in the transport equation yields the usual

diffusion relationship:

%:ELTJCVJ@(E:Q) d_=f¢(£,ﬂ)2d.@ (23)
Q@ = [0 /i ey

Q

Dividing Equation (23) into rectangular components and evaluating yields:

6 (o) =La if’: SN :3 (z) p(@ﬁ)
ot ()= [_ 9 z}% (£) ;9 ;8’ (}1)} / <6Ztﬁ> -

o (z) = (- 0 % (@) } / <32t ~/Tn‘>

If the spherical harmonic expansion of the initial flux is terminated at

"a" =1 +then all of the coefficients can be calculated as outlined above from

\/nQ (r, Q) 42 , andcthe gradient of \/n® (r, Q) 42 , which are assumed
Q Q

specified,
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Equation (15) can be solved for this case of a spatially
dependent flux, The (5) which results from this solution will again
be used as an initial guess for a single iteration of Equation (6).
Carrying out a single iteration and integrating ¥ (3, Q) over all @

gives:

fwl(z:, Q) ag = (X - L) fcb(z', ez, 9 > 1) da'dﬁ'

Q rt, o
Y 3D
+ _(__a_____a_)_ f‘lf(i’) G(r', Q' > ) dr*do' + (26)
by - - - 7
rt, o
(Zé B ZE) | 1
- f Bz 1) wf oz, o) aar

e Jotaty oo 0)str, 0 - P, 00 ] arag

! !
r'y &

Assume the source in the detector sP (ry Q) due to the slowing down of
neutrons is zero and the source due to slowing down of neutrons outside the

detector,

5 (z, 9) = —f‘;—ﬂf@(z,ﬂ)dﬂ :

Putting the spherical harmonic expension for ¢ (r, Q) and G (r', Q' -1)

into Equation (26) and integrating over all Q! gives:
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1
ﬁl(E, D - (D-L) 2} ﬁi({')Y:(_I; 2 6 (|z - x']) ar

t ot/
Y a=o.r
5, -1, B
L fllf (£) G, (Jz - z']) ax’ (27)
+ZS-ZQ fa (Jz - 2t Vi g (1) ax
14-3'[ o - — O ‘= puil

Za c 1 ° t t
e fGo(IE‘?_‘)m@o (z*) dr

r'

In the case of a uniform isotropic initial flux, as noted earlier
¥ (r) and ‘/PYl (r, @) 4 0 are identical. So the V¥ (r) for the

Q
isotropic initial flux case can be compared to the function \/@l (r, 9) ag

for the non~isotropic initial flux case in order to evaluatezthe effect of
a non-uniform non-isotropic flux upon the difference flux and upon the
avérage flux within the detector,

It should be noted that in the case of an initially non-uniform
non~isotropic flux only one iteration of Equation (6) can be carried out
due to the fact that the general Green's function G (3’, Qt >, Q) is not

available, but this should not present a serious handicap for 14 (r, 0) will

be very close to ¥ (r, Q) for a large range of small detectors.



CHAPTER IV

RESULTS OF THE CALCULATION OF G_ (R)

Rather than presenting the function 5; (R) which has a l/R2
dependence for small R the graphs and tableé all present R2 X @é (R) .

The upper limit for error specified in the calculation of ag (R)
is 1.0 per cent, but an examination of the convergence of the numerical
calculations of Eé (R) shows that in all cases the actual error in EA (R)
is much less than 1.0 per cent, A more realistic error eskimate is about
0.1 per cent or 0.2 per cent,

The value of 6; (R) was calculated at points R =n/6 cm, where
n runs from O to 60, The function R2 x Gy (R) dis then stored in tabular
form for later use, The spacing of l/6 cm, between polnts is used so that
a linear interpolation scheme can be used in the table lookup process while
restricting the interpolation error to 0,1 per cent, The results of the
calculations show that the functions R2 X 65,(3) for water and graphite
are smooth enough so that a larger spacing can be used and still maintain the
interpolation error limit at about 0,1 per cent,

It is of interest to notethat for R greater than several mean
free paths the function 65 (R) agrees very well with the conventional
diffusion approximetion

G. (R) ==
© DR

The term L is the usual diffusion length and D is the diffusion coefficient,

ol
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The usual factor of 4x 1s missing from the denominator due to the fact
that the 56 (R) has a source of U4x neutrons per second,

It is also observed that the Gy (R) curves fall off more
rapidly for increasing "a," The terms in the spherical harmonic expansion
ofr G (r', @' —»r) for "a" greater than zero correspond to higher order
anisotropy in the source, This more rapid fall off corresponds to the
physically observed phenomenon that the non=isotropic components of a point
source are less important at a given observation point than the isotroplc
component,

Two sets .of calculations are presented for 32 X Eb (R) for
watef. The only difference between the two calculations is the Zg used,
In one case X, = 0.0196 cn™’ and in the other Y, =0.,018% el , As
expected, increasing the absorption cross~section causes the neutron denslty
to decrease at any given observation point.

Another set of calculations are presented for RS x a% (R) for
water, In one calculation § is 0.3, in the other oneiﬁgis 0.0, In this
case the neutron density near the source is reduced for T = 0.5, This is
due to the fact that for W =0,3 scattered neutrons tend to be scattered
forward rather than isotropically, which is the case when | =0, This
preferential scattering allows the neutrons to penetrate greater distances
into the medium. Since the source strength is unchanged the number of

neutrons absorbed is unchanged:

Zafao (Jz-z'Ds 2 d£=zaf50 (e -z, o 5
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Although the @6 (R).- > Gy (R)_ for small R the inequality must

E=0 T =3
eventually reverse for some larger R,
The change of the shape of the R2 x 55 (R) curve with change in
the value of T suggests a method for measuring T directly. Assume that
several curves of R- G, (R) are available for several values of T . The

maximum for each curve will occur at a different point R depending upon the

value of [ wused,

o R (cm.)

Figure 1, The Function R° 56 (R)_ for Several Values of .

T



-27-

Since 56 (R) is merely the neutron speed v times the neutron
density at a distance R centimeters from an isotropic thermal neutron
source emitting Un neutrons per second, G, (R) can be measured using
activation techniques. From this type of measurement a plot of R2 Go (R)
can be obtained and the position of the maximum determined, The position
of the maximum should then determine the proper value of [ .

Tt should be recalled that for the calculations carried out here
Go (Rﬁl was evaluated assuming that terms in ﬁ? can be neglected compared
to terms in [T . For the type of analysis outlined in the previous paragraph

2

the terms in | can not be neglected, and a more careful calculation taking

into account higher order terms in & should be made,
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10
2 -
8 R = G, (R)
o= 314 cm !
‘ ! |

6 \ 2a=0.019 cm' |
3
1§
»
e

4 \

R (cm)
Figure 2. Zeroth Green's Function Coefficient for Water,
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CHAPTER V

FLUX CALCULATIONS

In the calculation of the neutron population after the detector
is.ﬁut in place there are several assumptions made which are open to question,
First it is assumed that the energy spectrum of the neutron population is
independent of position before and #éfter the detector is put in place and that
it is the same before and after the detector is put in place, The validity
of this assumption has not been investigated in this paper, ©Second it is
assumed that the detector is placed in an infinite homogeneous medium, Third
it is . assumed that‘scatter i1s isotropic in the external medium, Fourth it
is assumed that the integrals in Equations (6) and (15) can be replaced with
the summations over a finite set of points as given in Appendix V, Fifth it
is assumed that two iterations of the integral equation, Equation (6), will
be suffcicient for reasonable accuracy. Sixth it is assumed in setting up
the computer calgulations that the source of thermal neutrons due to §lowing-
down of neutrons from higher energies within the detector is zero, Finally
it is assumed that the source of ﬁhermal neutrons outside the detector is
iéotropic in angular distribution and equal to the capture rate before the
detector is in ?lace.

The assumption of an infinite homogeneous medium has the effect of
limiting the application of this type of a calculation to detectors placed.
at least several mean free paths from any boundaries in the system,

Since the moderating meterial with the largest T is water it is

used as the test case for the assumption of isotrople scattering, The zeroth

_35_



-3k

coefficient for the Green's function 1s calculated for T =0 and for

T =0.,3 , Both of these Green's functions are then used to calculate the
flux within a detector., For the case of a gold foil of 0,5 cm, radius and
0.0127 em, (5 mil,) thickness the ratio of average flux in the detector to
the flux before the detector is in place is 0,813 for [ =0 and 0,840

for @ =0.3 . The effect 1s essentially the same for indium in water,

Thus 1t is seen that the effect of non~isotropic scattering in the moderating
material will effect the flux within the detector by 3 per cent in the case
considered here,

The next assumption considered is the one that the integrals may
be replaced by a summation over a finite set of points, One test of the
validity of such an assumption is to repeat the summation, each time in-
cluding a larger number of points, A given detector was calculated three
different times., The only difference between calculations was that the
axies were divided into four, five and six subdivisions, The greatest
difference between the calculations was the order of 0,1 per cent, This
indicates that the summations are essentially independent of subdivision
size and that the summations are good approximations to the integrals when
there are about five subdivisions along each axis..

It 1s not necessary to assume that a certain number of iterations

of Equation (6) will be necessary for a given accuracy., For the quantities

f ¥ (z, Q) ardg and f ¥y(r, Q) draQ are both available as
I, & Iy &

the result of the numerical calculatlons, An estimate of the quantity K,
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which is the maximum difference between ¥ .,(r, @) and ¥, (r, @) relative
to the maximum difference for the previous iteration, is also avallable,
From these quantities it will be possible to recognize that range of small
detector dimensions, thickness for coins and radius for wires, where
¥ (r, 9) will be sufficiently accurate, It will also be possible to rec=-
ognize that range of largéridimensions where the second iteration will be
sufficiently accurate,

In the case of the 0.5 cm, radius gold coin in water it is seen
that the difference between

k/Ql(zj Q) drdQ and \/@2(3, ) drdQ is 1,5 per cent for a 5 mil
r, 8 ry 9 |

thickness and 10 per cent for a 10 mil thickness, It is further seen that
the third iteration would differcfrom the second iteration by about 0.15
per cent and D,2 per cent for the 5 mil and the 10 mil thick coins re-
spectively, In the case of the 0.5 cm, radius gold coin in graphite it is
seen that the second iteration differs from the first by 1 per cent.and 12
per cent for the 7 mil and the 15 mil thickness respectively and that the
third itération would differ from the second by 0.l per cent and 1.2 per cent
for the 7 mil and 15 mil thickness respectively.

Inspection of Equation (13) shows that ¥ (r) is independent of
the scattering cross section of the detector, but ¥, (r, @) is dependent
on it, Results of the calculation \/pYE (g, Q) drdQ shows that for 0.5

r, Q
cm, radius and 5 mil thick gold coln Variation of the scattering cross-

1

section from zero to O;5h9 cm™— changes the value of the flux in the

detector by less than 0.1 per cent for both water and graphite.
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TABIE I

THE EFFECT OF HIGHER ORDER CORRECTIONS ON THE
AVERAGE SCALAR FLUX WITHIN THE DETECTOR

Change Due To

-V (r)
o) w=0.3 ¥, s

Gold Coin in Water
t = 5 mils, R = 0.5 cm. .813 +.027 -.013 +.001
t =10 mils, R = 0.5 cm. .707 -.026 +.003
Gold Coin in Graphite
t = 7 mils, R = 0.5 cm. 827 * -.02k4 +.002
t =15 mils, R = 0.5 cm. .730 * -.118 +.011
L =1.27 cm,
R =20 mils

* The quantity @ is assumed to be effectively zero for graphite,

As discussed in Chapter III the case of a non-uniform non-
isotropic initial flux can be calculated, But due to the assumption of
axial symmetry and symmetry across the midplane which were necessary only

due to the computer time and space limitations the gradient problem was

not carried to a numerical calculation.
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The assumption of a zero source due to slowing~down of neutrons
within the detector is not necessary due to the theorysmerely convenient,

It has the effect of limiting the application of the calculations to detectors
which have high enough atomic weight so that the detector thermalizes very
few neutrons. As the numerical problem now stands one could not calculate

a detector made up of a solution of gold salt in plastic for example, But
there is no reason in principle why the calculation could not be modified to
take a non-zero source within the detector into account,.

The assumption of & source of neutrons in the external medium which
is isotropic and equal to the capture rate before the detector is introduced
is again not necegsary., The theory will permit the use of a completely
arbitrary source, For the cases considered here, where the initial flux
has a constant gradient in space, there is no net flow into any unit volume
in the space, Thus thé supply must equal the rate of loss, i.e, the absorption
rate., In the absence of any reliable information about the anisotropy of
neutrons as they slow down, the source in the external medium due to the

slowing-down of neutrons is assumed isotropic,



CHAPTER VI

COMPARISON WITH OTHER THEORIES

It seems generally agreed that for finite foil detectors

(11)

Skyrme's method is the most adequate method available for calculating
the average flux in the detector., It is of interest to see how the results
of the integral technique developed in Chapter I compare with the results

of Skyrme's method.

Let the quantity k/p®' (r, ) dQ Dbe called the scalar flux,
Q

A comparison of final results shows that for gold and indium in
water the integral method consistantly gives average scalar fluxes in the
detector which are higher than those calculated by Skyrme's method. The
comparison of the integral method with Skyrme's method is presented graphi=-
cally for gold in water only, the comparison for indium in water shows the
same trends, For the case of gold and indium foil detectors in graphite
the integral method is seen to agree within 1 per cent with Skyrme's method,

It would be desirable to show how the integral method reduces to
the method used by Skyrme, But Skyrme superimposes two independent cal-

1

culations, one for "self-shielding" within the detector and the other for
"flux-depression" in the surrounding medium, This approach of separating
the problem is basically inconsistent with the unified approach of the
integral method. Skyrme also makes several other approximations which could
not be included in the integral method,

An attempt was made to estimate the effect of these approximations

upon the calculations, but no method of accounting for Skyrme's approximations

-38-
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was found which could consistantly account for the differences between the
integral method and Skyrme's method.,

There is one other method of calculating foils with which comparison
might be made, The method is the Py, Legendre polynomial method for in-

(1)

finite slab geometries, This method is discussed at some length by Bengston

and numerical solutions were carried out by him and are quoted in the report,
There is a basic difficulty with using the integral method

discussed here to calculate infinite foils or foils with very large radii.
The radius must be divided into a finite number of intervals, As larger and
larger radii are considered the number of radial divisions must be increased
to maintain accuracy. But the time required to carry out the computation on
the computer goes as the third power of the number of radial divisions. Due
to the limited amount of computer time available it does not seen desirable

to push the calculations along this line,
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CHAPTER - VIT

COMPARISON WITH EXPERIMENTS

In Figures 14 through 21 a comparison of the results of the
calculations using the integral method with various experiments is presented,
It should be noted that the error bounds indicated on the experimental points
vary considerably in meaning from one set of results to another, At one
extreme Zobel (13) attempts to estimate the total uncertainty from all
causes in his measurements and he quotes a very large range of uncertainty.
At the other extreme is the work of Fitch and Drummond (%) where no indica-
tion is given of the possible errors. In between the two extremes is the
work of Klema and Ritchie (8) who specifically state that their error esti-
mates reflect only the uncertainty of the counting process and nothing else,

An examination of the comparison for indium and gold detectors in
graphite shows that most of the experimental results fall slightly above the
theoretical curve, But the most complete and well documented work, that of
Thompson,(lg) consistantly falls below the theoretical curve, Even with
the somewhat uncertain error bounds available a minor renormalization of
the experimental!results within these bounds produces in almost every case
an excellent fit with the theoretical curves.

For the case of gold and indium in water the meager amount of
experimental data shows a qualitative agreement with the theoretical cal-
culations, The largeness, or complete lack, of error estimates will not
permit any qualitative comments about the agreement with the theory,

Similarly for the case of indium wires in water the lack of error

-b7-
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egtimates will allow no more than the comment that the qualitative agreement
is good,

Maps of the scalar flux are presented for the 5 mil thick gold
coin shaped detectors in water and in graphite. The maps for the coins of
0.5 and 2,0 mil thickness are not presented due to their great similarity
to the plots for the 5 mil coins. The only essential difference between the
5 mil coins and the thinner ones is in the average value of the scalar flux
within the coins and in the quantity the average scalar flux less the minimum
scalar flux, Bgth of these quantities are presented for all coins. Similarly
the maps of the indium coins are not presented due to their great similarity
to the maps for the gold coins.

Graphs of the normalized scalar flux for points along the central
7 axis outside the detector are presented for the 5 mil thick gold detectors
in water and in graphite., Graphs of the normalized scalar flux for points
along a radius in the mid-plane outside the detector are presented for the
0.5 inch long indium wire in water, and for the 0.5 inch long gold wire in
water,

A question which is frequently discussed in the literature is the
relation of the scalar flux at the surface of a detector to the average
scalar flux in the detector, When examined in detail it is found that the
scalar flux on the -surface of the detector is not a single number but is a
strong function of the position on the surface, In fact, the scalar flux
on the éurface varies from several per cent below the average scalar neutron
flux to several per cent above. Since there is no obvious method for de-
fining a "surface flux" no attempt is made to present the relation of surface

to average scalar flux.
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Figure 22, A Map of The Normalized Scalar Flux Within A Coin Shaped
Gold Detector In Water, Radius of.1,5 cm, and Thickness

of 5 mils,
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Figure 23, A Map of The Normalized Scalar Flux Within A Coin Shaped
Gold Detector In Water, Radius of 1.0 cm, and Thickness

of 5 mils.
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Figure 24, A Map of The Normalized Scalar Flux Within A Coin Shaped
Gold Detector In Water, Radius 0.5 cm., and Thickness of 5 mils,
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Figure 30, A Map of The Normalized Scalar Flux Within A Coin Shaped
Gold Detector In Graphite, Radius of 1.5 cm. and Thickness
of 7 mils,
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Figure 31. A Map of The Normalized Scalar Flux Within A Coin Shaped
Gold Detector In Graphite, Radius of 1.0 cm, and Thickness
of 7 mils,
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Figure 32, A Map of The Normalized Scalar Flux Within A Coin Shaped
Gold Detector In Graphite, Radius of 0.5 cm, and Thickness
of 7 mils,
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Figure 33, A Map of The Normalized Scalar Flux
Within A Wire Shaped Indium Detector
In Water, Radius of 10 mils and
Length of 2.54 cm,
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Figure 34, A Map of The Normalized Sealar Flux
Within A Wire Shaped Indium Detector
In Water, Radius of 20 mils and Length
of 2,54 cm,
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Figure 35, A Map of The Normalized Scalar Flux
Within A Wire Shaped Gold Detector In
Water, Radius of 5 mils and Length of
1,27 cm,
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Figure 36, A Map of The Normalized Scalar Flux
Within A Wire Shaped Gold Detector In
Water, Radius of 10 mils and Length of
1.27 cm.,
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Figure 3T7. A Map of The Normalized Scalar Flux
Within A Wire Shaped Gold Detector In
Water, Radius of 20 mils and Length
of 1.27 cm,
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Figure 38. A Map of The Normalized Scalar Flux
Within A Wire Shaped Indium Detector
In Water, Radius of 5 mils and Length
of 2,54 em,
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CHAPTER VIII

CONCLUSIONS

In conclusion it can be observed that for neutron absorbers
commonly used in neutron population measurements the conversion of the
transport equation, Equation (2), to an integral equation, Equation (5),
is a very practical method of treating the thermal neutron population and
around a neutron detector, For a large range of detector sizes it is, in
fact, necessary to consider only the zeroth spherical harmonic of the
neutron population, Equation (13). For these cases such problems as:

1. Initially anisotropic neutron population.
2. Non-isotropic scattering by the surrounding material,
3, Detailed spatial dependence of the neutron population.
4k, Arbitrary three dimensional detector geometry,
can be calculated with an accuracy of 1 per cent using only the zeroth
spherical harmonic of the neutron population,

For the larger detector sizes the calculation of two iterations
of Equation (6) must be carried out, where the higher spherical harmonics
are included, in order to achieve an accuracy of 1 per cent., For very large
absorbers, e.g. reactor control rods, the iterations of Equation (6) should
be continuted beyond the second iteration, but as noted earlier this is not
possible due to the limited amount of information available about the
Green's function G (rf, Q' -»r, Q) .

In the case of water there is still another limiting factor., Even

for the small detectors where the higher spherical harmonics need not be

-76-
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considered the variation of [  from zero to 0.3 causes the average scalar
flux in the thickest detectors to increase by as much as 3 per cent, Thus,
the limiting factor for the calculations presented here for the case of
water is the value of | used., The value of [ was taken as zero for
all of the calculations except the one case of g of 0.3 . So, the
average scalar flux in water may be low by as much as 3 per cent in the
case of thick coins in water,

Aside from the uncértainty c¢aused by the two factors mentioned
above there are no other known sources of error which could contribute a

correction of imore than about 0,1 per cent,
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APPENDIX T
Part 1

EVALUATION OF G(r', Q' - 1)
By definition G(r', @' - r, Q) satisfies the equation (1)

Q- Va(z', 9 -z, 9) + 4 ¢(r', 9" -r, 9)-

\/p z% (@-0) ¢(r', 8" >r, ® do =5(r'-r) 5(2'-9)
o

Again by definition

@
N
]
-
o
d
]
1]

'y ¥ r)= /PG(E': Q' -z, Q) ag

Assume isotropic scattering in the laboratory coordinate system, Then

Z-S(E)—’Q)=ﬂ%t— % (2)

Next let¥f(r", Q" - r, Q) denote the solution to the following equation:

Ta - v, 2" s, 0) ¢ Lol 2" 51, 0) (3)

S(T”-g) 5(9”'&)

It is well known that <2)

_Zt ey
&(_I_.”) Q” ) _Q) = £ Irl-;n—g'l'

8(2"-0) 5 (2 -[r¥r"])

(%)

The functionﬁ}(;”, Q" 51, 0) is a Green's function for Equation (1) thus



\/G(E': Q' >z, @) dw+ 8(z'-r") 5(_@'-9_")] dr"dq”
w .

Spatial integrations are over all r space., Making the indicated substitutions

yields:

ol T
G(r , Q' -, _Q) ~[ (6)

“n IE".I.'_"Ig b
r .
/G(E': 2 oz, @) do 82 - (") ar”
L
iy !
et |z'-z]

PEE

Now integrating over all Q yields: »

Ly Lgleex

6z'y 9 o2 @' (7)

G(r'y Q' » 1) = ~—
@l & ~2) = O
rll —— —

Byl

e - A
+ ——— | I - !

2 o8-z’

Expand G(r', Q' - 1) as

' S\ @b bt

G(r'y ' >1) = Ga(ﬁ » r) X2(Q) (8)

Thus




/Gg.(.l_")r.“) lr_rnl2 'I;“
r" — —
Dinde S ENOINE
|-zt |2 .
%
Now multiply by YT (Q') and integrate over all Q'.
Y -. \ -&'I‘-I’"I
- zS m ' ny € T "o
G (x', 1) > / G (z' ") _W dr' + (10)
I‘" ——
~Lg|z-z'|
¥ () &

For the sake of convenience let r' =0, Now take the Fourier transform of

Equation (LOL

m m !
G ® =7 / o () |r-r"|? (BJI)_B/E iz (ll,)
r .

b /P'§m (r) g:zﬁf:;§:§;-dr
(2ﬂ)32 . 1= r -
L
where
— =~iK.r
G (K) = /G T — = 2
1 (K) (2n)3/2 . 1 (n) e L (12)
L
+ 1Ker
Using the expansion for e given in part 4 of this appendix:

re -

* A -, I"'ili’r_
[ oAy S, L -
N
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Define F; (K, Lg) = hx (-i)l \/P jp (Kr) e—Z%r dr; L1 =0, 1, 2 40e

(14)
r=0
Thus
f Yf ® tht_;léé a = Yll?le ®) F1 (K, ) (15)

Note that in the special case of 1 =m =0 the integral in Bguation (@Lh)can be
done directly yielding

F_ (X, Z%) = i Arctangent [ £ (16)
(0] K Zt
Next examine the integral:
Let x = r"-r
o2t [z-2"|iKex o
- = e —= x (17)
]r-r”|2 B
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Combining Equations 11 and 15 gives:

% .
1 S 1 u ~1Ke "
o () - (20)3/2 ux J/ 6y (z) ¢ = = Fy (K Zg) ar

feE W W E K )

Using the definition in Equation 12 and solving for Gy (K)

Again using the expansion for e it is easily shown that

‘ * ¥
o EEE D) - gy ) Y @

(20)
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Thus

Z; KdK
1-5" Fy (K 2)
Define
ez |) = 21 5 k/% j§ (K|z-r']) Fy (K, It
%0 1- = T (x, Z,)
Thus

(22)

(24)



APPENDIX I
Part 2

THE FUNCTION Fg(K, 2)

In Equation (14) of Part 1 of this Appendix Fa<K’ Zt) was defined

as

F (X, Z%) = Ly (-1)8 L/p j, (Kx) e'th dx
' =0

= by (-1)2 I'(3)r(at+l) . §a
™1 (a + 3/2) (K2+2%2)§(a + 1)

(9)

2 o
F(at 1. a+1 2a + 3 K >”
X\ <}2 ’ 2 | 2 | K2 + 2.2

(9)

The function F(A; B|C|Z) is the hypergeometric function.

F(A;B|C]Z) =1 + 227 + A(A+1)B(B+]

2
c Tleri) x 21 27 eeees

:For 7 near 1 it is useful to note

* Note that Equation (25} should contain the term

1 L
[(3)I(A+1) nor L [(atl as given in Reference (9).

28+ (a3/2) 28*lp(g4d)

8L~

(25)

(26)
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For the large K, i.e. Z near 1, it will be more convenient to use Equation
(3) with its power series expansions in (1-Z) rather than the slowly con-
verging power series in Z given by Equation (2). From the power series
expansion it is obvious that

F(A;B|c|2Z) -1
Z -

Thus for large K

br(-1)272@)r(a4l) 1 (28)

X
Koo 2Fr2(Z+1) K

F_(K, Zt)
Define

F /L) =T x By, %) (29)

The function,éﬁza(K/zt) is dimensionless and depends only upon a and K/2 .

The functionscgz o(K/L.) are displayed graphically in Figures 43 through 43.
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APPENDIX I
Part 3

SPHERICAL BESSEL FUNCTIONS

(@) = (0% (s (Sirzl ) ¥ |

Sin 72
3o(2) ==
. Cos Z , Sin Z
Jl(Z) == 7 + Zd

. Sin 72 Cos Z Sin Z
J2(2) = - - +
2 7 0 2 T3

: Cos Z , 8in Z Cos Z - Sin Z
7)) = - .
j3( ) 7 -6 72 15 75 +15 ""ET;."
. Sin Z Cos Z 4w Sin Z
JM(Z) = == 410 5 _45 Z3

35(2) - . Cos Z +15 Sin2Z +105 Cost
Z Z Z

“hop 8in 2 _gus Cos Z ., ous Sin Z
ToE P T P

(30)

(32)

(33)



ZIl

| -
() = T3y ® - 0

T
(2 - Cos[Z = 2 (n+l)] os |

Z

Z -



APPENDIX I
Part 4

SPHERICAL HARMONICS

n 21 +1 (L -m)! 4 m
Y, (9) = I [OEEOR et Py (n) (39)
\ Z
N
N
N
N
N
SN 80
N
|
~o | cos gy
|
|
! >y
\\ '
A l

PT (u) = Legendre's associated function of the first kind,<7)

B @ @ an-56-1) 56 (10)
9

i - 21+1 (1-m: _-ime

n@- Bl ems Pl () (42)

-Qh-
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Note that P]" (u) = %—;—% 1 (w)
-1 ] l+m) _-ime p-m
" (g) = 2 %m+ 1 El * m%' e™8 T (u)

- by 1+ m)
Thus
DW= S EE e
Another useful formula is:
iker % A (9)
e == = ZH (en+1) 1" Py (k- 1) J, (kr)

2 Ta+nm)
Thus
& Doz ) GHLE

(42)

(bh)

(45)



Using the definitions and results of the above work it is easily

shown that:
b a b
Y (-0) = (17 Y, (9

if (0, eeees) = T(=b, vouss)



APPENDIX I
Part 5

NUMERICAL INTEGRATION
Consider the integral of Equation (23) of Appendix I, Part 1.

00

G w2 [ el s B (51

(2n)° K20 1e %E‘FO(K, %)

Examination of the integrand in Equation (51) will show that for large K

it becomes

i% 5. (KR) F, (K, e
Ja ( ;S oK, L) K . (52)

lﬂg%m:&) K oo

Cos [KR - 2 (a+1) 42 ()T (a+1)

R x 251 1%(% + 1)

The value of the integral will oscillate with constant amplitude about some
mean value as K goes to infinity.,

3)

As Davison ( notes when the Fourier transform integral oscillates,
the mean value about which the oscillations take place is the appropriate
value for the integral. The upper limit for the integral (51) will then

be changed from infinity to some number T, The number T must be large

enough so that all of the terms in the integrand of Equation (51) are near to

..L)"(..
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their assymptotic form, Further T must be selected so that the mean value
requirement can be satisfied,
For small K

P Fo(K, L) % (53)

52
bn K -0 Z%

Due to the denominator the integrand will be changing very rapidly near

K =0 ., On the other hand for large K the integrand becomes a cosine of
period R ., The integral is evaluated using Simpson's rule in four separate
ranges of K . Region one is 0 <K < Z%, region two is Z% <KX < 100%/kR ,
region three is 100n/Rk <K < (602 + 2a)n/LR , region four is

(602 + 2a)n /bR <K < (642 + 2a)n/4R . 1In each of these regions the step size
is subdivided until two successive values of the integral over the region are
within epsilon of each other, The epsilon is specified as input data and

is usually taken as 0,01 .

The end point K = (642 + 2a)n/4R 1is chosen so that the mean value
requirement will be satisfied. If the value of the integral over region four
is greater than epsilon times the sum of all the other three integrals then
a region five is added. ‘Region five is the same length as region four, If
the end point of region five 1is large enough so that all of the terms in the
integrand have reached their assymptotic value then the integral over region
five will be very small, Successive regions are integrated until the K
is large enough so that the integral over the last region 1s very small,

Let us now examine the assymptotic form of Eé(lg - £'|) for
|r - r'| going to zero. |

Rename |r - r'| =R



Rewriting Equation (51)

2
Z
: Eia i ja(Z) Fa(Z/R: 2%) §3
fa () - (251)2 ‘/p ks g "
4=0 -1 Fo(ﬁ? Zf)
lim G, (R) =
R- 0 ZE
ia ooim 'aZ Fa, ) R2° A
e Jan [ EO R PR T
2=0 l'l; o(%} Zt,)

Recalling Equation (28)

1im Fa(g’ Zt) - Ly I‘E(L)I‘ a+l) (-i)aR
R-0

Combining equations
2
lim G, (R) =1 (

o8+l 1"2(% + 1)2nR®
R -0

(o]

Jf 5, (2)242 = Lr(at2)  p2; 85, J))

28+l (g43/0 2’
J (e+3/2)

Where F 1is the Hypergeometric Function and equal to

$)r(a+l) Jf 3,(2)24z

(54)

(58)
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e
2 2
Thus
lim G, (R) =
R 0
rl‘(%)r(aﬂ)r(_awl 1

2%80r T2(3+L)MET(E) s

Evaluation of the term on the right of equation shows that

lip Gy (R) = =5 (62)
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APPENDIX IT

NON~-ISOTROPIC SCATTERING

Consider a point source of thermal neutrons located at point r'
in an infinite homogeneous medium, This source is emitting L4 neutrons
per second isotropically., Scattering of neutrons in the medium is allowed
to be non-isotropic %n the laboratory coordinate system,

Assume that the spherical harmonic expansion for Z%(@ —>Q) is known.,

[ %D
Le-9-) Lot @%@ (1)
ay; b
The usual representation for X, (w - Q) is
1
21+1 .
7, (@ -2 ; 21l @ D), (2)
£
Where the Pl (9 . Q) are the Legendre polynomials, In this case
Zso = st (@~9) a0 (3)
Q

The average of the cagine of the scattering angle § 1is defined
fZ(d)—aQ)cboﬂdQ

g lende- B gy

b= = — (%)
fzs(_@—@dﬂ %o

Q

Using the results of Appendix I, Part 4, Equation (2) becomes:

Lie-0 =) L, Y (% @ (5)

ayb

Where Zgl = Zgo X § and Zgo is the atomic density.times the isotropic
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component of the scattering cross-section which is found tabulated in

(6)

Nuclear Cross Sections.,

Note that all spatial integrations in this appendix extend over
all space, contrary to the convention used in the other parts of this paper.
The tramsport: equation for the system outlined above may be obtained

by integrating Equation (4) of Chapter I over:iall @ to obtain:

Q- VG(_I_" =T, Q) + Zt G(El =T, 9) = (6)

Using the same conversion as is used in Appendix I, Part 1

G(E‘_' —)£, _Q) =

- []= B st )] ™)

EE

Lf%@éﬁgﬁG@'ébg)@+6@'-fﬂ drag"

o BN

Mf+3@= :Eiﬂ-( £t
|z’ -r|2
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Now expand

EACHER AU S g e x
b PO 4
1 *
N Awd@e) & w @ (5
w lsm a,b
- rlar
+ez'tl_"_'I x 8(Q-[r-r'])
z'-z|? T
Z R (e, 0 P () - o2tz 5[z b £")
a5 £ [rz)®
(10)
L
X Z Yo1 Gy (z)fy £") Y9 (@) az" +
1,m
Ly |z-r'|
+ 2 5(8 - [x=z'])



%
Now multiply by Y Q)

-10k4-

and integrate over all Q.

1
G Z%[r-r | . 2L z%l
" 2
- 1| 1,m
A * A

¢ (zf, ) Y] (& - z") Yg (r -2") +
- '—
oLt |rt-z| iy 2 1)

otz |

For convenience let r'!

equation and define

=0 ., Now take the Fourier transform of the above

D 1 Jf D -iKe°r

G, (K) = Ga (r > - dr

c © =3 c ) -

L

D 1 g |r"-r|-iKer Z

G, (K X 3 X
C (K) (gﬂ)3/2 |rn r|2 sl

E”’E 1,m
A *.
G, () Y (& -z Yg(z - r) dr'dr +
1 o e- I‘-iK_ﬁE * A

! (2n)5/2f r2 %@

In Appendix I, Part 1

it is noted that
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The function F, (K, 2;) is discussed in Appendix I, Part 2,

Using Equation (13)

o 0L =
(23.[)3;2 . Irn_rlg
rr -~ 1,m
Z m " Yl'fl A 1" o Ay o
g1 &7 (") Y (z-1") ¥, (z - ") ar'dr
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Thus 1
o) B 1 e_ﬂg,rn
Wy [ 1Zm a7)
A
2o G (™ Y (K) F(K, L) dr" +

(2x)3/2 ot
: . )
Gy () = 7 ) T 6 0 ¥ ®) 7 (K, %)

Assume that terms that make a contribution of the order of <Zsl)2 are small
and may be neglected compared to terms of the order of Zgl in the calculation
of G9 (K) .

Using the same procedure as was used above it can be shown that

S0 =T, m L T €L (19)
Vg
! ?f_(ﬁ) F(K, L)



-107-

Combining equations to solve for Gg (K)

o ‘= N 50 "0 ‘=

: o 5 1 n A * A

2L @R L) ) ¥ E L ®
m==1
\l\ A * A

1 1

G R EL) ) FEOn®
m=-1

o 1 o A

G0 (K) = (21{)3/2 Ty (K) X

Fo (K, z“c)“—)f—zlelg(K»Zt)
1% (Ky Zg) - EZsozlel K, L)

(21)

(22)
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Now use the results of Appendix I, Part k4,

1- ZEQ Fo (K5 L) - -——5 Zso zs1 P2 (K, L)

(23)

(24)
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APPENDIX IIT

CONVERGENCE

Consider two elements ¥ (r, ) end Ym.(g, Q) of the series

generated by successive application of Equation (6) Chapter I

=@ - [o( 0o, 0o e M

1 1
r',Q

# Bk fG(r_', g -z, Q)f@(z', ®) dadr'dgr +

1 7
r',Q

e

r',Qf
<&-i>f%du'@MWu@»gﬂwy@'-
r',a!
Z% i ZE ‘
=2 [, 0 on, 0) [ ra () @) detrap
I'( r!’gl w

By changing the n's to m's in Equation (1) an equation in v (r, ) is

—

obtained. Now subtracting the equation for ¥ (Ez Q) from the equation

for V¥, (r, ) one obtains:

¥o(r, @) -y (50 = -5) x (2)

-110-
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f(‘Pn_l (', 9) -y , (z', ') G(z', 9' >r, Q) dr'dg' -

1 1
r',o

Y -
- _S LH(Z‘IS)L/‘G(E', _g_zr -7r, Q_)f(\lfn_l(zt, 9) - Yo (E" U_-)))dg)dz'dg'

1 1
rh9 o

Max. any r

Define || & (£, 8) | = Max, any @ ©F | & (z, 9) | (3)

|ty (2 @) - ¥y (2 @) [ = (5 - L) x (1)

f (v, @59 -y, (r, 2)) 6, 2" >z, 9) dr'ag' -

!
z's - 22
- = Gzt 0" - 1,0) (Y (z',0)-¥y; (z',0))dedragt ||
" rt,Q! »
=)=

<ty (5 ) - (2 0 [ x [T -D) -5 + 2 | x

I fG(z', 8" -z, 9) drldg! |

1 1
rt,Q

So the mapping of elements (or functions) Y1 (r, Q) into elements

¥, (r, @) which Equation (1) defines will be a contraction mapping if:

% -5 x| o, @ oz, 0 arvan | <2 (5)

1] 1
rh,Q
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or if:

| [ett, 2oz, 8) azanr |

1 1]
r',8

Using the reciprocity theorem

% fG<£’ >z, ) drt =2 f%, -0 o1 art = (7)
r' r!

the integral over the detector volume of the rate of capture of neutrons by
the moderator due to a source of neutrons at point r emitting one neutron
per second in direction =-Q' .

Clearly the integral over a finite volume of the capture rate is

less than one for a source emitting one neutron per second, Thus

G(r' »zr, Q) ar' < = (8)
/ 3

I'l

and Equation (8) holds for all detector sizes and compositions, thus

Next consider two elements ¥, (r) and y, (r) of the series

generated by successive application of Equation (15) Chapter I



..]_]_5_

and

I, () = vy @ = B, - 2] x

1 Gy @) -y @) 6 ) et | <
-I--l

a 'fz' v, @ - v @l [ol 2 a |

(10)

(11)

(12)

(14)
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Thus Equation (10) will define a contraction mapping if

the integral over theAdetector volume of the rate of capture of neutrons by

the durrounding medium due to a source of neutrons at point r emitting iso-

tropically one neutronyper second at any point r in the surrounding medium,
Clearly the integfal over a finite volume of the capture rate is

less than -one, Thus

;Lk/é@'er)w's-i— (17)
by - = - za
I-l
and ﬂ;—-\/pG(r’ »r)dr' 1 forall (18)
r J 2T ETS
r! a a
detector sizes and compositions,
Both Equation (1) and (10) are of the form: (15)
19

f(x) = Pf(x) where P is an operator. The iterative equation

. £ (x) =P £ (x) (20)
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Define || £, (x) | = Max, any x of | £ (x) | | (21)

Subtracting Equation (19) from (20) and taking norms one obtains:

£, () -2 () || = | B £,y (x) £ (x)) || furtner (22)
l£y () = £ () [ =12 (e, (=) -£ ; ()| (23)
[P]l=K< 1 (2k)

It has been shown that for the operators P used here:

e, ) -2 &) s k£, &) -5 (x) | (25)

for all detector sizes and compositions where K is some number less than

one, With successive applications of equation one finds:

| £, (x) = £ (x) || K" || £ (x) = £ (x) | (26)

Where fo (x) is some arbitrary initial guess at the solution to Equation
(20) and f (x) is the solution to Equation (19) .

Clearly as n goes to infinity Equation (26) requires that the
quantity ff £ (x) = £ (x) | &o to zero. Thus as n goes to infinity the
solution of the iterative equation, Equation (20), approaches the solution

f (x) of the original Equation (19) .
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Thus it has been demonstrated that the series generated by Equation
(1) and (10) converge, and that they converge respectively to the solutions

of Equations (5) and (13) in Chapter I ,



APPENDIX IV

GEOMETRY AND GRID POINT NETWORK

The basic shape of the detector will be a right circular cylinder
with radius Re and height 2 x ZE

Cylinderical grid surfaces will be located around the central axis
and will be spaced a distance /ARe® from one another, Plane grid surfaces
will be located perpendicular to the central axis and will be spaces at

distances NE from one another.

IN >

£

I=< =

l
|
|
|
A -

|>< =

|18 =

Figure 49 Location of the Coordinate Axies.
-117-
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outer surface

Y

| /—

centé¢ral axis

/

i=o

a full unit volume may be associated with those points next to the outer

surface,

Note that a half interval is placed at the outer surface so that

No points are loecated on the mid-plane so that reflection across

i=

Mid-plane

i=2

i=I

Figure 50. Location of the Grid Points.

the mid-plane can be carried out without regard to points on the mid-plane,
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The circle defined by the intersection of cylinder i with plane
will be called circle (i,Jj) . The point where this circle (i,j) cuts the
é% - éé plane will be called point (i,J,0) .

i=0,1,2,3....I where I = the number of points along the R®

axls excluding the point on the centeral axis.

Jj =1,2,3,4,...J where J = the number of points along the ZE

axis,
Coordinates of the point (i,J,0) are

X =1 x /Re

1]

Y=0

Z=(j-3% x

The circle (i,j) will be divided by a series of equally spaced
points. The circumferential spacing between points will be egual and as
near as possible to AR9 in length, The number of points on circle (i,])
= 6xI ., The angular spacing between points on the circle (i,J) will be

2n /61

The points spaced aroun& the circle (i,j) will be denoted point (i,j,k),
kK = 0. The volume sssociated with point (1,3,k) = n (/Re)® AZE
((i + %)2 - (i - %)2)/ 61 except where i-% is negative, then the volume
around point (i,3,k) =« (ARG/2)2 NE
Coordinates of the point (i,J,k) are

X =1i/Re x Cos (2rK/61)

Y =iMRe x Sin (2nK/61)

7 = j/ZE
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Due to the cylindrical symmetry and the symmetry across the mid-
Plane it is necessary to calculate unit volumes and fluxes only for points
in the Re - ZE plane, Associated with each of these points (i,J,0) in
the RO - ZE plane there will be several other points having the same flux
and unit volumes:

1. The point (i, -3,0)

2, The points around the circle (i,k) excluding the point (i,J,0)

3. The points around the circle (i, -j) excluding the point

(i; -j,O)



APPENDIX V

NUMERICAL INTEGRATIONS

In order to solve Equation (15) of Chapter I one must evaluate

o, @ G-z e @)

rl

and

fao (Jz - z']) ar (2)

r!

Where V¥, ; (r) is known function.

Let the detector volume be divided into a series of small volumes

vy surrounding a series of points r; . Thus:

fwn_l () Gy (|2 - z'[) ar' & (3)

I-l

) ey () G (lz - mgl) v

i

f@'o(lz-z,')dz' ~ z G (Jz -z vy (4)

r! i

Examination of the numerical results shows that to a good

approximation

-121-
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) .
Due to the 1/|r - r'|” depehdence of Gy, (Jr - z']) difficulty
will occur in the summation process when T =T,

Further difficulty will occur in the case of a coin shaped détector,

A P

(

R>h v v,
! _ L- -4 ]
h

Figure 51, Point on the Same Z Axis Outside of Volume Element,
For a point r located at the origin in the above figure

f5a<|£—’£'l>d£' t G (2 -z vy (7)

Vi
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when R >>h and R >>7Z,,
For a coin shaped detector it will be necessary to evaluate the integral

RS ®

Vi

analytically when the points r and r' have the same x and y coordinates,

In the case of a wire detector a similar difficulty will occur,
32

: . 1.
</V

Vl“
.
— all®
1—/ / |
17 >>aa r, — !
L7 >> X \/J'_

Figure 52, Point in the Same Z Plane Outside of a Volume Element.,

L/‘aa(l_r_"ﬁil) d£i=aa(|£-£i)vi (9)
I
when AZ>>~faA and AN>> X,

For a wire shaped detector it will be necessary to evaluate the integral

Here again \/FGa (Jr = z3]) ary (10)
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analytically for the case where the points r and r; have the same Z
coordinate,

If the point r is inside the volume Vs

y

8

Figure 53, Point Inside a Volume Element.,

then:

J G -z e - (11)

V.
1

b R tan™T 5%_ + gh 1n (1 + (2%)2)

+2rrCaE2i (%)2$RE+R2111 (f%Jr (B 489
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R @ - @ |

If the point r is outside the volume vy but r and r' have the

same x and y coordinates as in Figure 51 then

f Gy (Jz-z']) arr = (12)

B n
ZO+;2— °_§
nf 2 hy2', .2 n, | 52 hyo
+ 1 Cy [(Zo+§)‘UR + (Zo + 3)° + RIn(Zgr SrY RS(Zo + 2)2)

L

-(2, - %)V R® +(Z, - %)2 - R In(Z, - % d R? +(Zq - %)2)

If r is outside the volume vi but r and r have the same Z coordinate

as Figure 52 tten

G 2dA , -1 , %
JF Ga (|r -,E'I) dr' = ‘;g tan (EE_) + (13)
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From this point on in this appendix a convention will be observed,

_ 24 a; (lr =r4]) x ¢ (Ei) vy will be understood to mean
i

the sum for all points except r = Ei . In the case of a coin shaped
detector all points for which the x and y coordinated of (r - gi) =0 will
also be excluded from the sum. In the éase of a wire detector all points
for which the Z coordinate.. of (r - r,) =0 will be excluded from the sum.,

For all of the points excluded from the summation the analytical

calculation of the integral

IEACREDES

v,
1

will be carried out as outlined above,

Thus:

f Vo1 (2. Gy (Jr =z'|) dr' ~
rf

24 ooy (@) & Uz -zl v
1

and
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In the 1limit as vy goes to zero the integral will be exactly equal to the
summation., In the numerical problem it will not be practical to let \f
go to zero, But the same detector will be calculated using several
different sub-division sizes in order to see the effect of sub-division
size upon ¥ (r) .

Next consider the integral

f v (") oz" -zt 07 6(z', 2" >x) dridrlaiar (16)

n 1 1
To,r',00r

where ¥ (r) is a known function. Using the spherical harmonic ex-

pansion for G(f_’, at —>£) the integral becomes, after integration over Q!

™ *.
" b 1 ny ~ "
Jren) Betoma, (e - s (1)
E":.I:"E a,
b A —
Yo (r=12') Gy (|z~z'[) dr'ar'ar

| b
Denote the real part Yg (Q) as RYE (Q) and the imaginary part as &Ya(g)

Next consider two terms, for b =Db' and b = -b' , in the above

summation, g=r'=r",0=r~r'



Note that

Thus
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PO (@ @F, )+ (18)

*p! A bt A, _¥p!
i Y (@) RY (e) + RY () RYab

2 @I & 1 GG 4

| ;b'<cp> ‘b'(é\.)}

RYS (4) = RY;°(2) (19)
A (@ =-dr@ (20)
P @ L@, - (21)
() G, () Y29 0, (6) -
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Nr @32 |

1if bt =0
Where &, ‘{2 if b £0
b:a b:a
aze 8=
So the summations cah mow be replaced with }J & -
a=0 a=0
b=-a b=0

Thus

fq; (r") G(r">zr', 2') G(r', @' —»r) dr"dr'dQ'dr =

Next consider

L
Where
R (1) = ) ey ¥ (2) 8, (2t - x, ) »
i
R§2 (r' -r,) vy
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Next consider

Where B

RE, (r') = zx/;:b G (|zy - x']) RY (zij-}r') vy

Qg () - }:ﬁb G, (g -2 DAY (g 2w
Thus '

L/PW () Gz - 2D % (e 22 Bz - 2 x

v (rd ) artarar -
A A EN BN C O XN
b b b b

) [ o ) - I @odel e

C ,
Finally

\/DW (z") (" »z', Q") G(x', Q' »1) dr'dr'd@'dr =

1" [ [
riyrtyfl,r

}IZ { RFZ () RE] (z,) -

a,b k
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NESENEYES b

Now consider the integral

/&&“aﬂ,ﬂﬁG@%Q'ag)@%@@p@:

"o Ot
ri,rt,Qhr

* —
-[) R e S -2 Rt 5

" [
r,r',ra,b

Consider
A
S8 e -2 o -m @)+ 1 (1) (39
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APPENDIX VI

NUCLEAR CONSTANTS

The nuclear constants used are all taken from the Tables of
Neutron Cross-Sections in BNL =~ 325(6) .. In the energy range which the
room temperature thermal neutron distribution the cross sections are either
constant or have a l/v dependence,

For the case of a constant cross-section the average of the
cross-section over a thermal neutron distribution presents no problem, For
the l/v cross-section it is well known that the cross-section averaged over
a thermal neutron distribution satisfies the equation:

Vx
2

o === g(2200 g)

For water

G o=
t

m|<ﬁ

x 106 b/molecule = 94,0 b/mol.

Since the absorption cross=-section for oxygen is very small compared to

hydrogen
o, for HY =2 xgi x ,332 = ,588 b/mol,
}: ) 94,0 x 05%25 X +997 - 3.1k et
t
=L
X

=133~
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For T the classic value of 2/5A is not valid for bound hydrogen. Radkowsky

has suggested the prescription

1

2
? <Gs8(E)>%
0

This formula gives values of § of .2 to .4 for energy around thermal., A

value of | = 0.3 was selected.

For graphite

4.8 x .6023 x 1.6 -
Zs - e s B

Vi .0033 x .6023 x 1.6 1
z =% R = .000235 cm
a
z = .385235 cn”
It
oy For gold
1

= 5,17 em’

Nx 98.8 x L6025 x 19.32
za =3 16752

3 x ,6023 x 19.32 -
Zf = 197?2X 22 skg en™!

(10

)
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]

5.719 cm—l

indium

x 196 x 6023 x 7,88 o 1

2 114,76

_ 2.2 x ,6023 x 7.28
- 11L.76 =

6,7242 ent

0842 et
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