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Abstract

The purpose of this research is to study the correctability prop-
erties of errors in a finite automaton driven by a random source. An
error is defined to be a pair of states and is corrected by a tape if
the tape takes both coordinates of the pair into the same state. Errors
are then classified as one of four types: correctable, finite, def-
inite, and non-correctable. A correctable error is an error for which
there is a correcting tape. The error is finite if the probability of
the set of correcting tapes approaches one as the length of the tapes
gets longer. A definite error is an error for which all tapes, of
length greater than some fixed length, are correcting tapes. A non-
correctable error is one for which there does not exist a correcting
tape.

We show that the set of finite errors induces a partition, called
the finite error partition, on the set of states. Also, for a re-
stricted class of random sources, this partition can be obtained from
the set of correctable errors independent of the statistics of the
source.

The notation of the semigroup of the automaton is then introduced.
It is shown that many of the error properties of the automaton can be
studied in terms of its semigroups. In particular, necessary and
sufficient conditions are given for the automaton to have errors which
are correctable but not finite and for the automaton to have only defi-
nite or non-correctable errors.

Further results are then given on analyzing the error properties of
finite automata which have a large number of states but can be decomposed

into a series, parallel connection of smaller automata,

iii



gection
1

2

6
7

Appendix

References

Table of Contents

Introduction
Formalization of the Problem
Fundamental Results

Introduction to Semigroups with Applications to
Definite Errors

Automata with Errors Which are Correctable But are
Not Finite '

Errors in Series Parallel Connections
Conclusion

Some Remarks on: the oo Case

iv

Page

15

28
39
67

T2



1. Introduction

This problem arose from an attempt to make a general study of
reliability in computer like machines. The classic results of von
Neumann (ref. 10), deal only with networks which do not have any
feedback. Thus a malfunction only causes the network to be in the
incorrect state for a fixed length of time.

However, a malfunction in the general case with feedback can
cause an error which persists forever. Fortunately, not all errors
are of this type. Some errors are of the type that can persist only
for a bounded time. Some, although they can persist infinitely long,
for certain random sources they have a probability of being corrected
which approaches one as the tapes get longer. Thus "almost all" of the
"long" tapes correct the error.

This is the phenomenon which we will study. We will show that
errors of the latter type, which will be called finite errors, induce
a partition on the set of states. In section two we will show that
in the case where the set of states is a finite set, this partition
can be obtained from another relation on the set of states without
knowing the statistics of the same. Thus a phenomenon which will start
out as probabilistic in nature will turn out to be a deterministic one.
We would like to apologize now for the trivial nature of the probabi-
listic arguments which will be used. This is due to the nature of the
problem.

In Appendix A we will show‘that in the case where the set of states

is infinite, the phenomenon of an error being corrected by almost all



the long tapes is indeed a probabilistic one. The infinite case will
not be studied any further due to the fundamental difference in the
nature of this problem.

The finite state problem will be studied within the framework
of finite automata theory. Although we have attempted to give the
definition of all the terms that we have used, we are still assuming
that the reader is familiar with the main results in this area. Thus
where the proof involves a construction used in the reference, we will
only outline the construction.

We also found that the use of semigroups is very helpful. Thus
in section four we have given the necessary definitions and funda-
mental results. We have not assumed that the reader has any previous
knowledge of the theory of semigroups. The value of semigroups will

become quite evident in the later sections.



2. Formalization of the Problem

In order to clarify the notation and to make the problem more formal,
we will begin by defining a finite automaton and an error in a finite

automaton.

Definition 2.1

A finite automaton M is a triple

M = (M', Z, d).
M'is a finite set with elements m, (set of states);
Y is a finite set with elements o, (input alphabet);

® is a function from M' X & — M' (next state function).

Later we will use M both to denote the finite automaton and its set
of states. We will also extend ® to M' X I¥, the set of sequences of
symbols from X, in the natural manner with sequences read from left to

right.

Definition 2.2

a. An error, E, in a finite automaton, M, is a pair of
states (mi,mj).

b. An error, (mi,mj), is corrected by a tape t ("tape" is
synonymous with "sequence")if and only if

S(mi,t) = S(mj,t),

We can think of an error (mi,mj) as the situation, when due to a
previous malfunction, the automaton is in state m, and should be in

state mj, or is in state m.j and should be in state m, . We can see from



the definition of an error being corrected that these situations are

equivalent.

In this work we will consider a random source, which generates se-

quences and drives the automaton. The next definition will meke this

clearer.

Definition 2.3

A random source S over an alphabet X is a set {Pn}, where

Pn is a probability distribution on Zn, satisfying the

requirement:

1) for all integers n and sequences x of length n

P . (x0) = P (x)
n+l n

of>¥
If, in addition, the random source satisfies the addi-
tional requirement:
There is a real number k > O such that for all sequences

x of length n and letter o

Pyl (x0) >k Pn(x)

then we will say that the source has property P. We will
call the ratio Pn+l(xc) /Pn(x) the probability that the
letter o follows the sequence x. Note that this means
that if the source has property P, there is a constant, Kk,
associated with the source such that the probability of

any o following any sequence x is always greater than k.

In addition we will say that a random source S = {Pn}



drives an automaton M if the probability distribution on the

set of input strings of length n for the automaton M is Pno

Definition 2.4

Let S be a random source with property P and output symbols
%, and let M = (M, £, ®) be a finite automaton driven by S.

For an error

E = (mi,mj) we define the following:

il

a. 7§(m.,m.) probability of the set of tapes of length

1773

which correct the error (mi,m.).

il

S
b. v (mi,m.)

.8 . . .
5 lim 7£(mi,mj) if the limit exists.

-0

The following lemma shows that for any source S and any error

S .
(mi,mj), y (mi,mj) exists.

Lemma 2.1
. S .
lim 7£(mi,mj) always exists.

- o

PROOF: 1 > 73+l(mi,mj) > yi(mi,mj). Since the limit of a monotonic,

bounded sequence always exists, the lemma is proved.

Q.E.D.

Now let us consider the following classification of errors in a

finite automaton M being driven by a source S as above.



Definition 2.5

An error E = (m ) is

R
a. definite if and only if there is an [/ such that
—g~————- ,
72(E) = l‘
b. finite if and only if 7S(E) = 1.
c. correctable if and only if 7S(E) > 0.

d. non-correctable if and only if 7S(E) = 0,




3, Fundamental Results

In this section we will derive some fundamental properties of errors
and will show the connection between the concepts of correctable and

finite errors.

Theorem 3.1
S S
If, for any source S, ¥ (ml,mE) = g, end 7 (mg,mB) = g, then

S

PROOF: Let TO be the set of tapes that do not correct (ml,mg) or
(mg,ma); T1 be the set that either corrects (ml,me) or (mz,m5) but not
both; T2 be the set that corrects (ml,mg) and (me,m5); and T3 be the
set that corrects (ml 5).
disjoint and that T2 C T3 C T2 U TO. We will use Prﬂ(T) to mean the

Py We know that TO, T1l, and T2 are mutually

probability that a tape t of length [ is in T. Therefore, we have

g +8 = lim (Pr,(T1) + 2Pr (T2))
-
= lim Prz(Tl) + 2 lim Prz(TE).
- o0 - ©
But we also have for all £, Prz(Tl) + Prz(TE) < 1. Therefore

g * 8 <1+ lim Prg(TE) <1+ &5
1= o0

where g3 = 7(ml,m5). Hence 85 > 8 * 8 - 1. Likewise, letting T1l be
the set of tapes which correct (ml,mg) and not (mg,mB), and T12 be the

set which corrects (m2,m5) and not (ml,mg), we have
7Z(ml,m2) = PrZ(TE) + Prz(Tll)

and



7z(m2,m5> = Pr,(12) + Pr (T12).
Thus
| 7, (nym,) - 7, (mym,) | = [Pr, (1) - Pr,(22) | .
But
| Prz(Tll) - Prz(TlE) | < Prﬂ(Tl) <1- (Prl(TO) + Prl(TE)).

Now, taking limits as ] goes to infinity, we get
gl'g2ls_l'g5°

Therefore

Q.-E.D.

Corollary 3.1

The set of finite errors in an automaton M driven by any
source S induces a partition on the set of states. That

is, there is a partition =n_ on the states of M so that

F

E = (mi,mj) is finite if and only if m,

m
=

(ﬁF).

PROOF: It is obvious that if 7S(mi,mj) = 1, then ys(mj,mi) = 1 by the
symmetry inherent in Definition 2.2b. Likewise, 7S(mi,mi) = 1. Now,

by Theorem 3.1, we have that if 7S(mi,mj) =1 and 7S(mj,mk) = 1, then
4 (mi,mk) = 1. Hence, the finiteness relation is an equivalence rela-

tion and partitions the set of states.

Q.EODD

We will use the abbreviation lg(t) for the length of the tape t.



Theorem 3.2
Let C CM X M be the relation (mi,mj)ec if and only if
(mi,mj) is a correctable error. Also, let S be a source
with property P. Then yS(mi,mj) = 1 if and only if for

all tapes t, (S(mi,t), B(mj,t))ec.

PROOF: If (mi,mj) is finite then, obviously, (mi,mj) is correctable.
If there is a tape t such that (S(mi,t), S(mj,t)) is not correctable,
then for all t' (S(mi,tt'), S(mj,tt')) is not correctable. Hence,
7(mi,mj) <1- (k)lg(t) < 1 where k is the constantjgreater than zero
associated with the source. Therefore (mi,mj) is not a finite error.
Conversely, let us assume that for all t (B(mi,t), 6(mj,t))ec. Let
A= {(mk,ml) | for some t S(mi,t) = m_ and 6(mj,t) = mﬂ}. Then, for
each (mk,mﬂ)eA, pick a t' which corrects (mk,mz). Let p = k' where

r = max 1lg(t'). Then 7£(mi,m.) >1 - (l-p)[g/r] where [1/r] is the

J
greatest integer less than [/r. Hence

- -
Since p > 0, we have 7(mi,mj) = 1.

Q.E.D.

Since the concept of an error being correctable is not dependent
upon the source, the above theorem tells us that as long as we are deal-
ing only with the class of sources that have property P, the property of
an error being finite is also independent of the source. In what follows
we will assume that the term "source" will refer to a source with prop-

erty P unless we explicitly say otherwise. Thus we will call an error a
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finite error if it is finite for some source (hence all sources) with

property P, and we will call = the finite error partition. Likewise

F
we will drop the superscript denoting the source. We will call an error
a non-trivial error if it is not of the form (mi,mi).

Theorem 3.2 gives us some idea of the connection between the rela-
tion C and the partition ﬂF. The next theorem is a stronger character-

ization of this connection.

We will use the canonical ordering on partitions (i.e.

Theorem 3.3

KF is the coarsest partition with the substitution property

such that m, = m, (ﬂF):::§:>(mi,mj)eC.

PROOF: First we must show that if m, = mj(n ) then for all tapes, t,

F
8(mi,t) = S(mj,t)(ﬂF) and hence 7, has the substitution property. Let
us assume that this was not true and there was a t such that

6(mi,t) £ 6(mj,t)(ﬂF). Then by Theorem 3.2 there would be a t such
that the error, (a(a(mi,t),t'), 6(6(mj,t),t')) = (6(mi,tt'), 6(mj,tt')),
is not a correctable error. Hence all tapes in the set tt'X¥* do not
correct the error. Hence, for all £ > lg tt',-yz(mi,mj) <1- 8 Tt
Thus (mi,mj) is not finite which is a contradiction. Now to show that
KF is the coarsest such partition, let = be a partition with the substi-
tution property such that m, = mj(n):::§:> (mi,mj)ec. Then if

m

1]

N m{j (n), (mi,mj)ec. Also, since by the hypothesis n has the sub-

stitution property, for all tapes t, 6(mi,t) = S(mj,t)(ﬂ) and hence

(8(m,,t), (m.,t))eC. But by Theorem 3.2, this means that m, = m, ().
i’ 7 J i JVF
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Therefore = < ﬂF.

Q.E.D.

We will now give two definitions due to J. Hartmanis and R. Stearns

(ref. 4 and 6).

Definition 3.1

A finite automaton M, = (Mi, %, d) state behavior realizes

M, = (Mg, %, ®') if and only if there is a one to one map-

ping, h of M2 onto Ml such that for all tapes t and states

),t).

m, €M, h(S’(mi,t)) = S(h(mi

Definition 3.2

Let M; = (Ml, %, 8), M, = (M, ', 8') and x:Mlx PN

2 2’

Then the geries connection of Ml with M2 with connecting
function A is the automaton M = (Mlx Mg’ %, ") where d"

is defined as follows:

8"((mi,mj),0) = (B(miyg)) 6'(mj) x(miJG)))-

We will say that a finite automaton M can be state behavior real-
ized by a series connection of finite automata Ml and M2 if there is a
connecting function A such that M is state behavior realized by a
series connection of Ml and M2 with connecting function A.

The following corollary is an immediate consequence of Theorem 3.3

and a well known result of Hartmanis.
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Corollary 3.2

If M is a finite automaton with a finite partition EF’ then
T can be state behavior realized by a cascade connection of
two automata M/ﬂF and T, where all errors in T are finite,

~and M/ﬂF has no non-trivial finite errors.

PROOF: By Theorem 3.3, n, is a partition with the substitution prop-

F
erty. Hence, we know (Hartmanis, ref. 4) that we can decompose M into
a cascade connection of two automata where the state of the front auto-
maton distinguishes between blocks of the partition and the back auto-
maton distinguishes the elements of a single block. Thus since an
error within a single block is a finite error, all errors in the back
automaton are finite. Likewise, since an error out of a block is not

a finite error, the front automaton has no finite errors.

Q.E.D.
Let us now look at an example in order to demonstrate these theorems.

Example 3.1

Let M = ({a,b,c,d,e}, (0,1}, 8) where ® is the mapping shown below.

01011
alb }|d
blald
clalb
dlb|d
elald

It is easy to show that

c = {(a;d); (d;a)v: (b)c)) (C)b)) (e)a>) (a:e)) (e)d)) (dJe)3 (b;e)) <e)b))
(c,e), (eac)) (a:a); (b,b), (c,c), (d)d); (eye)] .

There are four equivalence relations with the substitution property
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contained in C.

To= {a, b, ¢, d, e}
n, = {a,d, o, c, e}
o= {a, b,c, d, e
M, = {a,d, b,c, el}.

The greatest one is ), . Thus the only finite errors are

{(a,a), (b:b); (C;c)) (d:d); (e,e), (a:d): (d)a): (b:c)) (C:b)} .

Also using Theorem 3.3 we can get a simple proof of a special case

of a theorem which was proved by Winograd (ref. 15), and also in another

context by Gilbert and Moore (ref. 3).

Corollary 3.3

All errors in an automaton M are finite if and only if
M has a reset tape. (A tape t is a reset tape if S(mi,t)

is independent of mi.)

PROOF: From Theorem 3.3 we get that all errors in an automaton M are

finite if and only if all errors are correctable. Define a tape

t=1t%t t

1 Bs 0 b g (k = number of states of M) as follows:

t. corrects (m. ,m

1 1 2)

t,,, corrects (S(ml, Ty e ti), 8(mi+2, LR ti)).

If it is possible to construct such a t, then t is a reset sequence.
is not possible to construct such a tape if and only if for some i,
(S(mi, Ty e ti), 6(mi+2, by e ti)) is not a correctable error.

But then, this (S(ml, Ty e ti), 6(mi+2, by e ti)) is not finite.

Hence we can construct t if and only if all the errors are finite.

It

Q.E.D.
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Let us now look at another example to show the use of this theorem.

Example 3.2

Let M = ({a,b,c,d}, {0,1}, &) where & is shown below.

It is easy to see that all the errors are correctable. Hence

KF = {a,b,c,d} and all errors are finite. Upon examination it can be

seen that the tape 000 is a reset tape since 6(mi,OOO) = d regardless

of m,.
i



4, Introduction to Semigroups with Applications to Definite Errors

In the course of studying errors in finite automata, it became ob-
vious that many of the error properties (as well as other properties)
of finite automata are more easily discussed in terms of the semigroups
of the automata (ref. 7 and 9). In this section we will give some re-
sults about semigroups. Their usefulness will become more and more
apparent in later chapters. (For a greater exposition on semigroups
the reader is referred to Clifford and Preston, ref. 2).

First let us define what a semigroup is and what we mean by the

semigroup of an automaton.

Definition 4.1

A mapping 7: S XS = S is said to be an associative mapping

if and only if for all elements 815555 and s, all in S,

5
((s9 7 85)7 85) = (59 7(s5 7 85)).

Thus if a mapping is associative, the order of the elements in a
compound mapping determine the result independent of parenthesization.

Hence we will omit the parentheses.

Definition 4.2

A semigroup is a pair, (8,:) where S is a set of elements,
and . is an associative mapping of S X S —»S. A semigroup

will be called finite if the set of its elements is finite.

We will call "." multiplication and will write s rather than

152

8,8, a8 with multiplication of real numbers. We will also use the

15
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same letter to denote the semigroup and its set of elements. It will be

clear from the context which one we mean.

Definition 4.3

Let M = (M, Z, 8) be a finite automaton. SM’ the semigroup

of the finite automaton M, is the semigroup whose elements
are‘transformations, mapping the set of states M into it-
self, induced by the next state function 8. That is,

SM = {si |si: M — M and there is a nonempty string t over
% such that for all states m,, S(mi,t) is equal to the
image of the state m, under the transformation Si}' The
multiplication operation sl-s2 is the composition of 52

and Sl’

It is clear that the multiplication operation in the above opera-
tion is associative and that the set of its elements is closed under

multiplication. Hence SM is indeed a semigroup, as desired.

Definition 4.4 (Ideals)

(a) A nonempty subset L of a semigroup S is called a left
ideal if and only if SL C L, where SL = {x| for some
seS and feL s = x}. |

(b) A right ideal, R, is a nonempty subset such that RS CR.

(¢) A two-sided ideal, T, (or just ideal for short) is a

nonempty subset such that STS C T.

(d) A two-sided ideal is called a minimum ideal if it does

not properly contain another two-sided ideal. Similarly,

a right (left) ideal is a minimum right (left) ideal if
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it does not properly contain any right (left) ideal.

(e) The kernel of a semigroup is the minimum two-sided

ideal, if it exists.

The following three lemmas are known results about finite semigroups

(See Clifford and Preston, ref. 2.) that will be used in this study.

Lemma 4.1

Every finite semigroup has a kernel.

PROOF: The kernel is just the intersection of all the two-sided ideals.
There is always at least one two=-sided ideal since S is a two-sided
ideal of itself. Likewise, since S is finite, there can be only finitely

many ideals. Also, if Tl and T, are two ideals of S, then T.T CZTl

2 12

and T1T2 C:TE. Hence TlT2 CZTl N T2 and thus the intersection is non-
empty. Thus the theorem is proved.

Q.E.D.

Lemma 4.2
Let S be a finite semigroup with kernel K. Then

K = UR, = UL,
1 J

where {Ri} is the set of minimum right ideals and {Lj}

is the set of minimum left ideals.

PROOF: It is clear that if Ri is a minimum right ideal Ri C K since if
s.€K, R,s, CK and R,s, CR,. Hence R, N K is not empty. But R, NK

i i'i i'i i i i

is a right ideal, hence, Ri nNK = Ri’ since Ri is a minimum right ideal.

Thus U Ri C K. We will now show that U Ri is a left ideal. First we
i
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claim that for any sies, siRi is another minimum right ideal of 5. It
is clearly a right ideal. Assume V CisiRi is a right ideal. Then let
U CIRi, U = {rieRi lsiriev]. Then, if V is properly contained in SiRi’
U is properly contained in Ri' But U is a right ideal. Hence V = SiRi
and thus siRi = Rj a minimum right ideal. Now U Ri is a right and left
ideal and, therefore, ideal. But K is contained in every two-sided

ideal. Thus K = U Ri' Likewise K = U Lj'

Q.EBD'

Lemma 4.3
Let R be a minimum right ideal and L a minimum left ideal

of a semigroup S. Then RL =R NL =G is a group.
PROOF: See Clifford and Preston, page 77 (ref. 2).

T will now give an example illustrating some of the concepts

which were introduced above.

Example 4.1
Let M = ({a,b,c,d}, {0,1}, ®) where ® is given in the following

table:

S. , the semigroup of the finite automaton has elements as indicated

M)

below.
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1 5o 83 8y 85 8¢ 87 8g 89 510 °11 f10 F13
al D ¢ ¢ d b d b d b d ¢ d ¢
b cdd b b d b c d d c d ¢
c d b d b dd b c d c d b c
al ' d p 4 » d &d b e d ¢ d b c

The kernel K of S, is the set of elements {56,57,515}. The only

M
minimum right ideal 1is {86;87,815}. The three minimum left ideals are

[36},{87}, and {813}. Examples of right ideals which are not minimum

right ideals are {85,86,57,88,615} and {s5,56,57,510,511,312,515}.

Definition 4.5

Let S be a semigroup. An element sies is idempotent if
and only if Sisi = 8;- We will call an element a minimum
idempotent if it is an idempotent element and also is con-

tained in some minimum right ideal.

Using this definition and the above lemmas we get the following

well known corollary first obtained by E. H. Moore (ref. 10).

Corollary 4.1

Let s be an element of a finite semigroup S. Then for

some integer Xk, sk is an idempotent element of S.

PROOF: Consider the set of elements {Si]. This is a finite semigroup
and hence must contain at least one minimum right ideal and one minimum
left ideal. But the intersection of a minimum right and minimum left
ideal is a group and hence contains an identity. But an identity must

be an idempotent. Hence the corollary is proved.
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So far in this section, we have only been giving results which deal
with semigroups in general. The next theorem shows the intimate connec-
tion between errors in a finite automaton and the semigroup of the auto-
maton. For convenience we will use hM(x) to denote the element of the
semigroup of the finite automaton M which corresponds to the input tape

x. Note that hM is a semigroup homomorphism of 2% into SM'

Theorem 4.1
Let E be an error in a finite automaton M. Then E is
1. correctable if and only if E is corrected by some
minimum idempotent of SM.

2, finite if and only if E is corrected by every mini-

mum idempotent of SM.

PROOF: If E is correctable then there is a tape x such that all tapes
in the set x &% correct E. But hM(x $*) is a right ideal of 8 which
must be finite since M is finite, and hence must contain a minimum
idempotent. Likewise, if 8;, @ minimum idempotent of SM corrects L,
just by the definition of SM, there must be an xeX* such that
hM(x) = Si" Hence E is correctable. Thus we have proven part 1.

Let us now assume that there is a minimum idempotent which does
not correct E. Then there exists a right ideal R C S

M
elements do not correct E. But the set of tapes {x |hM(x)€R} is a

, all of whose

right ideal of I¥ and hence contains a right ideal of form y %% all of
whose elements do not correct E. Hence E is not finite since
7(E) < 1l - klg(y) < 1. Now if B is corrected by every minimum idempotent

we must show that E is finite. We know for every finite semigroup there
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is an element Si such that for all sj and s S s.sj is in a minimum

Kk’ kUi

right ideal. Also, if E is corrected by every minimum idempotent, it

is corrected by every element of every minimum right ideal. Now let

xeS* be such that hM(x) = s+ Also, let V = {yez* |y # 2z %X 2" for all

z and z'}. Then it is obvious that lim P,V = O; thus lim Pi(Z*-V) = 1.
i-%0 i-%0

But all elements of L*-V correct E. Hence E is finite. We have thus

proven part 2.

Q.BE.D.

We will now state an immediate corollary to this theorem. We will
use ﬂs to indicate the partition induced by the mapping associated with

the semigroup element s.

Corollary 4.2

An error E = (mi,mj) in a finite automaton M is
(1) finite if and only if m, = mj(ﬂ T ) where {si}
i
is the set of minimum idempotents of SM’

(2) correctable if and only if m, m.(ftS ) for

J .
i
some minimum idempotent of SM’Si”
Thus the above corollary tells us that the partitions associated
with the minimum idempotents of SM completely characterize the error
properties of the automaton M. Returning again to semigroups, the next

theorem will prove to be very useful in studying definite errors.
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Theorem 4.2
Let S be a finite semigroup and T a two-sided ideal of S.
Then there is a constant ¢ such that for all n > ¢ and all

cesS_, 8

815807« n? 51 8o +ev 8, € T, if and only if there is no

idempotent element of S contained in S-T.

PROOF: First of all, if there is an idempotent 8 in S-T, then for

J

all J, 5% is in S-T. Thus there is no such constant c¢. We will prove

the converse by contradiction. If there does not exist such a constant

38, S, 35, S, 'S, yee
L7ey 273 3 3

all in S-T. Now let n be an integer greater than |S|, the cardinality

c, then there is an infinite set of products s

of the set of elements of the semigroup S, and consider the set

P={p |pi = snl sn2 .o sni). Since ]P | must be less than ]S l,

there must be an i and j such that pi = pj; that is

Sn sn oo Sn = Sn sn oo Sn s coo sn . Now since T is a two-
1% i 1" i 41 3
sided ideal and all pi are in S-T, we get that pi is in S-T and
X = 8 cev S is in S-T. Hence for any i, p.xz = p, is in S-T,
D41 3 + .

However from Corollary 4.1 we get that some power of x must be an idem-
potent, and we know it is not in T. Therefore S-T must contain an
idempotent.

Q.E.D.

This theorem will get most of its use in this study in the partic-

ular instance when T is the kernel of S.
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Corollary 4.3

Let S be a finite semigroup and K its kernel. Then there is
a constant ¢ such that s® C K if and only if all the idem-

potents of S are in K.
PROOF: This follows immediately from Theorem 4.2 if we let T = K.
Now let us give two more definitions.

Definition 4.6

A right ideal of a semigroup S, is a universal minimum right

ideal if it is contained in every other right ideal of S.

(Clifford and Miller, ref. 1)

Definition 4.7 (Perles, Rabin, and Shamir, ref. 12)

A finite automaton M = (M, %, 8) has a k-definite move func=
tion if and only if for all sequences Op «eo 0y of k letters

from Z; 6(mi, o} = S(mj, o ck) for all g s,

R ak) N

in M, ©Note that this implies that

0.

S(mi, ¢) o0 Ok) = S(m.g 8] k)c

1 37 Okl o Gzcl ses
We will informally call a finite automaton k-definite if its

move function is k-definite.

The tie up of definite errors and definite automata is clearer

after the following two lemmas which are due to Hartmanis and Stearns

(ref. 5).
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Lemma U4.4
A finite automaton M = (M, &, ®) is definite if and only

if g1l its errors are definite.

Lemma 4.5
If M is a finite automaton, then M can be decomposed into
a series connection of two finite automata Ml and M2 as

shown below with all errors in M2 being definite and no

nontrivial error in Ml being definite. Hence M2 is a

definite automaton

This lemma follows from the fact that there is a partition with
substitution property KD on the states of M with the property that

an error E is definite if and only if m, <=«

5 D’ The following theorem

gives a characterization of the semigroups associated with definite

automata.

Definition 4.8

Let 8 = (S,+) be a semigroup. Then, an element z of § is

a right zero if and only if for all seS5, s°z = zZ.

Definition 4.9

We will say that M = (M, £, ) is a union of the finite auto-

mata M, = (mi, i Si) i=1l,...,k if the following conditions

hold.:
1. i % J ::::;> Mi N Mj empty
2, UM, =M

.1

1
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3. Si = O restricted to Mi,

Theorem 4.3
Let M = (M, &, d) be a finite automaton. Then the following
two conditions are equivalent:
(1) M is a union of definite automata.
(2) 8, contains a universal minimum right ideal U such
that all elements of U are idempotent and all the

idempotents of SM are in U,

PROOF; If M is a union of k-definite automata then for all o, 0. ...0, ,

1
5., 0, 0, ...0, ) = d(m., to. o, ...0, ) for any tape t. Hence
177, i i i, 1
hM(t Gil cee cik) must equal hM(cl e ok). Thus hM(t)'hM(oil e Oik)
= hM(cl ees O, )3 since hM is a homomorphism. But since Oi sos O,  Was

x N

an arbitrary type of length k we get that if't' is a tape of length k,
hM(t') is a right zero and thus an idempotent. It is also clear that
if x is an idempotent, then < = x, an element of hM(Zk). Thus, since
every right ideal must contain an idempotent we get that hM(Zk) is a
universal minimal right ideal all of whose elements are idempotents
and which contains all the idempotents of SM.

To prove the converse we must show that there is a k such that
all products of k elements are in U and that every element of U is a
right zero. Now since U is a universal minimum right ideal, U is the

only minimum right ideal and thus by Lemma L.2, U is the kernel of SMa

But since all the idempotents of S

N 8re in U, we are guaranteed of the

existence of such a k by Theorem 4.2. Also, since U is the kernel of

SM’ it is equal to the union of the minimum left ideals. But since the
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intersection of a minimum left ideal and a minimum right ideal is a group
(Lemma 4.3), it must contain exactly one idempotent. Hence every element

of U must be a one element minimum left ideal. Therefore, for all uel

and seSM, s«u = u which means that u is a right zero.

Q.E.D.

From this theorem we get two immediate corollaries.

Corollary L.k

M is a union of definite automata if and only if the set

of idempotents of S, is a minimum right ideal.

M

PROOF: TIf the set of idempotents is a minimum right ideal, it must be
a universal minimum right ideal since every right ideal must be a

finite semigroup and hence must contain an idempotent.

Corollary 4.5

M is a union of definite automata if and only if every

idempotent of SM is a right zero.

PROOF: It is clear that for any finite semigroup the set of right zeros,
if it is not empty, is a universal minimum right ideal. Conversely, if
all the idempotents are in a universal minimum.right ideal, they are all
right zeros as shown in the proof of Theorem 4.3

Q.E.D.

Let us point out here that Theorem 4.2 can be applied to give more
results on definite errors. Thus, for instance, a finite automata is

such that all its finite errors are definite errors if and only if there
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are no idempotent elements outside its kernel. As an aside, let us
remark that it can be shown that linear automata only have errors which
are either non-correctable or definite. Hence the above results tell

us something about the structure of semigroups of linear automata.



5. Automata With Errors Which Are Correctable But Are Not Finite

In the course of studying errors, an attempt was made to classify
the set of finite automata which hgve errors that are correctable but
not finite. One conjecture of the author was that if an automaton was
strongly connected [That is, for all pairs of states m, and mj, there is
a tape t such that 6(mi,t) = mj} and if it had correctable errors which
were not finite, then the automaton could be state-behavior realized by
a cascade connection of some automaton Ml and a nontrivial permutation
automaton M2 (a permutation automaton is one where every input causes a
permutation of the states).

M By

Note that this conjecture said that correctable but not finite

errors were just errors which arose in M. and "drifted" into M,. That

1

this conjecture is not true can be seen by the automaton in Example 5.1.

Example 5.1

M = ({a,b,c,d,e}, {0,1}, 8)

O 0 o olom
O 0o mo oo
QT 0 T

The correctable error relation is

C = {(a,c),(c,a),(d,e),(e,d),(c,e),(e,c),(a,d),(d,a),(a,a),(b,b),(c,c),(d}d)}

However, there is no nontrivial partition with the substitution

property on the states of M. Hence, there are no nontrivial finite errors,

and also M can not be decomposed as in the conjecture.

28



29

Tt turns out that there is a classification of the class of auto-
mata with errors that are correctable but not finite in terms of their
semigroups. This classification is very useful in aiding our intuition
as to why cerfain errors are corréctable and not finite and also is use-

ful if we want to construct automata in this class.

Definition 5.1

If S is a semigroup, then Sl is equal to S if S has a
two-sided identity and is equal to S U {1} where

s:l =1l-s = s if S does not have an identity.

Definition 5.2

Let S be a semigroup. Define a relation < on the elements
of Sl as follows. 5, < sj if and only if there is an ele-
ment skesl such that 8; = sj-sk. Also, define a relation

= with s, = s, if and only if s, < s, and s, <s,.
i J i—="] jg-="1

The following lemma will tell us something about the relations

"S" and "=". We will use [Si] for the equivalence class of 8y

Lemma 5.1

is an equivalence relation on the elements of Slo

—~
=
~

il

(2) < is a partial ordering on §/=, the equivalence

classes of S modulo the relation

)]

(3) If S is a finite semigroup, then s.s, > S5 implies

iJ

S.5. = 8.,
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Il

PROOF: (1) = is obviously symmetric. Likewise, since ' has an ele-

ment such that sj-l = Sj’ it is reflexive. Also, 8; = sj and sj = s

k
implies there are elements St’su’sv’ and 5, such that Sist = Sj’
_ _ _ e - There
Sjsu 84 SjSV 8.2 and 8.5 sj by the definition of =. Therefore,
5 = Si(stsv) and s, = sk(swsu). Thus s, = s,. Since = is symmetric,

reflexive and transitive it is an equivalence relation.

(2) 1f [s.] < [sj] and [sj] < [s

], then s, <s, and s, <s
1 1= Jd =

k k'

Thus s. < s, and hence [s,] < [s

5 I 5 Therefore "<" is a transitive

k]’
relation on S/E. Likewise, it is antisymmetric since x <y and y <X
implies x = y which means that [x] = [y]. A relation which is transi-

tive and antisymmetric is a partial ordering.

(3) 515 > s implies there is an s €S such that 51545 = &5
Also, since SfSi‘E S, we have Ssisjsk g;Ssjsk: But since SiSjSk = Sj’
we get Ss. C Ss.s. . However, since (Ss.)s, C Ss., we have Ss, = Ss.s. .

€ J=""J3% ’ (J)k" J J Tk

Hence, multiplication on the right by s

. causes a permutation of the

finite set Ssj. Therefore, some power of Sy has to be the inverse trans-

formation of s, with respect to the set Ssj. Call this element smln

k k
. -1, o
Therefore, since sisjeSsj, we have Sisj(sksk ) = Sisj° Likewise,
- -1 -1
(Sisjsk)sk = 858 Hence 5455 = Sjsk and thus 585 < 85 But,

since the hypothesis was that Sisj > Sj’ we have proved that 8,8, = sje

Q.E.D.

Definition 5.3

Let M be a set, and S a semigroup of transformation on S.
For each element 8s of S we define an equivalence relation
nsi on M as follows: mj = mk(ﬂsi) if and only if 8, maps
mj and M onto the same element. Again, we will use the

canonical ordering on the set of equivalence relations.
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Note that we now have two partial orderings. One is on the semi-
group and the other on the set of equivalence relations induced by the

semigroup elements. We will now tie these two relations together.

Lemma 5.2
s, < s, implies =w > .
i="] S, = 8.
1 J
PROOF: 1If s, < s., then there is an s, such that s.s, = s,. But if
i="] k Jk i
m, =m,(x_ ), thenm, =m,(x ). Thus m, = m,(x_ ), and therefore
i 3 s, i J' s.8 i g s,
J Jk i
T >,
S, = 8.
1 J

Corollary 5.1

If s, = 8., then 1 =1 _ .
i J S.

PROOF: If 8, = 5., then both 85 < sj and sj < 5, Hence, by Lemma 5.2

ﬂs. < ﬂs. and ns. < ﬂs.' But since < is a partial ordering on equivalence
i J J i
relations, we get that t,o= L
1 J
Q.E.D.

In general the converse to Lemma 5.2 and Corollary 5.1 are not true.

This can be seen, for example, in the semigroup shown in Example L.1.

In this case, = ==_ = {a,b,c,d}. But, neither is s, < s, nor is
81 55 1-="2

85 < 8, as would be implied by the converse. However, in an important

spec¢ial case the converse holds.

Theorem 5.1
Let S be a semigroup of transformations on M and let 85 be an

idempotent element of S. Then, for all sjes, if L
J i
then s, < s..
J="1
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PROCF: Since 85 is an idempotent of S, we have 8;8; = 84- Thus, for

all meM, ms, s, , the image of the point m under the transformation

S, . — 8,
i J i
we have ms, = m(atS ). However, this implies that msisj = msjo Hence
J
the transformation sisj is equal to Sj’ and therefore SJ < 8y

(sisi) is equal to ms,. Hence ms, = m(x_ ). Therefore, if n,o>

QOE QDO

Corollary 5.2

Let 85 and sj be two elements of a semigroup S such that for
some idempotent skeS, [Si] = [Sk]° Then ﬂsi < ﬁsj if and
only if 8, > Sj.

PROOF: If 8 > Sj’ then by'Lemma 5.2, ns < ﬂs . Conversely, if

i J
[si] = [sk], then by Corollary 5.1, m,o=T . But, by Theorem 5.1,
i k
if Ksk < ﬂsj’ then s > 8y Hence, since [Si] = [sk]’ we have
S, > 8,
1=

Q.E.D,

Definition 5.4

An equivalence class [si] of a semigroup S is called a

minimal class if and only if for all 555 [sj] < [si]

implies that [Sj] = [Si]° It is a minimum class if

for all s, s, < ls.ls
g Leg] <[5y

Lemma 5.3
Every minimal class of a finite semigroup contains at

least one idempotent.
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PROOF: We know by definition of [Si] that [siHS;; [Si]° Likewise, if

[Si] is minimal, [si]S Ci[si]. Hence [si]S = [si] and thus [Si] is a
right ideal of S. But since a right ideal is also a finite sub-semigroup,
it must contain an idempotent.

Q.E.D.,

We will now apply this to characterize the finite automata which

have errors which are correctable but not finite.

Theorem 5.2
A finite automaton, M, has errors which are correctable but
not finite if and only if SM has two elements 55 and Sj such

that [Si] f [Sj] and [Si] and [sj] are both minimal classes.

PROOF: If (m,m') is an error of M which is correctable but not finite,

then by Corollary 4.2, there are elements 54253 in 8, such that m = m'(rtS )
i
and for all s,m # m'(x ). Thus for all s_<s, and s_ < s_,
k 5.8 u-1i Vo= ]

Jk
. = ] 1
T ¥ n, sincem=m (ﬁs ) and mwﬁ m (ﬂs ). Therefore [sv] % [Su]'
v u u v _
Conversely, assume [si] and [Sj] are two minimal classes such that

[Si] f [sj]. Then, since there are idempotents in both [si] and [Sj]
by Lemma 5.3, we get that T % T by Theorem 5.1. Hence there are
i J ‘
= m'(ﬂS ), and m % m'(rcS ). Since for all
i .
S = 1 because [s.] is minimal, we get that (m,m') is correc-
558y 55 3
table but not finite.

elements m,m'eM such that m

Q'E'D5

There are many interesting corollaries to this theorem.
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Corollary 5.3

A Tinite automaton M has errors that are correctable but not
finite if and only if its semigroup, SM’ has equivalence

classes which are minimal but not minimum.

Corollary 5.k

Let M be a finite automaton with correctable, nonfinite
errbrs, If we have two copies of M in the same unknown
state, then there are tapes x and y such that if we feed
one copy x and the other y, we cannot find tapes x' and
y' so that by feeding x' to one and y' to the other copy

they will both once again be in the same state.

Corollary 5.5

A finite automaton has no errors that are correctable but
not finite if and only if for any two elements of its

semigroup there is a third element less than both.

PROOF: If any two elements have a common element less than both, then

there can be only one minimal class. Hence the theorem follows from

Theorem 5.3.
Q.E.D.

There is one case in which the error properties come out excep-

tionally nice. For interest, this is given below.

Definition 5.5 (Laing and Wright, ref. 8)

A finite automaton, M, is called a commutative automaton

if and only if for all s.,s. elements of S, s.s, = s.8..
i’77] M7 TiT) g1
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Corollary 5.6

A commutative automaton has no errors which are correctable

but not finite.

PROOF: For any two elements Si’sj of its semigroup Sisj = Sjsi’ and
thus Sisj < Si and Sisj < sj. Hence this follows from Corollary 5.5.

Q.E.D,

Corollary 5.7

A commutative automaton, M, can be state behavior realized
by an automaton of the form

— P —{F—
where P is a permutation automaton and F is a finite auto-

maton all of whose errors are finite.

PROOF: We know nF, the finite error partition on M, has the substitu-
tion property. Since P must distinguish amongst blocks of ﬂF’ no

error in P can be correctable. Hence P must be a permutation automaton.
Likewise, since F distinguishes amongst the elements of a single block
of M, all errors in F must be finite.

Q.E.D.

Let us now give one more result concerning errors which are cor-

rectable and not finite.

Theorem 5.3
Let N be the set of errors which are correctable but are not
finite in some finite automaton. Then there does not exist a

tape t such that t corrects all the errors in N.
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PROOF: Let EeN and let t be a tape that corrects E. We can assume with-

out loss of generality that t corrects all finite errors. Since E is cor
rectable but not finite, by Theorem 4,1 there is a minimum idempotent

such that EE < ﬁs . But since n, <™ , we get =«

5y . E < ", (t)

s, # M (6)”

Likewise =« f n since if it were, then by Theorem 5.1 we would
_ s, ¥ hy(t)

have hM(t) < 's;- But since s, is a minimum idempotent and hM(t) # 5,5

this cannot be true. Hence neither ﬂs < ﬂhM(t) nor ﬁs > nhM(t) hold.

i i

Therefore there must be an m and m' such that m # m'(ﬂhM(t)) and

Q.E.D.

We will now give two examples to demonstrate the use of these

theorems.

Example 5.2
Let the automaton and semigroup be as in Example 4.1. Then the

1
ordering on S is as follows:
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Thus, this automaton has no errors which are finite but not correc-

).

table since there is only one minimal class, {s

7577%13
Example 5.3

Let M = ({a,b,c,d,e,f,g}, (0,1}, B)

(e
o

mHO o0 o ®
R HER 0 o O
R HHT O O

The transformation associated with the elements of the semigroup

of M, SM’ are shown in the table below.

®1L P2 P3 P %5 %¢ Sy 8 89 S10 511 810 f13 S1y S15 S
a b ¢ ¢ d b d b 4d b d c d c d b c
b ¢ d4d ¢ b b d4d b ¢ d d a b c d b c
c d b ¢ b d4d 4d b e d c d b c d b c
d d P ¢ b d 4 b e d c d b c d b ¢
e g f g g £ £ £ g g T T f f g g g
£r £ £ £ £ £ £ £ £ £ f f f f f f f
g & & & & & & & & 8 g g g g g g g

The ordering on Sl is as follows:



We can see that there are two minimal classes {86’57’513} and
{Slh’sl5’sl6}' Thus the automaton must have errors which are correc-
table but are not finite. In fact N = {(e,g),(f,g)}. DNotice that
every tape which corrects (e,g) does not correct (f,g) and vice-versa

as required by Theorem 5.3.



6. Errors in Series-Parallel Connections

In this section we will deal with the problem of errors in a series
parallel connection of finite-automata. This problem arises in two ways.
The first is, if we are given a series-parallel connection finite auto-
mata with known error properties, what can be said about the error prop-
erties of this compound automata? The second is, if we are given a large
complicated automaton, is it easier to find its error properties (or some
bomﬂsonjj)bysphjﬁﬂgtMEmﬁyﬂﬂ_mmmwtm1hmosmﬂlm’mﬁm@t%
find all their individual error properties, and then recombine them as
above?

The parallel connection, of course, does not introduce any new prob-
lems. If we have a parallel connection of n automata, then the composite
automaton is just the cartesian product of them and if the finite error
partition for the i-th automaton is KM.,
for the composite automaton is just ﬂMix T(ng eoo X T

n
Unfortunately, there is no easy solution for the series connection.

then the finite error partition

We could consider the series connection problem by using the fact that
the semigroup of the series connection of two automata is a subsemigroup
of the wreath product of the semigroups of the two automata. In the
author's attempt this led to some very complicated notation but not to
any fruitful results. Hence we will go about it in another way. Now

let us define a few more terms in order to be able to discuss the problem

more readily.

39
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Definition 6.1

A finite transducer M' is a L-tuple M' = (M, A, Z¢, mo)

where M is a finite automaton &' in a finite set (output
alphabet);

A MX S -2 (output function);

and m € M (initial state). We will extend X in the natural
manner to be a mapping from input strings to output strings,
A MY s¥on* s before, we will be informal and use
the same letter to denote the finite transducer, the finite
automaton, and the set of states of the automaton.

m,
We will use superscripts, viz. M 1, in order to differentiate

amongst a set of transducers each of which has the same finite auto-
maton and output function but which have different mi's as their

initial states.

A transducer M then induces a length preserving mapping from Z¥
into Z'*. If we drive the transducer with a random source with prop-
erty P, ve get a set of probability distributions {Pk(x)} on the outpub

strings. That is, if x is a tape of length k, over 2°',

P(x) = = Pt(v)
k ver¥ k
where
K(mo,v) = X

and where Pﬁ(v) igs the probability of the tape v being the output of the

random source driving M, given it has generated k letters. We will call
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the output toegether with the induced set of probability distribution, an

M-transduction of the source S, or for short, just an M-transduction.

Keep in mind that S always has property P.
First, let us see what happens if, instead of driving the machine

M2 directly with the source, we drive it with an M-transduction of the

source. Thus, the situation is as follows:

source —aiﬂl - IE!.

Later, we will get to the more difficult situation where we consider

specific Ml-transductions, but for now let us let M. range over all

1

finite transducers and see what results we will get. We will always

assume the output alphabet of M, is contained in the input alphabet of

1

Mg’

Theorem 6.1
Let M2 be a finite automaton. Then, all errors in M2

are finite for any Ml-transduction of a source with

property P if and only if M2 is a definite automaton.

PROOF: If M2 is definite then it is k-definite for some finite k.

Hence all tapes of length k correct all errors in M, and conseguently

2

all errors in M2 are finite. On the other hand, assume that M2 is
not definite. Then, by Lemma 4.4, there must be an error (mi,mj) in

M2 such that (mi,mj) is not definite. But this means that for all k

there must be a tape t, that does not correct (mi,mj), Now, since M,

k

is finite, there must be tapes t and to such that all tapes of form

totn do not correct (mi,mj). Since the set, T, of prefixes of the set
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of tapes {to,tn} is a regular set, there is a finite transducer Ml all
of whose output sequences are in T. Hence (mi,mj) is not correctable
under an Ml~transduction. Consequently, all of the errors in M2 are

not finite under an Ml-transduction.

Q.E.D.

This theorem has significant computational value. By using the
techniques developed by Hartmanis and Stearn (ref. 5) we can pull off
the maximal definite back machine.  Then, in order to find the parti-
tion for the whole machine, we only have to find the partition for the
front machine. We will also point out here the obvious result that if
an error is non-correctable, it is non-correctable for any Ml-transduc-
tion. Hence, if a finite automaton has only non-correctable errors (viz.
every input causes a permutation of the states), all its errors are cor-
rectable under any Ml-transduction. Thus, as a computational aid, we
can also pull off automata of this type.

By using the same type of argument as in Theorem 6.1, we can get a

slightly stronger result along the same line.

Theorem 6.2
Let E be an error in a finite automaton ME’ Then E is a
correctable error for all Ml-transductions of the source

if and only if E is a definite error.

PROOF: If E is a definite error, there is some k such that all tapes of

length k correct E. But since every M, -transduction is a length-preserv-

1

ing mapping, E remains definite for all of them. If E is not definite,

then by using the same argument as was used in Theorem 6.1, to construct
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a transducer which does not correct (mi,mj), we can construct one which

does not correct E. Hence E is not correctable under all Ml—transduc-

tions.

Q.E.D.

We will now give two examples to show the usefulness of these

theorems.
Example 6.1
Let M = ({ge, gf, he, hf, ie, if, je, jf}, (0,1}, )
o} 0 1
ge | ge | &f
gf | hf | he
he ie if
hf | Jf | Je
ie | ge | gf
if | hf | he
Je | ie | if
JE | 3f | Je

M can be decomposed into a series connection as follows.

M, = ({e,f}, {o0,1}, 8 {0,1}, A, e)
& |01
elelf
fl1 fle
M, = (lgn,1,3}, (0,1}, &)
8,101
gleg|h
hlilJ
ilglh
iyif g
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Since M2 is a definite automaton we know that for m, WF

Ty > {eg,eh,ei,ej, fg,fn,fi,fj}. In fact, since (e,h) is a non-correc-

table error in Ml’ we know that the equality holds.

Example 6.2

Let M, be as above and let M, = ({g,n,1i}, (0,1}, 8,)

2

H 5RO
R or 5O
55 b

The error (h,i) is a definite error. Hence if M is the series

connection for M, n, > {eh, ei, fh, fi, eg, fg}.

F

Let us now attempt to apply some of the results of the earlier sec-
tions to this part. It is easy to see that if {Pn} induced by an M-
transduction is statistically indistinguishable from a set {P'n} in-
duced by some source with property P over an alphabet Z' then, for any
is correctable (or finite)

automaton M, = (M., ', 8), an error in M

2

under the M-transduction if and only if it is correctable (or finite).

2’ 2

The next lemma shows a necessary and sufficient condition for this in
each of two special cases. We will use IZ | to indicate the cardi-

nality of the set Z.
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Lemma 6.1

et M= (M, &, 5, A, &', m

O), and let {P'n} be the set of

probability distributions induced by it when driven by a

source S' with property P.

(1) 1f |Z]| < |Z'| then the M-transduction is distin-
guishable from every source with property P over X',

(2) 1f |Z2] = |Z'| then the M-transduction is indis-
tinguishable from some source with property P over
the alphabet Z' if and only if for all states m, of M

such that for some tape Xi

.6(m0,xi) = m,

for every o'el' there exists an input oeX so that

k(mi,o) = o',

PROOF: (1) If [Z] < [='| then [(o'eZ| for some &2 (my,0) = o'}
! < lZ ] < |Z' I, Hence there is some output symbol which cannot occur
at the beginning of an output string. Hence the M-transduction must be
distinguishable from every source with property P over X',

(2) 1f || = || then for allk, |55 = |25,
Hence, if the output is indistinguishable from a source with property k
over %', M must induce a one to one mapping Zk onto Z‘k since we know
the mapping is length preserving. Therefore, for every output string, a
unique input string is determined and thus a unique state of M is deter-

mined. But, since every output string can occur, we get that for every

state m, reachable from the initial state, and for every output symbol
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g'el' there is an input symbol oeX. A(m,0) = o'. Conversely, if for
every m and o' there is a ¢ such that A(m,0) = o', the output must have
property P since the symbol ¢ has a probability of occurring greater
than k which is strictly greater than zero. Hence o' has a probability
of occurring strictly greater than zero. Thus the output is indis-
tinguishable from a source with property P.

Q.E.D.

In sections four and five we derived various results pertaining to
the connection between the error properties of the automaton and its
semigroup. It seems reasonable to expect that we would be able to get
analogous results for the error properties of the automaton under an
M-transduction. Thus, we would hope to get a result like the following
analogous to Theorem 4.1. As before, let hM(x) be the element of the

semigroup SM associated with the tape x.

Conjecture 6.1

Let {Pn} be a set of probability distribution induced by an

M-transduction over % and let

vV = {xez*|P x > 0}.
P16 (x)
Then an error E in M2 is finite if and only if it is cor-

rected by every minimum idempotent of hy, (v).
2

This is not a valid conjecture as can be seen by the following

counterexample.,
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Counterexample 6.1

QO

Let M = ({a,b,c,d}, (0,1}, &, A, {0,1},

(o4
‘_l
P

Q0 oW
H OOO |O
P O OO |+

Q0 T ®
o0 oo |Oo
0O T 0

Let Mg = ((f,g), (0,1), 3)

5101
fleglf
g|f|f
SM2 ({Sl)sg)s:aJSh_})')'
Sl 82 83 S)—l-
81 [81 |55 83 8),
5,18 [ 5 s3 8),
s3 53 8), s3 8),
S)-J- SLI— 53 S3 S)+
The mappings associated with SM are as follows:
2
81 ISQ 53 8),

f1 £l gl £ g

And
x |y, (x)
2
5o
s
3
Now

hM(V) = {81’32’53’Su}’
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but the error (f,g) is correctable but not finite under an M-transduc-

tion. Hence the conjecture cannot be true.

However, if M is strongly connected we can get somewhat similar

results. We will call an M-transduction a strongly connected M-trans-

duction whenever M is strongly connected.

Theorem 6.3
Let {Pn} be the set of probability distributions on {Zn}

induced by a strongly connected Ml-transduction, and let

v o= {x]|P x > 0},

1g(x)
Then there is a éubsemigroup W, of Z* such that W CV and
for any finite automaton M2 and error E in Mg, the follow-
ing are true:
(1) E is correctable under an M, -transduction if and only
if E is corrected by a minimum idempotent of th(W),
(2) E is finite under an M, -transduction if and only if
E is corrected by every minimum idempotent of hME(W).

(3) M2 has errors which are correctable but not finite

under an M, -transduction if and only if h (W) has two
2

minimal classes.

PROOF: Before we begin the proof let us just point out that all the
above terms are well defined since hM (W) is a semigroup, which is a
2

subsemigroup of S
M2

morphism of Z* onto S

. This follows from the fact that hM is a homo-
2

M Also note that parts one and two of the theorem
2

are generalizations of Theorem 4.1 and part three is a generalization of



49

Theorem 5.2.

Now, let M. = (Ml, A, ', m

O)’ and let W' = {x(mo,x) Ié(mo,x) = m,

1
and S(mo,yl + mo for all prefixes y of x}. Thus, W' is the set of
output strings which are generated by an input string which takes the
state M to itself for the first time. Now let W be the free semigroup
generated by W'. Thus W is the set of output strings generated by a set
of input strings which takes the state m to itself.

Now, let us prove claim number one. If E is correctable, under an
Ml-transduction it is corrected by some tape x. But since Ml is strongly
connected there is a y such that xy is in W. Now, the set of strings in
the set xyW is a right ideal of W and hence hM2<XyW) is a right ideal of
hMg(W) all of whose membefs correct E. But since hMg(xy Wi'¥) is a right
ideal it must contain a minimum idempotent of hMg(w)” Conversely, since
every minimum idempotent of th(W) corresponds to at least one input
tape of M;, if E is corrected by a minimum idempotent of hMg(W) it is
correctable. Thus we have proved claim one.

If E is not corrected by some minimum idempotent of hMg(W), it is
not corrected by some right ideal hMg(x(W')*) g;hME(W)o But since M
is strongly connected, this means that all tapes in the set xX¥ N V do
not correct E. Hence, there is a set of input tapes of form yZ* such
that the image of any tape in the set under an Ml-transduction does not
correct E. Hence E cannot be finite. Conversely, let us assume that E
is corrected by every minimum idempotent. Then E is corrected by all
elements of minimum right ideals, and thus corrected by the kernel of
by (W). Thus there is an siehMg(W) such that for all 555 8453 corrects

2
E. But corresponding to this there is an element x of W such that
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hM (x) = s,» Hence all tapes of form yxz correct E. We will show
2
that if {P‘n} is the set of probability distribution associated with a

source with property P and if A is the set of tapes which is not of

form yxz and M., maps a set B into A, then

1

lim P‘n(B) = 0,
n-—o0

Thus since B', theset of tapes whose transduction does not correct E,

is contained in B, E is a finite error under an Ml-transduction. It

j is the number of states in M,, we know for every input tape v in B

l)

there is a tape u of length less than j such that vu leaves Ml in state

m Then there is an input tape x whose output corrects E. Also, if

o

the constant associated with the source is k, then

Pt V.

(k)lg(x)+j P'l
g v

lg(vux)Vux 2

Hence, if P'n(B) = a, then

P egigle) () < 06500,

Thus, since k > 0, the

lim P' (B) = O.
n-ow O
Hence we have proven part two.
The proof of part three is much easier. We can just note that

hy (W) is a finite semigroup (contained in 8y ) and hence all the re-

2 2
sults of section five hold without modification.

Q.E.D.,
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Corollary 6.1

An error E is finite under a strongly connected Ml-transduc-

tion if and only if n, < N ﬂs where 85 is a minimum idem-

E .
8y i

potent of S, (W).
M2

PROOF: This follows immediately from part two of the above theorem.

We will call W the output semigroup associated with the strongly

connected Ml-transduction. This output semigroup gives us a convenient

way of talking about strongly connected transductions.

Lemma 6.2

If WO is the oufput semigroup associated with a strongly
m

connected MlO—transduction and Wi is the output semigroup
m,
associated with the Mll-transduction, then there are tapes

x and y such that x Woy gwi and y Wi X gwo.

PROOF: Let x be an output string associated with an input string x' such
that 6(mi,x') = My and y be an output string associated with an input
string y' such that S(mo,y') =m,. Since M, is strongly connected, such

an x and y exist. Obviously, x and y have the required properties.

Q.E.D.

Putting together the results of Theorem 6.3 and Lemma 6.2 we get

the following result.
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Theorem 6.4

Let M2 be a finite automaton all of whose errors are finite
m

under a strongly connected Mlo-transduction. Then all errors
m,

in M2 are finite under an Mll-transduction for all states

mi € Ml'
m

PROCF: Let WO be the semigroup associated with Mlo—transduction and Wl
m,
be the semigroup associated with a Mll-transduction. Now, since all
m

errors in M. are finite under an M

o 1 -transduction, by Theorem 6.3 there

must e an s, € by (W.) which corrects all errors in M,. Hence there
i 5 0 2

must be a tape z in WO which corrects all errors. By Lemma 6.2 there

. . : '
is an x and y such that x WO y CW,. Hence xzy € W, and hM2<XZy)€ hMg(W)
But, since z corrects all errors, xzy must correct all the errors in Mg,
Also, there cannot be a minimum idempotent 55 € By (Wl) which does not

2

correct all errors since if there were then SjnhM (Xzy)\g Sj would cor-
o
rect all errors. Hence 7 hy (xzy) > n, and n by (xzy) % n, . This
J 2 J Jj 2 J
contradicts the fact that sj is a minimum idempotent.

Q.E.D,

Besides its theoretical value, this theorem has some nice compu-
tational properties. For instance, if we can factor a finite automaton
into a series connection of two simple automata, and if for any state

m. in a strongly connected component of Ml’ all the errors in M2 are

1

finite, then all errors of form ((mi,mj),(mi,mj)) are finite where m,

is in the same strongly connected components of Ml as M2 where mj and

mj are any states in Mg,
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We can note that the proof of Theorem 6.4 depends mainly on the fact
that the set of strings which correct all errors form a two-sided ideal
of ¥ and hence the set of semigroup elements which correct all errors
form a two-sided ideal of hMg(w). Using the same type of argument we can

get a stronger theoretical result albeit one which is not so useful.

Theorem 6.5
Let £ be a two-sided ideal of SM all of whose elements cor-
2
rect a set of errors A in M,. Also, let W. be the semigroup

2 0

m
associated with the strongly connected Mlo-transduction.

Then, if hy, (WO) N & is not empty, then all errors in the
2 m,
set A are finite for an Mll-transduction for all mieMl.

PROCF: If hM (W) N & is not empty then clearly all errors are finite
m. 2
under an Ml -transduction. This is so since if there were a minimum

idempotent 8 of 5,, which did not correct an error in A, then there

M
2
would be a right ideal s,.+S . which did not correct A. But s, S
i M2 i M2
and sig g;& since € is an idéal. Hence &€ N SiSM is not empty. But this
2

is a contradiction since this intersection must correct all of A since it

D s
D 5

is contained in S%?Mg‘ Hence, by Theorem 6.3, all errors in A are finite
errors under an Ml - transduction. Now let Wi be the semigroup associ-
ated with an M?i-transduction, and x and y be tapes such that

X Wi y‘Q}WO and y‘WO X E;Wi, The existence of such tapes is guaranteed,
by Lemma 6.1. If hME(WO) Nt =¢t'1is not empty, then hMg(y)E' Iy (x)

2
is not empty. But hMg(y)e' hM2<x> = hMZ(Y) <HME(WO> n e)hME(x> -
hME(y) hMg(wO) hM2<x) n hM2<y) J bM2<x> = hM2<y Wy x) NE" £ B But

yW, xCW, and £" C & since ¢ is a two-sided ideal. Hence hM W.) ne
0" ="1 = 5 1
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is not empty. Thus by reapplying the first part of the theorem we have
m

shown that all errors in A are finite under an Mll-transduction.

Q.E.D,

Although this theorem may be difficult to use for computational

purposes, a corollary of it is well suited for this purpose.

Corollary 6.2

Let WO be the semigroup associated with a strongly connected
m

Mlo-transduction and M2 a finite automata. Then, if the
is not empty, all

2 m,
finite errors of M2 are finite under any Mil-transduction.

intersection of WO with the kernel of SM

PROOF: If we let A be the set of finite errors we know from Theorem

4.1 that all the elements of the kernel of SM correct all the elements
2

of A. Hence the corollary follows immediately.

Q.E.D,

Example 6.3

Let M, = ({a,p,c}, {0,1}, 8)

0 o olo,m
0O 0 T|lo
» o |

Then the mappings of the elements of SM are as shown below:
2

| 0151500501 |510| S001| 011 |*101| S0011| %0101 |*1010

all bl a cl bl Db a c b b a c
b cl|l D c a c a b a b b b
c cl a c a b a b b b b c




The ordering is we Tollows:

S

®10
5101
51010

—

Now let M, = ({a,e,f}, {0,1}, &, A, {0,1}, q)
o101 A O] 1
dlele ajljl
e |f|d el 010
f]1dld f10]0
W, the associated semigroup, is the free semigroup on the set of

generators V = {100, 10}. Ilence by (W) D [sag, and therefore the

[

intersection of hM (W) and the kernel of S is not empty. Thus since

MQ
all errors in M2 are finite for a source with property P, by Corollary
6.2, they are all finite under any M?i-transduction.
On the other hand, assume M, = ({d,e,f}, (0,1}, &, , {0,1}, Q)

1
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5101 MOl
dl|d]e atl|il
e |[fT|T e|l|1l
fld|d £f1010

Then W is the free-semigroup on the set of generators V = {110, 1}.
Thus the only idempotent in h (W) 1is s,» Hence by Theorem 6.3

2
(a,c) is the only correctable and only finite error in M, under this

Ml-transduction.

In the third case assume M, = ({a,e}, (0,1}, &, A, {0,1}, 4).

510711 A0 |1
djdte df11]0
efd]d e |1]1

Then W is the free semigroup on the set of generators V = {l,Ol}.
In this case s, and s, ., are both minimum idempotents of hMg(W). Hence
by Theorem 6.3 we get that although both the errors (a,c) and (b,c) are
correctable, the automaton M2 has no errors which are funite under the
Ml-transduction.

Thus in the case where we are dealing with strongly connected

M-transductions, there are some reasonable tools. Let us now somewhat

relax the strongly connected restriction and see what we get.

Definition 6.2

An M-transduction, M = (M, &, 8, A, &', mo), is called a

connected M-transduction if and only if there is a state mleM

such that for all states mjeM there is a tape Xj such that
6(mj,xj) =m. States reachable from all states which they

canreach, (as my is) will be called stable states. All others

will be called transient states.
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Note that if we let M' be the set of states reachable from m and
let &' and A' be equal to © and ) when restricted to the set of states,

M', respectively, then the M'-transduction (M', %, ®', A', Z', ml} is

)

strongly connected, and hence, the M-transduction (M, £, 8, A, &', m1
is indistinguishable from a strongly connected M-transduction.
Making use of the results in the preceding part we get the follow-

ing.

Theorem 6.6
mo.
Let an Ml -transduction be connected and M2 be a finite auto-
, m
maton. Then an error (mi,mj) in M2 is finite under an Mlo-

transduction if and only if for all strings x, which is the
output of Ml induced by an input string which takes Ml from

state M to a stable state my in M2 for the first time, the
m

error (S(mi,x), 6(mj,x)) is finite under the Mll-transductionw

PROOF: It is clear that if for some string x as above, the error
m

(S(mi,x), S(mj,x)) were not finite under the Mll-transduction, then

(mi,mj) would not be finite. To show the converse all we have to show

is that if V = {z | z=uv 8(my,u) = m ver*} and if {Pp} is associated

1

with a source with property P, then

lim Pn(V) = 1.
n —o00

But this is clearly so since there is a tape u' such that for all m:,L

there is a prefix of u', u" such that &(m,,u") =m, .
i

1 Thus V D Z¥ u" I¥,

and

lim Pn(Z* u' I¥) = 1,
n -— o
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Thus, "almost all" the long tapes take m, to my from where almost all

the long tapes correct the error of the form (6(mi,x), S(mj,x)).

Q.E.D.
From this we get the following corollary.

Corollary 6.3
m

Let an Mlo-transduction be connected, and M2 a finite

automaton. Then, if all errors in M2 are finite under
m

an Mll-transduction for some stable state m.eM, all

1

errors in M2 are finite under all Mll-transductions

for any mieMl.

m
PROOF: If all errors are finite under an M l-transduction then ob-

1
viously, all errors of the form (S(mi,x), S(mj,x)) are finite for all
(mi,mj) errors in Mg' Hence the corollary follows immediately from
Theorem 6.6.

Q.E.D.

It would appear that all of the above results are only of limited
use since they only consider the case of the connected or strongly con-
nected M-transduction. However, as the next theorem will show, they

are quite general.
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Theorem 6.7

Let My = (MO, %, 8, A, 27, mo) be an arbitrary M-transduction.

Then there exists a finite number of connected M-transductions
Ml’Mg"‘°’Mk with the following property. For any finite
automaton Mk+l’ an error E in Mk+l is

(1) correctable with respect to an M -transduction if and

only if it is correctable with respect to some Mi-trans-
duction for 1 <1 <k.

(2) finite with respect to an M. -transduction if and only

0

if it is finite with respect to all Mi-transductions

1<ic<k,

PROCF: First let us define [mi] = {mj | for some xeX 6(mi,x) = mj},
and |mi | = {mj | for some xes# S(mj,x) = mi}. Now let

{m, ,m, ,...,m, } be a maximal set of stable states of M, such that the set
1,71, I 0
{m, 1,...,[m, 1} are pair-wise disjoint and if for some m,eM_,
iy e J 0
' - i
[mj] n [miz} 4 0, then [mjlg [miz], Now let M, = ( lmi? |,Z,8£,k,2 ,mo)
where 8, = ® restricted to lmi | if S(m,oj) € |mi | otherwise
1 1
m,o.) = 6(ml,ci) where o, is any element of % such that for m,

(o4
—
(=
~
Q
~
m

[mi | , and kg(m,oj) = k(m,cj) if S(m,cj)e M, and otherwise
A (m,0,) = x(m,oi) where o, is as above.

It is easy to see that x is an output tape of some Mi’ 1 <i<k,
if and only if x is an output tape of MO. This follows immediately
from the definition of the Mi° Hence part one of the theorem is triv-
ially true.

Now let us assume that E is not finite with respect to some Mi”

transduction 1 < i < k. Then, by Theorem 6.6, thereis an input tape x
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to Mi which takes m

0 to a state stable state m:.L with the property that

if x' is the output tape associated with input x and if y is an output
tape obtainable starting in state mieMi then x'y does not correct E.
But if this is true then there is an input tape x" which takes MO to
state mi€MO and which has x' as an output. But then all outputs which
result from the set of inputs x"&* do not correct E. Hence E is not
finite with respect to an Mo-transduction. Conversely, let us assume

E is not finite with respect +to the Mo-transduction° Then there is

an input x" such that all outputs of M, resulting from the inputs x"ZI¥

0
do not correct E. Also, let x be the output of MO resulting from the
input x". But from the definition of the set {Mi} there must be an
Mi-transduction with x" as an output. Hence, E is not finite with res-

pect to that Mi' Thus the theorem is proved.

Q.E.D,

If we apply this theorem to the automaton in counterexample 6.1 we

see that M decomposes into two transducers as follows.

M, = ({a,v}, {0,1}, By M {0,1}, a)
MB = ({ayc:d}: {Osl}; 659 A, {O)l}: a)

6@ o1 ka 011 65 0| 1 XB 01
albl|D al 00 alc|c al0]0
blDblb ] 0] O clefd c]101]0

dldf c d|l]l

The error (f,g) in M2 is finite under the M, -transduction but not under

p

the Ma-transductiona Thus it is correctable but not finite under the

M~-transduction.
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In the preceding part of this section we have only been considering
half of the problem. We have been considering automata which decompose

as follows:

source —)\ M, M2 ,

and we have just considered errors which occur in M

5 (the "back" auto-

maton). Let us now consider errors which occur in M, (the "front"

L

automaton).

Definition 6.3

Let M be a finite automaton which can be decomposed into a
series connection of a finite transducer Ml = (ml,Z,Sl,x,Z',mO),
and a finite automaton M, = (ME,Z',S ). Then an error

E = (mi,mj) in M, is m, -correctsble, m el if and only if

there is an x such that Sl(mi,x) = 62(mj,x) and if y = k(mi,x)
and z = k(mj,x), then 62(ml,y) = 62(ml,z), Likewise, it is
ml-flnlte if

lim P (V) = 1
Il—>001'l

where V is the set of tapes in ¥ which have the same proper-

ties as the tape x has above.

The next few results will relate this case to the case that was

previously studied.
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Lemma 6.3
Let Ml be a finite transducer, M2 a finite automaton, and my
a state of Mg' Then an error E in Ml is ml-finite if and
only if

(1) E is finite; and

(2) if x is such that 61(mi,x) = Bl(mj,x) =m and y and z
m, m
i

J
1 - and Ml -trans-

are the respective outputs of the M
ducers then the error (52(ml,y), 62(ml,z)) is finite

under the Ml ~transduction.

The proof of this lemma is obvious and follows directly from the
definition. Hence, it will not be given here. Note that, in general,
condition two is very difficult to check for. However, in some common

cases it is very easy. Thus, for instance, if M2 is a definite auto-

maton, or if Ml is a connected transduction which corrects all errors

in M2, then condition two is vacuously satisfied.’

Let us now give a corollary which will give a necessary and suf-

ficient condition for all errors in the series connection to be finite.

Corollary 6.4

Let M be a finite automaton which can be decomposed into a

series connection of an Ml-transduction and a finite automaton

M Then all the errors in M are finite if and only if all

2I
the errors in Ml are finite and there is a stable state ml of
m

Ml such that all errors in M2 are finite under the Mll-trans—

duction.
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© PROOF: First, if all the errors in Ml are finite then Ml must be a con-

nected transducer. Hence, by Corollary 6.3, since all the errors in M2
m m,
are finite under an Mll-transduction, they are finite under all Mll-trans-

ductions, m,eM;. Thus if we represent the states as pairs (mi,mj) where

l'
1
| and mjeMg, we know that all errors of the form ((mi,mj)(mi,mj))

are finite and likewise errors of the form ((mi,mj)(mi,mj)) are finite.

m, EM
i

Hence, since we know the relation of finiteness is transitive, it fol-
lows that all errors in M are finite. Conversely, if either Ml has
errors which are not finite or if for some state, m, of Ml’ there is an

m,

error of M2 which is not finite under an Mll-transduction, then it is

obvious that the automaton M has errors which are not finite.

Q.E.D.

Note that the second part of the condition “can be checked for
using the results of Theorems 6.3 and 6.L.
Before we close this chapter we will give one more example which

will illustrate the use of many of the results in this chapter.

Example 6.k4
Let M be the finite automaton whose move function © is tabulated

below.
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1 01 1
da | ha | ea
dbo | hb |eb
dc | ha |ea
ea | gb | fb
eb | gc | fe
ec | gc | fe
fa leb | gb
fb | ec |ge

fc |ec | gc
ga | fa |ea

gb | fb |eb
gc | fa |ea
ha | Jb | Jb
hb | je | Je
he | je |Jc
ia | ja |ha
ib | jb |hb
ic | jJa |ha
ja lia |ha
Jb | ib |hb
je lia |ha

It appears at first that the calculation of the finite error
partition for M would be a very difficult task. However, as we will
show below, once we notice that M can be decomposed into a series con-

nection of Ml and M, as below, the calculation will be much easier.

2

Ml = ({d,e,f,g,h,i,j}, {o,11, 61) A (0,1}, x)

[ i = 0 T RO N S T

Hec.Cs Hhy D OQ
5. o0k Hh O
Cu e 50Q Hh O
HHEOHFHOOLW
HFHOF OO

M, = ({a,b,c}, {0,1}, 82)
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First let us note that we can calculate the finite error partitions for

M. and M, by observation:

1 2
for Ml ﬁF = {a,b,c}
and
for M, . {d,e,f,z,n,1,47).
Hence for M, st < {da, db, dc, ea, eb, ec, fa, fb, fc, ga, gb, gc,

ha, nhb, hc, ia, ib, ic, ja, jo, Jgcl.
Now since 00l is an element of the semigroup associated with the strongly
connected transduction Mi, and hM (001) is an element of the kernel of
2

S (See Example 6.4), by Theorem 6.3 we get

M2
T > = {ea, eb, ec, fa, fb, fc, ga, go, gcl.
Likewise, 1 € W of M? and no string starting with O is in it. Hence
T >, = {ha, nhc}.

By similar agreement we get that the errors (hb, ha), (hb, hec), and

all errors of the form (jx,jy) and (ix,iy) are not finite errors.
Next, as per Theorem 6.7, instead of considering the Ml—transduc-

tion, we can consider the connected transduction Ma and M6 with moves

and outputs as below.
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5 {011 01 5, 1011 ol1l
o Yo B xB
dlefe dil}|1l dlhih djilil
e|lg|T el0]0 hldltJ h|{O0}O0
flelg £f1010 ilJjlh ill]1l
glfle gll|l jlilh Jri]1

a

We see that although all errors in M2 are finite under the Ma-transduc-

tion, only the error (a,c) if finite under the Mg—transduction. Hence
we get

T 2%y = {da,dc}
and that (da,db) and (db,dc) are not finite errors. WNow applying the

results of Lemma 6.2 we get that

nL > = {ia, ja, ib,jb, ic,jcl.

Likewise, since a O input éorrects (h,i) and causes errors which are
not finite regardless of the state of Mg, we get that all errors of
form (hx,ix) are not finite. Similarly, Ol corrects (h,j) but causes
errors which are not finite, all errors of form (hx,jx) are not finite.

Now putting this all together we get

n
> U n, = n. = [ea,eb,ec, fa,fb,fc, ga,gb,gc, ha,hc,

da,dc, ia,ja, ib,4b, ic,jc, nb,db).

Using all the errors that we know cannot be finite we find that

all the finite error classes of n_ are indeed maximal classes and that

5

hence



7. Conclusion

In the beginning we set out to classify and to study state errors
in an automata driven by a random source. We feel that by now the
reader should have a reasonable feeling of the types of state errors
and their properties in the finite state case. One area for further
study is that of state errors in various classes of restricted infin-
ite automata. It is our conjecture that in most of the commonly
studied classes of automata, many of the interesting questions will
be recursively unvolvable. However, this may not be the situation,
and in any event, the area deserves further study.

Input errors and output errors are two other types of errors that
we might have looked at. Input errors can intuitively be thought of
as a state error which arises due to a substitution of one input string
for another. Thus they are just special types of state errors. How-
ever, they also give rise to certain structures on the set of input
strings. This has been studied more extensively by Winograd (ref. 15).
We can also rewrite many of the results in the last section so that
they tell us about input errors.

In order to consider output errors we must consider automata with
output functions. An output error is then an incorrect output due to
the finite automaton being in the incorrect state. If we are consider-
ing reduced finite automata (i.e., any two states are distinguishable)
(ref. 11), then for any state error, there is at least one input string
which causes an output error. If the state error is not correctable

then in an intuitive sense, for most of the infinite tapes, the number of

67
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output errors is unbounded. Similarly, if the state error is finite,

then for most of the infinite tapes, the number of output errors is
finite. If we are dealing with a finite automaton which is not reduced,
we can get the same results by consdering the state errors in the de-
rived reduced machines. Thus it can be seen that the study of state
errors reported here is a prerequisite to a study of output errors.

However, more work along this line can certainly be done.



Appendix

Some Remarks on the oo Case

One obvious way to generalize the previous results is to alter
Definition 2.1 so that M, the set of states, need not be finite. We
have not looked into this area extensively but will give some exam-
ples to indicate that the results do not carry over. 1In this appen-
dix, "automaton" will indicate a system of the type defined in Defin-

ition 2.1 without the requirement that the set of states of M be finite.

Definition A.1

An error E = (ml,mg) will be called a G-error if E is
correctable and, for all tapes t, (8(ml,t), 6(m2,t))

is correctable.

We will state without proof that the G-errors partition the set
of states and that G is the largest partition with the substitution
property continued in C the correctable error relation. The proofs
are analogous to the proofs of the corresponding theorems in the finite
case (Theorem 3.3 and Corollary 3.1). 1In the case of finite automatons,
an error is finite if and only if it is a G-error. However, as Example

A.1 will show, this is not so for arbitrary automata.

Example A.1
M = (Ix1x1, {0,1,2,01,1',2'},8) where T is the set of in-
tegers, and © is the move function described below.

For all (i,j,k) # (0,0,0)
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8{(1,3,k), 0] = (i+1,],k)
8[(i,3,k),0'] = (i-1,3,k)
8[(1,3,k), 11 = (i,3+1,k)
8[(1,3,%),1'] = (i,3-1,k)
8[(1,4,k), 2] = (i,3,k+1)
8[(1,4,k),2'] = (i,d,k-1)
and
5[ (0,0,0), u] = (0,0,0)

where u is any input.

It is obvious that any error

E = [(i,3,k), (1,mn)]

is correctable since there'is a tape that takes it to [(0,0,0),(0,0,0)].
However, if S is a source which generates each symbol independently with
probability 1/6, then there is a probability greater than zero that
(i,3,k) never goes to (0,0,0). (See Spitzer, ref. 13). Thus in the
limit, there is a probability greater than zero that E is not corrected;
and hence it is not finite. Thus, in the machine M, all errors are
correctable; thus all errors are G-errors. However, there are no finite
errors.

In this example, it is still true that the finiteness of an error
does not depend upon the source, as long as it is the property P. That
there are some automata where it does can be seen by the following

example.
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Example A.2
A = (I: {O)l}) 6)

where I is the set of integers. For i # O

8(i,0) i+1
5(i,1) = i-1

For i=0, &(0,0) = 8(0,1) = O:

Let S be the source that generates x with probability p and x'
with probability (1-p) independent of its past history.

Then, all errors are G-errors and if p = 1/2 all errors are finite.
But, if p > 1/2 only errors of the form (i,J) i <0, j <O are finite,
and if p < 1/2 only errors of the form (k,1) k >0, 1 >0 are finite.
This follows from the fact that each state is undergoing a one-dimensional
random walk with an absorbing barrier at zero. The one-dimensional sym-
metric random walk (p=1/2) is recurrent whereas the other ones (p#l/2)

are not. Hence we get the above results. Thus we can see that the

finiteness of an error depends upon the source.
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