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Abstract. Hide-and-Seek is a powerful yet simple and easily implemented continuous simulated 
annealing algorithm for finding the maximum of a continuous function over an arbitrary closed, 
bounded and full-dimensional body. The function may be nondifferentiable and the feasible region 
may be noneonvex or even disconnected. The algorithm begins with any feasible interior point. In 
each iteration it generates a candidate successor point by generating a uniformly distributed point 
along a direction chosen at random from the current iteration point. In contrast to the discrete case, a 
single step of this algorithm may generate any point in the feasible region as a candidate point. The 
candidate point is then accepted as the next iteration point according to the Metropolis criterion 
parametrized by an adaptive cooling schedule. Again in contrast to discrete simulated annealing, the 
sequence of iteration points converges in probability to a global optimum regardless of how rapidly the 
temperatures converge to zero. Empirical comparisons with other algorithms suggest competitive 
performance by Hide-and-Seek. 
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Monte Carlo optimization 

1. Introduction 

Consider the following constrained global optimization problem: 

max f(x) 

subject to x E S (P) 

where S is a compact body in ~d, i.e., S is a nonempty, bounded subset of R a 
equal to the closure of its interior, the boundary of S has Lebesgue measure equal 
to zero, and f is a continuous real-valued function defined on S. In other words, 
the problem is to find a point x* ~ S such that 

f*  -~ f(x* ) ~ f(x) 

* This material is based on work supported by a NATO Collaborative Research Grant, no. 0119/89. 
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for all x ~ S. Note that we do not require that f be differentiable nor that S be 
convex or even connected. 

Restricting ourselves to stochastic methods for solving global optimization 
problems, we can divide the methods for solving versions of (P) into two classes: 

�9 Two-phase methods 
�9 Random search methods 

Algorithms from the first class start by generating a random (usually uniform) 
sample of points in the feasible region S. Then, a local search procedure is applied 
to all (or a subset of the) points in this sample. If necessary, this procedure is 
repeated. The best local optimum found is used as the estimate of the global 
optimum. Examples of methods from this class are: (i) Multistart, for constrained 
global optimization (see Rinnooy Kan and Timmer, 1984); (ii) Multi Level Single 
Linkage, for unconstrained global optimization (see Rinnooy Kan and Timmer, 
1987a,b). 

The second class consists of algorithms which generate a sequence of points in 
the feasible region following some prespecified probability distribution (which can 
change during the course of the algorithm). Examples of methods from this class 
are Pure Random Search (see e.g. Rinnooy Kan and Timmer, 1984), Pure 
Adaptive Search (see Patel et al., 1988, and Zabinsky and Smith, 1992), and 
methods based on Simulated Annealing. 

Simulated Annealing is a sequential search technique that avoids getting 
trapped in local maxima by accepting, in addition to transitions corresponding to 
an increase in function value, transitions corresponding to a decrease in function 
value. The latter is done in a limited way by means of a probabilistic acceptance 
criterion. In the course of the maximization process, the probability of accepting 
deteriorations descends slowly towards zero. These "deteriorations" make it 
possible to move away from local optima and explore the feasible region S in its 
entirety. 

Simulated Annealing originated from an analogy with the physical annealing 
process of finding low energy states of a solid in a heat bath (see Metropolis et al., 
1953). Pincus (1970) developed an algorithm based on this analogy for solving 
discretizations of continuous global optimization problems. Most of the other 
applications to date have been to discrete combinatorial optimization problems 
(see e.g. Kirkpatrick et al., 1983, Aarts and Korst, 1988, and Aarts and Van 
Laarhoven, 1989). Formulations of the Simulated Annealing algorithm for 
continuous optimization have also been proposed (see e.g. Bohachevsky et al., 
1986, Corana et al., 1987, and Dekker and Aarts, 1991). Many of these 
formulations however, with the notable exception of the last one, lack theoretical 
foundations. 

One of the principal problems in the practical implementation of Simulated 
Annealing is the choice of a cooling schedule for the temperature parameter 
(which parametrizes the decrease of the acceptance probabilities for deteriora- 
tions as described above). For discrete simulated annealing Hajek (1988) has 
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provided necessary and sufficient conditions for a cooling schedule that guarantee 
convergence to the global optimum, for the case of a deterministic cooling 
schedule, i.e., when the sequence of temperatures is known in advance. In this 
paper we derive an adaptive cooling schedule for Simulated Annealing for 
continuous optimization, where the temperatures employed depend upon the 
real-time progress of the algorithm. This algorithm, called Hide-and-Seek, was 
introduced in Romeijn and Smith (1990). Brlisle (1992) proved that, under this 
cooling schedule, convergence to the global optimum of (P) is guaranteed. It is 
interesting that in contrast to the discrete case, convergence in this continuous 
case is guaranteed regardless of how rapidly the sequence of temperatures 
converges to zero. This is an important distinction since the required rate of 
cooling in the discrete case is rarely computable in practice, thus imparting a 
heuristic character to the algorithm in that case. 

The paper is organized as follows. In Section 2 we introduce a general class of 
random walks for generating a sequence of feasible points having the property 
that its limiting distribution equals a prespecified target distribution ~-. Again in 
contrast to generators in the discrete case that typically restrict moves to 
neighboring lattice points, this continuous walk can span the entire feasible region 
in a single step. These random walks are similar in spirit to the Hit-and-Run 
algorithms discussed in Smith (1984), Berbee et al. (1987), and Brlisle et al. 
(1993), as well as the Shake-and-Bake algorithms introduced in Boender et al. 
(1991). What is different is the use of an acceptance criterion to insure 
reversibility with respect to the limiting distribution ~'. In Section 3 we present the 
Hide-and-Seek algorithm. It is based on the idea of running the random walk of 
Section 2 with a target distribution that concentrates around the global optimum. 
An adaptive cooling schedule is derived and the algorithm is compared to other 
versions of simulated Annealing for continuous optimization. We conclude in 
Section 4 with a comparison of the performance of various versions of Hide-and- 
Seek with each other and with methods from the literature on a set of standard 
test problems. 

2. Reversible Random Walks 

2.1. A CLASS OF RANDOM WALKS 

Let S be a compact body in R ~ with boundary of Lebesgue measure zero. Let g 
be a strictly positive continuous density on S and set the target distribution ~" to be 
the absolutely continuous probability measure with density g, that is, 

~r(A) = fa g(x) dx "CA E ~3 

where ~ denotes the Borel ~-field on S. Let fl be a function on S 2 satisfying the 
following conditions: 
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(i) 0 < 6 ~</3(x, y) ~< 1 for all x, y E S, for some 6 > 0. 
(ii) /3(x, y) is jointly measurable on S 2. 

(iii) /3(x, y)g(x) =/3(y, x)g(y) for all x, y E S. 
We will call/3 the acceptance probability function, for reasons that will become 
clear later. Finally, let D denote the d-dimensional unit sphere centered at the 
origin, let OD be its topological boundary, and let v be an absolutely continuous 
probability measure on OD, with density h with respect to the uniform distribution 
on OD which is uniformly bounded away from zero. Consider the following 

Random Walk Algorithm 
Step O: Choose a starting point x 0 in the interior of S and set k = 0. 
Step 1: 
Step 2: 
Step 3: 

Step 4: 

Choose a direction Ok on aD with distribution u. 
Choose h k from the uniform distribution on A k = {h E R: x k + AOk ~ S}. 
Set Yk+l = X k  d- hkO k. With probability/3(Xk, Yk+l), set Xk+ 1 = Yk+l. Other- 
wise, set X k +  1 ~- X k .  

S e t k = k + l .  Go to step 1. 

Our assumptions on the region S and on the direction distribution v imply that, 
with probability 1, the uniform distribution in step 2, and therefore the random 
walk, is well defined. 

The random walk generates three random sequences: the direction vectors 
(On; n >/0), the candidate points (Yn; n >~ 1), and the iteration points (Xn; n >i 0). 
Our  main interest is in the sequence of iteration points. Clearly (Xn;n t> 0) is a 
Markov chain with state space S and with stationary transition probabilities. We 
will show that the target distribution 7r is a stationary distribution for this Markov 
chain and moreover  that for every starting point x0 in S the Markov chain 
converges in total variation and hence in distribution to zr. 

Note  that if/3(x, y) = 1 for all x, y ~ S, then 7r is the uniform distribution on S 
and the random walk becomes the Hit-and-Run algorithm. In that case stationar- 
ity of ~- and convergence of X n to r are known. (See Smith, 1984, Berbee et al., 
1987, or B61isle et al., 1993). 

2.2. REVERSIBILITY AND STATIONARITY 

Let  us recall some standard definitions. A measurable space is a pair (S, N ) where 
S is an arbitrary set and where ~ is an arbitrary o'-field on S. A Markov kernel on 
(S, N ) is a nonnegative function P defined on S x N and such that 

(i) for all x ~ S, P(x, .) is a probability measure on N, 
(ii) for all A ~ N, P(. ,  A) is a measurable function of S (see, e.g., Nummelin, 

1984). 
A Markov kernel P is said to be reversible with respect to a probability measure r 
if 
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lAP(X, B )Tr(dx) = f8 P(x, A)Tr(dx) VA, B E ~3. 

A probability measure r on (S, ~ )  is said to be stationary for the Markov kernel 
P if 

fs P(X, B)Tr(dx) = 7r(B) VB E ~. 

The following preliminary lemmas pertain to arbitrary Markov kernels on general 
measurable spaces. 

LEMMA 2.1. Suppose that a Markov kernel P is of the form 

P(x, A) = fA p(x, y)r 1A(X)(1 -- fs p(x, y)~'(dy)) 

for all x E S, A E ~, for some jointly measurable symmetric function p(x, y) o n  S 2 

and some probability measure 7r on (S, ~ ), where symmetric means p(x, y)= 
p(y, x) Vx, y E S and 1a(" ) is the indicator function of the set A. Then P is 
reversible with respect to ~r. 

Proof. Under the given assumptions, an application of Fubini's theorem yields: 

A P ( X ,  n = 

= fm (fB p(x, y)qr(dy)+lB(x ) �9 (1-- ~s p(x, y)Tr(dy)))7r(dx) 

= fz fB p(x, y)qr(dy)~r(dx) + fA 1B(X)" (1-- fs p(x, y)Tr(dy))7r(dx) 

fA p(y,x)~(dx)~r(dy) + fB 1A(Y)" (1-- fS p(y,x) ~r(dx))~r(dy) 

(fA p(y,x)~r(dx) + lA(Y ) �9 (1-- fS p(y,x)r 7r(dy) 

P(y, A) ~-(dy) 

for all A, B ~ ~.  Thus P is reversible with respect to 7r. [] 

LEMMA 2.2. Suppose that a Markov kernel P is reversible with respect to a 
probability measure 7r. Then ~r is a stationary distribution for P. 

Proof. Using reversibility we obtain 



106 H. E D W I N  R O M E I J N  A N D  R O B E R T  L. S M I T H  

fs P(X, A) r = fA P(x, S)rr(dx) 

= ~A qJ'(dx) 

= It(A) 

for all A E ~.  Thus ~- is stationary for P. [] 

We now return to the Markov chain (Xn; n i> 0) of the random walk of Section 2.1 
and we write 

P ( x , A ) = P r [ X n + , ~ A I X , = x ]  x E S ,  AE~3.  

The following proposition provides an explicit expression for this Markov kernel. 

PROPOSITION 2.3. The Markov kernel associated with the random walk of  
Section 2.1 can be written as 

P(x, A) = f p(x, y)Tr(dy)+ 1A(X)(1 -- SS p(x, y)~r(dy)) 
A 

for all x E S, A ~ ~ ,  where 7r is the target distribution, 

(h((y - x)/IlY - x l l )  + h((x - y)/IlY - x l l ) ) ~ ( x ,  y) 
p(x, y) - C~llx -Yll ~-'d(x, y)g(y) ' 

C d denotes the surface area o f  aD, and d(x, y) is the diameter of  S along the line 
through x and y. 

Proof. analogous to the proof of Proposition 3(b) of B61isle et al. (1993). Note 
that the first part of the expression for P(x, A) is the probability of moving from x 
to a point in A, and the second part of the expression is the probability of staying 
at x .  [ ]  

PROPOSITION 2.4. (a) The Markov kernel P associated with the random walk of  
Section 2.1 /s reversible with respect to the target distribution ~r. 

(b) The target distribution 7r is a stationary distribution for the Markov kernel P. 
Proof. Part (a) follows from Lemma 2.1 and Proposition 2.3. Part (b) follows 

from Lemma 2.2 and part (a). 

2.3. CONVERGENCE TO THE TARGET DISTRIBUTION 

We now can show that the sequence (Xn; n/> 0) of iteration points of the 
reversible random walk of Section 2.1 converges to the target distribution ~r. 

T H E O R E M  2.5. For every starting point x o in S, the Markov chain (Xn; n ~ O) 
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defined by the reversible random walk algorithm of  Section 2.1 converges in total 
variation to the target distribution 7r, i.e. 

nlirn Pr[Xn E B [Xo = Xo] = ~r(B) Vx o ~ S, VB E @. 

Proof. Using the representation of P(x, A) given in Proposition 2.3, Theorem 
2.5 follows easily via Condition (D') in Doob (1953), Chapter V, Section 5, case 
(b). [] 

Although the Markov chain (Xn; n ~>0) will be restricted in this paper to 
generating the Boltzman distribution for use in a simulated annealing context, 
Theorem 2.5 validates its use as a Monte Carlo procedure for generating samples 
from any absolutely continuous distribution or. Its use of an acceptance criterion/3 
for providing reversibility with respect to ~- can be significantly more efficient for 
peaked distributions (such as the Boltzman family for low temperatures), then the 
device of conditionalization utilized in Bdlisle et al. (1993). 

3. The Hide-and-Seek Algorithm 

3.1. HIDE-AND-SEEK 

We now return to the global optimization problem posed in Section 1: 

max fix) x~S 

where S is a compact body in R a whose boundary has Lebesgue measure zero and 
where f is continuous on S. Following Pincus (1968), Rubinstein (1981) suggests 
for approximating the global optimum that we generate points from the dis- 
tribution ~'r with density 

ef(x)/T 

gr(x) - .fs ei(Z)/r dz (1) 

where T is a "small" positive number. This is appropriate because for small T the 
distribution ~r r will "concentrate near the global maximum". To make this idea 
precise, for e > 0, define the e-level set as follows: 

= {x  E s :  f ( x )  >--f* - e}  

where f* is, as before, the global maximum of f on S. Then we have 

PROPOSITION 3.1. For all e > 0, 

lira ~rr(&) = 1. (2) 
T-->0 

Proof. Fix e > 0. Then 
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rrr(S,) = 1 - ~r(S - S,) = 1 

fs-s~ ef(X)/r dx 
>11 >11- 

Ss~l 2 e f(z)/T dz 

= 1 - e - ` ' ( m  q , ( s  - &) 
~o(Se/2) 

f.s-s, ef(x)/r dx 

fs ef(z)lT dz 

e(I*-O/Tq~(S -- S~) 

e(I*-("z))/rr ) 

where ~ denotes the Lebesgue measure o n  ~ d  (Note that our assumptions on S 
and f guarantee that q~(S~/2)> 0.) Thus limT__, o qTr(Se)  = 1. [] 

R E M A R K S  ON PROPOSITION 3.1. 
1. Pincus (1968) has shown that if the global maximum x* of f is unique, then 

the mean of the distribution zr T converges to x* as T converges to 0. This 
result also follows easily from Proposition 3.1. 

2. Proposition 3.1 suggests that, as T converges to 0, ~r  converges weakly to a 
distribution that concentrates on the set 

S* = { x E S :  f(x) = f * } .  

If S* consists of a single point x*, then Proposition 3.1 directly implies that 
�9 r r converges weakly to the point mass at x*. If S* has positive Lebesgue 
measure then it is also easy to show that ~r r converges weakly to the uniform 
distribution on S*. In the general case, weak convergence of ~'r is a very 
delicate issue. See Hwang (1980). 

Now fix T > 0 and hence the target distribution 7r r. The random walk of Section 
2.1 can, by Theorem 2.5, be used to generate a sequence (Xk(T); k/> 0) with the 
property that for every e > 0 

lim Pr[X~(T) @ S~] = 7rr(S,). (3) 
k---~ oo 

A choice consistent with properties (i) through (iii) of Section 2.1 for the 
acceptance probability function/3 is the so-called Metropolis criterion, given by 

[3T(X , y) = min{1, gr(y)/gr(X) } 

which, after substitution of (1), yields the acceptance probability 

fiT(X, y) = min{1, e (f(y)-f(x))/r } (4) 

of classical simulated annealing. In adherence with simulated annealing terminol- 
ogy, T will be called the temperature parameter. Combining (2) and (3) we get 

lim lim Pr[Xk(r ) E S~] = 1 Ve > 0.  (5) 
T---~O k - ~  

The Hide-and-Seek algorithm is motivated by equation (5). It consists of 
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generating a sequence X0, X1, X 2 , . . .  using the random walk algorithm of Section 
2.1 with target distribution 7r r with density gr(x) given in (1), with direction 
distribution v, and with acceptance probability function fir(X, Y) given by the 
Metropolis criterion (4), except that now the temperature parameter T will 
decrease to 0 as we proceed. The cooling schedule corresponds to a sequence of 
temperatures (Tk; k >I 0) that are adpative, i.e. for each k >i O, T k is a function of 
X o, X 1 . . . .  , X k. More formally, the cooling schedule is a sequence to, tl, t 2 , . . .  
where, for each k, t k is a jointly measurable function from S ~+1 to [0, ~]. The 
temperature T k is then given by T k = tk(Xo, X 1 , . . .  , Xk). In Section 3, we will 
offer a specific cooling schedule. For now we simply require that the temperatures 
decrease to 0 in probability as k---~ ~. 

A formal mathematical construction of the Hide-and-Seek algorithm (Xn; 
n/> 0) can be achieved as follows. We are given a compact body S in ~d, a 
continuous function f defined on S, a starting point x 0 E S and a cooling schedule 
( t ;  k~>0). On an appropriate probability space we construct a sequence (Ok; 
k/> 0) of i.i.d, random variables with distribution v on aD, and two sequences, 
say (Uk; k~>0) and (Vk; k~>0), of i.i.d, random variables with uniform dis- 
tribution on [0, 1]. The three sequences are independent of each other. The 
Hide-and-Seek Algorithm (Xk; k>-O) is defined by setting X 0 = x  0 and by 
proceeding recursively: Given Xo, X 1 , . . . ,  Xk, set 

Yk+l = g k  ~- l~kOk 

-1 
with A k = F(xk,xk+ok~(Uk) , where F(a,b ) is the c.d.f, of the uniform distribution 
over the set A(a, b ) =  {A E N : a  + A(b-  a~ lib-all)  s}, and F~al, b) is the usual 
right continuous inverse of F(a,b ). Finally, set 

Yk+l ifVk E[O, flTk(Sk, Yk+l)] 

Xk+l= Sk  i fVkE( f l rk (gk ,  Y k . l ) , l ]  

where T k = t~(Xo, X 1 , . . .  , Xk). 

3.2. CONVERGENCE OF HIDE-AND-SEEK 

Although successive iterations of Hide-and-Seek may experience deteriorations in 
objective function value, the following theorem, due to Brlisle (1992) states that, 
roughly speaking, these effects are transient and Hide-and-Seek will eventually be 
absorbed in arbitrarily small neighborhoods of the global maximum regardless of 
the rate of cooling. 

THEOREM 3.2 (cf. Brlisle, 1992). Consider the sequence (Xn; n I> 0) generated 
by the Hide-and Seek Algorithm using an adaptive cooling schedule (T n; n >I 0). 
Assume that for every starting point Xo, the cooling schedule converges to 0 in 
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probability. Then the sequence o f  function values (f(Xn); n/>0) converges in 
probability to the global maximum f* .  That is, for all e > 0 and x o ~ S, 

Pr[f(Sn) < f *  - e IX 0 = x0] ~ 0 as n ~ oo. 

Theorem 3.2 is perhaps somewhat surprising in that the discrete case notion of 
"depth" and corresponding restriction on the cooling schedule (see Hajek, 1988) 
play no role in this continuous case. The fundamental difference here is due to the 
fact that Hide-and-Seek executes global, as oppose to local, reaches over S within 
each iteration. 

In practice one would keep track of the current record value 

f* = max f ( X k ) .  
O<~k<~n 

The following corollary is an immediate consequence of the theorem. 

COROLLARY 3.3. In Hide-and-Seek, 

f*---~f* almost surely, as n---> oo. 

The convergence rate of the algorithm to the global optimum is of course 
dependent on the way in which the temperature is lowered to zero. The special 
case where the temperature is fixed at 0, reduces to the Improving Hit-and-Run 
algorithm (see Zabinsky et al., 1993). Incidentally, if the temperature were fixed 
at the other extreme of ~, we would have ordinary Hit-and-Run with the uniform 
distribution as its target distribution. This would effectively correspond to so- 
called pure random search. In the following section we derive a specific cooling 
schedule which begins with Hit-and-Run and asymptotically approaches Improv- 
ing Hit-and-Run. 

3.3. A HEURISTICALLY MOTIVATED ADAPTIVE COOLING SCHEDULE 

In Patel et al. (1988), Pure Adaptive Search is introduced. The algorithm consists 
of generating a sequence of points with the property that each successor point is 
conditionally uniformly distributed in the region of points with superior objective 
function values. In Zabinsky and Smith (1992), it is proven that Pure Adaptive 
Search exhibits linear time computational complexity in dimension for the class of 
global optimization problems whose objective function possesses a finite Lipschitz 
constant and whose feasible region is convex. However, the algorithm was posed 
purely as a theoretical construct, since no efficient implementation was known. 

Our choice of cooling schedule is motivated by the goal of approximating Pure 
Adaptive Search via Hide-and-Seek. Specifically, we choose the next temperature 
so that a point generated according to the limiting distribution ~'r of Hide-and- 
Seek under that temperature is very likely to be in the region of points with 
superior objective function value. Of course, 1r r is not conditionally uniform on 
this region; however it promises to be stochastically superior in value to uniform. 
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Therefore ,  under  this cooling schedule, we hope to inherit the favorable 

complexity properties exhibited by Pure Adaptive Search. Preliminary empirical 
evidence offers support for this hope as we will see in Section 4. 

We begin by considering a second-order Taylor series approximation of the 
objective function f at a point x 0 E S. We assume that the point x 0 is near a local 
maximum and that the corresponding Hessian matrix H is a positive definite 

matrix. In particular, we approximate f by 

f (x )  = - ( x  - Xo) 'H(x - Xo) + 2r'(x - Xo) + f(Xo) 

where H is a d • d-dimensional positive definite matrix and r is a d x 1 vector. 
Suppose now for convenience and without loss of generality for the argument to 
follow that x 0 = 0  and f ( X o ) = 0 ,  and assume that S is a level set of this 
approximation to f. Our  optimization problem becomes 

max f (x)  
x~.S 

where f (x )  = - x ' H x  + 2r'x and S = {x ~ R a : f (x )  ~ f *  - c} where c ~ R +. Note 
that we can rewrite the objective function as follows: 

f (x )  = r ' H - l r  - (x - H - l r ) ' H ( x  - H - l r )  

= f *  - (x - H - l r ) ' H ( x  - H - a r )  . 

The expression for the feasible region now reduces to 

S = {x ~ Ra: (x - H - l r ) ' H ( x  - H - l r )  <- c } .  

Given an iteration point x, we will choose the temperature T in such a way that 
generating a point from the exact distribution zr T would give an improvement  in 
function value over the current iteration point with probability at least p. As an 
alternative notation for the level sets of f ,  write: 

= {z  s :  f ( z )  > f ( x ) )  = s i . _ i ( x  . 

Let Y be a random variable with distribution ~r T. We then have: 

f~x e-f(Z)/T f~x e -f(z)/r dz dz 

Pr{ / (Y)  >f (x)}  - fv e -i(z)/r dz /> .fRd e -y(O/T d z"  

Now perform the transformation u = V2-/--TH1/Z(z - H - l r )  in both the numerator  

and the denominator.  We then get: 

fso;, e -u'u/2 du 
Pr{f(Y)  >f (x )} />  

fRd e -u'u/z du 

where 9~ = {u E Re: u'u  ~<2(f* - f ( x ) ) / T } .  The latter ratio is now equal to 



112 H. E D W I N  R O M E I J N  AND R O B E R T  L. SMITH 

Pr(ll UII 2 2(f* -f(x))/T} 

where IIui i  2 has a chi-squared distribution with d degrees of freedom. So this 
probability is equal to p if 

2 d 2 ( f * - f ( x ) ) / Z = X l _ p (  ) 

or, equivalently, if 

2(f* - f ( x ) )  
T -  2 d 

XX-p( ) 

2 d where Xl-p( ) satisfies: 

Pr{IIUII2~xL~(d))  = p .  

Summarizing, we have that 

Pr{f(Y) > f(x)} 

if 

2(f* - f(x)) 
T -  

2 d xl- ( ) 

where X]_p(d) is the 100 (1 -p )  percentile point of the chi-squared distribution 
with d degrees of freedom. This result gives us an update formula for the 
temperature. It is perhaps surprising, and certainly fortunate, that the formula 
does not involve H or r, Thus simplifying its calculation enormously. The 
remaining question is now: when should the temperature be updated. In the 
interests of efficiency, instead of running Hide-and-Seek at this temperature T for 
a sufficient number of iterations to nearly reach the limiting distribution err, we 
instead stop and update the temperature whenever the original goal of finding an 
improving point is achieved. Note that we are assured a sequence of temperatures 
which is adaptive and decreasing to zero, so that the results of Section 3.2 and in 
particular the conclusions of Theorem 3.2 and Corollary 3.3 hold. 

3.4. SUMMARY AND COMPARISON WITH OTHER METHODS 

Recall that the Hide-and-Seek algorithm proceeds as follows: from a starting 
point in the feasible region S, generate a direction vector from the uniform 
distribution over the unit sphere. The candidate for the next iteration point is 
then chosen uniformly from the intersection of S with the line defined by the 
current iteration point and the direction vector generated. The Metropolis 
criterion is then used for determining the next iteration point. 

The algorithm introduced in Bohachevsky et al. (1986) also generates a uniform 
direction vector from an interior point of the feasible region. Then, the candidate 
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for the next iteration point is however a fixed step size in the direction of this 
vector. The determination of this step size is not formalized, and no convergence 
properties of the algorithm are discussed. 

Another algorithm from the class Simulated Annealing is discussed in Corana et 
al. (1987). In this case the coordinate directions are chosen as direction vectors, 
each one in turn, and the step size is chosen uniformly from an interval which 
only depends on the particular direction vector chosen. Again, no convergence 
properties are derived. 

A third Simulated Annealing algorithm is introduced by Dekker and Aarts 
(1991). In this paper a similar Markov chain approach is taken as in Section 2 of 
this paper. The existence of a limiting distribution is proven in the case where the 
acceptance probability function is the Metropolis criterion. However, conver- 
gence of the algorithm to an optimal solution is not established for the 
inhomogeneous Markov chain, i.e., the case where the temperature changes 
during the course of the algorithm. The implementation of the algorithm is as 
follows. In every iteration, with probability t ~< 1 a point is generated from the 
uniform distribution over the feasible region S. With probability 1 -  t a local 
search procedure is started from the current point in the Markov chain, yielding 
an improvement over the function value of the current iteration point. The 
temperature remains fixed for a number of iterations depending on the dimension 
of the problem, before lowering it according to some cooling schedule. One of the 
main problems in implementing this algorithm is that the generation of the 
candidate iteration points, being uniform in the feasible region S, is a difficult and 
time consuming task when the feasible region is more complicated than for 
instance a hyperrectangle or hypersphere. 

4. Implementation and Numerical Results 

In this section we will discuss implementation issues and numerical test results for 
Hide-and-Seek applied to global optimization problems of the form: 

max f (x)  
x E S  

where f is a continuous function over S, and where S is a compact body in ~a, 
whose boundary has Lebesgue measure zero, and where S can be expressed as 

S = S 1 A S 2 A S 3 

where 

S 1 = {x ~ R~: ~e <~x <~u} 

S 2 = { x ~ d :  a~x<<-bj, j =  1 , . . .  ,mL}  

S 3 = {x E ~d: cj(x) <~0, j =  1 , . . . , m u L  } 
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where ,r u E R  a, aj E R  a and b jE  R ( j =  1 , . . . ,  mL)  , and cj is a continuous 
function on S 1 fq S 2 ( j  = 1 , . . .  , mnL ). 

4.1. IMPLEMENTATION OF HIDE-AND-SEEK 

4.1.1. Starting point 

Step 0 of the Hide-and-Seek algorithm consists mainly of finding a feasible 
starting point in S. We find this starting point by using the Hide-and-Seek 
algorithm to solve the following auxiliary optimization problem: 

mL mNL 

max(,~-lmin(O'bj-a~x)+x~sl _ j=l ~ min (0 , - c j ( / ) ) )  

Assuming that there exists a feasible solution to the original problem, the global 
maximum of the auxiliary problem will have value zero. The set of globally 
optimal solutions to the auxiliary problem is equal to S, the feasible region of the 
original problem. 

4.1.2. Direction distribution 

We will use and compare the following direction distributions: 
D1. Uniform on the boundary of the unit hypersphere, which is equivalent to 

O -- N(0, I). 
D2. Uniform on the boundary of the unit hypersphere after scaling the 

variables in such a way that the lowerbound is 0 and the upperbound is 1. 
This is equivalent to @--N(0, B),  where B = diag((u 1 - ~ 1 ) 2 , . . . ,  (u d - 
~d)2), in the original problem. 

D3. O i uniformly in (~ - ui, u i - ~i) (i = 1 , . . . ,  d). This choice is motivated by 
Kaufman and Smith (1991). They show that this direction distribution is 
optimal for accelerating the Hit-and-Run algorithm on S~ with target 
distribution equal to the uniform distribution on S~. 

4.1.3. Step size 

In general the set A k will be difficult to determine. In practice we will implement 
Step 2 by first computing 

Ak = { A ~ R :  Xk+AOkES  1 NS2} �9 

This is an easy task since all constraints in S 1 and S 2 are linear. It is clear that 
A k C/kk, so we can generate a stepsize uniformly from A k using the acceptance/ 
rejection method on /~k" 
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4.1.4. Cool ing  schedu le  

We will use and compare the following cooling schedules: 
E l .  tk(Xo, . . . , xg) = " r ( m a x o ~ < i < ~ k  f(xi)), where 

2( f*  - y )  
~'(Y) 2 d xl- . (  ) 

C2. tk(x o . . . .  , Xk) = ~'(maxo~i~k f(xi), f ( X o , . . . ,  xk)), where 

~-(y, )~) - 207-  y) 

and where j~(x0 , . . . ,  xk) is a consistent estimator of f*.  
C3. ~'k -= (0-99) ~. 

1 
C4. ~k = ln(k + 1) " 
C5. ~'k -- O. 

REM A R K S .  
1. For cooling schedules C1 and C2 we choose the parameter p equal to 0.01, 

i.e. the probability that the next point is improving is set to 0.99. 
2. For cooling schedule C2 we need a consistent estimator o f f* .  In accordance 

with the Adaptive Search algorithms we only update the temperature at a new 
record value, so that the estimator )~ will also only be updated at a new record 
value. Denote the sequence of iteration points generated by the algorithm by 
X0, X x , . . .  , and the corresponding sequence of function values by Y0, I11 . . . . .  
Let  Y~k~ and Y~-I) be the largest and second largest order statistics of the 
sequence Y0 . . . .  , Yk. Then we choose the estimator as follows: 

y(k)__ y(k_1) 
(f(Xo . . . .  , X k )  = Yr + (1 - q)-d /2  _ 1 " 

This estimator is the right endpoint of a 100(1 - q)%-confidence interval for the 
maximum value of the sequence f ( X o )  , f ( g l ) ,  . . . , estimated on the basis of the 
first k + 1 observations, under some conditions on the random variables f(Xi) (see 
De Haan,  1981). In the general case this estimator is consistent. 

3. The Hide-and-Seek algorithm with cooling schedule C5 corresponds to 
Improving Hit-and-Run (see Zabinsky et al.,  1993). 

4.2. EMPIRICAL TEST RESULTS 

In the Appendix we describe our testproblems in detail. These test problems 
consist of a combination of linearly and nonlinearly constrained problems taken 
from Aluffi-Pentini et al. (1985), Ballard et al. (1974), Dixon and Szeg6 (1978) 
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and Timmer (1984). This section shows the results of running the various versions 
of the Hide-and-Seek algorithm discussed above on problems 1-19 in the 

Appendix. The results are all averages over 20 runs, Where each run was stopped 
if a point was found whose function value was within 1% of the optimal value (if 
the optimal value was 0, we used a critical value of -0.01). Tables I-III  show the 
problem number 'p', average number of function evaluations 'f.e.', constraint 
function evaluations 'c.e.' (if applicable), new points in the sequence 'new' (i.e. 

Table I. Results for nonlinearly constrained problems 

Hide-and-Seek with alternate cooling C and direction distribution D Best other 

p f.e. c.e. new rec time best f.e. c.e. 

1 0.0 10.1 4.3 3.5 0.10 
530.6 1,866.2 24.9 14.8 9.87 
530.6 1,876.3 29.2 18.3 9.97 C1 D3 

0.0 158.1 19.2 14.8 1.17 
281.9 13,735.0 128.8 30.7 44.30 
281.9 13,893.1 148.0 45.5 45.46 C1 D3 

0.0 10.6 1.8 1.8 0.04 
197.5 541.0 10.8 10.8 3.16 
197.5 551.6 12.6 12.6 3.20 C5 D1 4871 1,057 

0.0 10.4 2.2 2.2 0.05 
105.6 1,500.5 31.9 31.9 8.06 
105.6 1,510.9 34.1 34.1 8.11 C5 D3 7391 1,322 

0.0 8.2 1.6 1.3 0.04 
288.4 541.2 14.7 11.0 4.65 
288.4 549.4 16.2 12.3 4.69 C1 D2 4541 440 

1 Multi Level Single Linkage, using a penalty function for handling the constraints (see Timmer, 
1984). 

Table II. Results for linearly constrained problems 

p Hide-and-Seek with alternate cooling C and direction distribution D 

f.e. e.e. new rec time best 

6 0.0 3.6 0.5 0.5 0.02 
174.4 0.0 36.4 36.4 2.05 
174.4 3.6 36.9 36.9 2.07 

0.0 2.6 1.1 1.1 0.02 
79.0 0.0 18.4 18.4 0.56 
79.0 2.6 19.5 19.5 0.58 

0.0 2.5 0.8 0.8 0.02 
95.7 0.0 19,9 19.9 0.96 
95.7 2.5 20.8 20.8 0.98 

C5 D1 

C5 D3 

C5 D3 
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Table III. Results for box-constrained problems 

Hide-and-Seek with alternate cooling C and direction distribution D Best 
Other 

f.e. new rec time best f.e. 

9 79.0 22.4 10.8 1.16 C1 D1 1971 
102 353.2 57.5 23.5 7.40 C1 D3 4871 
103 394.1 34.7 34.7 9.49 C5 D1 
11 621.2 14.2 12.4 5.58 C3 D2 1481 
12 717.6 14.9 11.1 5.37 C1 D3 1604 
13 547.4 29.0 13.0 4.69 C1 D2 
14 237.6 35.3 21.3 2.61 C1 D3 
15 900.5 9.7 9.7 9.37 C5 D3 26,8935 
16 301.8 21.4 7.2 2.26 C4 D3 5,3935 
17 738.1 10.2 10.2 5.49 C3 D3 51,2855 
18 421.1 11.1 11.1 3.02 C5 D3 I 0,2865 
19 114.9 11.8 8.4 0.86 C1 D3 3,4025 

1 Multi Level Single Linkage, using a penalty function for handling the constraints (see 
Timmer, 1984). 

2 The global optimum was not found in 35% of the runs. The averages have been taken 
over the remaining runs. 

3 The global optimum was naot found in 25% of the runs. The averages have been taken 
over the remaining runs. 

4 Random direction method (see Bremmerman, 1970). 
5 Method based on stochastic differential equations (see Aluffi-Pentini et al. 1985). 

number of iterations in which the candidate point was accepted), number of 
record values 'rec' and time (in seconds) on an Olivetti M24 personal computer. 
The results are only shown for the best algorithm on each problem, characterized 
by 'best' cooling schedule and direction distribution. For the nonlinearly and 
linearly constrained problems the first line in the table corresponds to the first 
phase (of finding a feasible solution), and the second line to the second phase (i.e. 
solving the actual problem). The third line is an aggregation of the first two. 
Where available, we have also shown the number of function (and constraint) 
evaluations for the best results reported in the literature for a particular problem. 
We should be careful in comparing the algorithms in this way however, since 
different algorithms use different stopping rules, and since each algorithm is 
usually tailored for a restricted class of optimization problems. From Tables I-III 
we can conclude that the algorithm is remarkably robust to problem type and 
performs quite well in comparison with other methods from the literature. In all 
but one case the optimal solution was found to within the desired accuracy in a 
modest amount of time and function evaluations. The only testproblem where the 
global optimum was not always found is the Hartman 6 testproblem. The 
objective function of this testproblem has only 4 local optima, and all of them 
correspond to very sharp peaks in the graph of the function. In general, we can 
say that problems of this type pose a special problem for the algorithm. If the 
sequence of points moves in the direction of one of the non-global local optima, it 
proves to be very difficult (although theoretically not impossible: we know that we 
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will get arbitrary close to the global optimum eventually) to escape from there, 
since it requires a very large decrease in function value or a large number of small 
decreases. As to the cooling schedules, C1 or C5 clearly performed best. The 
good performance of cooling schedule C1 in comparison with cooling schedules 
C3 and C4 suggest that much can be gained from using an adaptive cooling 
schedule, which takes into account the value of the best solution found. However, 
cooling schedule C2 did not perform as well as might be expected. The only 
reason for this can be in the accuracy of the estimator of the global maximum. 
Therefore, an important subject of future research is finding better estimators of 
the global maximum. The good performance of the simple cooling schedule C5 
seems remarkable. At this point we cannot explain this behaviour. 

4.3. EFFECTS OF PROBLEM DIMENSIONALITY 

In this section we consider Testproblem 20 (see the Appendix). This testproblem 
is posed for general dimension, so we can use this testprob!em to investigate the 
behavior of the algorithms for increasing dimension. In particular, we can test 
whether the observed number of record values grows linearly in the  dimension of 
the problem. From the complexity result of the Pure Adaptive Search algorithm 
we can hope for this. However, as noted before, the Hide-and-Seek algorithm is 
only an approximate implementation of this algorithm. Table IV shows, for 
various dimensions, the average number of record values (over !0 runs) for the 
Hide-and-Seek algorithm with cooling schedules C1 and C5. In all cases we used 
the uniform distribution on the boundary of the unit sphere as direction 
distribution. For d = 5 the algorithms were stopped as soon as a point with value 
larger than -0.01 was found (the optimal value of the problem is 0). Since the 
range of the objective function increases approximately linear in the dimension of 
the problem, we also let this critical value change linearly in the dimension of the 
problem. Linear regressions of the data in Table IV gives the following least 
squares fits: 

Nl(d ) = 2.45 + 4.62d 

Ns(d ) = -10.2  + 6.29d 

where N~(d) is the number of records found for a problem of dimension d, using 
cooling schedule Ci. The linear fit for both equations is excellent, yielding a 

Table IV. Results for problem 20 

d C1 C5 

5 23.2 23,1 
10 52.8 54,5 
15 70.4 77,8 
20 94.3 115.5 
25 117.9 149.8 
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percent variation explained of 99.5% for each. Thus, for this testproblem, the 
property of linear complexity in record values appears to hold, suggesting that 
Hide-and-Seek is a successful implementation of Pure Adaptive Search. 

5. Concluding Remarks 

In this paper we have introduced a new simulated annealing algorithm for global 
optimization. Experiments indicate that our method performs quite well as 
compared to other algorithms from the literature on a set of standard testprob- 
lems. Moreover, the Hide-and-Seek algorithm is easily implemented for problems 
having non-convex, or even disconnected, feasible regions. This is in contrast with 
many other methods, which often require for example problem specific local 
search algorithms. Another conclusion from the experiments is that the algorithm 
appears to inherit some of the attractive theoretical properties of the Pure 
Adaptive Search algorithm, and in particular linear time complexity in improving 
points in the dimension of the problem. 
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Appendix: Test Problems 

NONLINEARLY CONSTRAINED PROBLEMS 

1. Objective function: 

1 
f(x) = 2 

XIX2X 3 

Feasible region: 

0.44098x 1 + 28.46x~ + 6158.4x21x2 + 0.0037018x 3 + 5.4474x~ 

+ O . 0 3 2 2 3 6 x l x  3 + 2.92x2x 3 + 0.44712x 2 + 37.964x22 + 42.876XlX 2 - 1 ~< 0 

0 ~<x I ~< 0.18745 

0 ~< x 2 ~< 0.16230 

0 ~<x3 ~< 0.42846 

2. Objective function: 

f ( x )  = -(0.0204 + 0.0607x 2) . x l x  4 �9 (Xl + x2 + x3) 

- (0.0187 + 0.0437x 2) . x 2 x  3 �9 (x I + 1.57x 2 +x4) 

Feasible region: 
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2070 
1~<0 

XIX2X3X4X5X 6 

_~_ 2 
O.O0062XlX4X25 �9 (X 1 + X 2 "[- X3) O.O0058X2X3X 6 " (X 1 + 1.57X 2 + X4) --  1 ~< 0 

0~<xl ~< 10 

0<~x 2 ~< 10 

0~<x3~<15 

0 ~<x 4 ~< 15 

0~<xs ~< 1 

0~<x6~< 1 

3. Object ive function: 

5 1 

f ( x )  = i=1 ~ a i (x  - P i ) ' (  x - P i )  + ci 

Feasible region: 

X 1 "~- .X2 ~ 5 

x a - x 2 ~ < 0  

5X~__ s 2 3-x2 ~< 0 

- 3  ~ X  1 ~ 10 

- - 4 ~ < X 2  ~< 7 

Data:  

. 

i a i P i  ci 

1 0.5 0 5 0.125 
2 0.25 2 5 0.25 
3 1 3 2 0.1 

1 4 4 0.2 4 1~ 
1 5 2 5 1 

Object ive function: 

2 2 
f ( x )  = x 1 + x 2 

Feasible region: 
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X 1 qt-x 2 ~<2 
2 

X 1 -- X2 ~-~ 0 

-3~<x1~<2 

0 ~ X 2 ~ 5  

5. Objective function: 

f ( x ) = - ( x  2 - 1.275x2 + 5X 1 - -6 )  2 -  1 0 ( 1 - ~ )  COS(q ' / 'X l ) -  10 

Feasible region: 

--"/'/'X 1 --  X 2 ~ 0 

2 2 q_ 4X2 ~<0 --'/T X 1 

--11~<X1 ~<3�89 

0 ~ X 2 ~ 15 

L I N E A R L Y  C O N S T R A I N E D  P R O B L E M S  

6. Objective function: 

3 8x 2 f(X) = - -2X 1 --  6X 2 + X 1 --I- 

Feasible region: 

X 1 + 6x2 ~<6 

5X 1 qt_ 4X 2 ~ 10  

0~<xl ~<2 

0~<x2~ < 1 

7. Objective function 

1 (0.1211 1 .11-10  -6] 
f ( x ) = - ~ - \  x2 + xl-x2 / 

Feasible region: 

x 1 + x 2 ~< 0.12321 

0 ~< xl ~< 0.12321 

0 ~< x 2 ~< 0.12321 

8. Objective function: 

f(x) = (xl _�88 + (�89 

Feasible region: 

Xl + �89 ~< 1 
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O ~ x ~ l  

0 ~ x 2 ~ 2  

BOX-CONSTRAINED PROBLEMS 

9. H a r t m a n n  3 

Objective function: 

( ,__~1 ( a )2) 3 1 --P~J 
f ( x )  = c i exp - ij 7x j  

i=1 

Feasible region: 

O<~xj<~j  j =  1,2,3 

Data: 

i C i a i P i  

1 1 3 10 30 0.3689 0.1170 0.2673 
2 1.2 0.1 10 35 0.4699 0.4387 0.7470 
3 3 3 10 30 0.1091 0.8732 0.5547 
4 3.2 0.1 10 35 0.03815 0.5743 0.8828 

10. H a r t m a n n  6 

Objective function: 

(6 (1 )3 
f ( x )  = ,=,~ ciexp -~_ -]-xj-Pi , 

Feasible region: 

O<~xj<~j  j = l , . . . , 6  

Data: 

i c i a i 

1 1 10 3 
2 1.2 0.05 10 
3 3 3 3.5 
4 3.2 17 8 

17 
17 

1.7 
0.05 

3.5 
0.1 

10 
10 

1.7 
8 

17 
0.1 

8 
14 

8 
14 
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i Pi 

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650 

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

11. Golds te in /Price  

Objec t ive  funct ion:  

f ( x )  = - ( 1  + (x 1 + 2x 2 + 1) 2 

x (19 - 14x, + 3x~ - 28x 2 + 12x,x 2 + 12x22))(30 + (2x~ - 6x2) z 

x (18 - 32x~ + 12x21 + 96x 2 - 72XlX 2 + 108x2)) 

Feasible region:  

- 2 ~ < x l  ~<2 

- l ~ < x 2 ~ < l  

12. Branin 

Objec t ive  funct ion:  

f ( x )  = - ( x  2 - 1.275x~ + 5x~ - 6) 2 - 10 1 - -g -~  cos(~-xl) - 10 

Feasible region:  

-1�89 
0~<x2~<15 

13. Objec t ive  funct ion:  

f ( x )  = -(9xZ1 + 36x lx  z + 52x22 + 30(x z + 4x2 z + 2x I - 16) z) 

Feasible region:  

-4~<x~ ~<4 

2~<x2~<2 

14. Objec t ive  funct ion:  

( .t~--ll 2.55 "[- - 0.Z + 1.6" 105 f ( x )  = -- 2.1" IU X 2 -[- 6.29" 10 7 8. X 1 X 3 
X 3 XlX2X 3 X2 / 

Feasible region:  
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O ~ x ~ l  

0 ~ X 2 ~ 6- 105 

0~<x3 ~<3- 10 5 

15. Two-dimensional Shubert function 
Objective function: 

5 5 

f(x)=-(i~=liCOS((iW1)xi  + 1))(/__~1 i cos(5(i + 1)x2 + 1)) 

Feasible region: 

- 10 ~< x I ~ 10 

-2~<x2~<2 

16. Camel function 
Objective function: 

f(x) = - ( 4 - 2 . 1 x  2 ' 1  4x 2 - -  X 2 ) X  2 -v~Xl)Xl XlX2 + 4(1 - 2 2 

Feasible region: 

-4~<xl  ~<4 

- -4~X 2 ~<4 

17. Objective function: 

f ( x ) =  5 2 2 ~ _ - l O  Xl-X2+(x,  +x~) ~ l O - 5 ( x ~ + x ~ ) "  

Feasible region: 

-20~<Xl ~<20 

- 2 0  ~< x 2 ~ 20 

18. Objective function: 

1 2 1 2 _ 3 ( 1  _ cos(2xl)) - x  2 f(x) = - - ~ x  1 

Feasible region: 

- 10 ~< x ~  ~< 10 

- 10 <~ X 2 ~ 10 

19. Objective function: 

1 4 1 2 1 2 
f ( x )  = - - ~ X  1 "~- -~X 1 - -  1-~Xl - -  -~X 2 

Feasible region: 

--2~<Xl ~<2 

-2~<x2<~2 
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20. Objective function: 

d-1 

f(x) = -0.1" sin2(3WXl) + ~ (xj - 1)2(1 + sin2(3zrxj.+l)) 
j= l  

+ (x a - 1)2(1 + sin2(2~rxd))) 

Feas ib le  region: 

-10~<xj <~ 10 j = l , . . . , d  
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