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Backflow and Density Excitations in Quantum Fluids 

Victor K. Wong* 

Department o f  Physics, University o f  Michigan, Ann Arbor, Michigan 

( R e c e i v e d  J u n e  10, 1974) 

By the use of the f sum rule and a separation of density excitations into single 
and multiple excitations, we derive exact quantum expressions for the ~ back- 
flow contribution to the dynamic structure function S(k, co) and for the discrete 
single-excitation spectrum ok:. The derivation is carried out for Bose liquids, 
Fermi liquids, charged quantum liquids, quantum solutions, an impurity atom 
dissolved in quantum fluids, and phonons in solids. It is shown that the back- 
flow arises from virtual multiexcitations and that real multiexcitations give 
rise to a background. It is argued that multiexcitations are relatively in- 
sensitive to long-range order or quantum statistics. Thus the backflow and 
background contributions to S(k, co) of the liquid and solid phases of 4He, and 
also that to S(k) of liquid 3He and of liquid 4He, are expected to be similar, 
which is consistent with existing data. The exact expression for cok, which 
shows that multiexcitations effectively repel the single excitations, is used to 
make some speculations concerning the large-wavevector phonon spectrum in 
liquid 3He and in 3He-4He solutions. 

1. INTRODUCTION 

Quantum fluids are usually classified in terms of the quantum statistics 
of the particles and the nature (gap, slope, etc.) of the quasiparticle spectrum. 
The usual scattering experiments, however, do not measure directly the 
quasiparticle spectrum but rather the excitation spectrum of density fluctu- 
ations. Fortunately, density excitations in quantum fluids are amenable to 
a powerful and general theory involving the dynamic structure function 
(see, e.g., Ref. 1) and its related sum rules. The purpose of this paper is to 
add, and to illustrate the use of, one more piece of equipment to this powerful 
machinery, viz., exact quantum expressions for the backflow and the discrete 
density excitation spectrum. 
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The dynamic structure function S(k, co), which contains the maximum 
information that can be obtained about a quantum fluid in linear response 
to a density probe, can be defined at zero temperature as 

S(k, co) = ~ I(p~-)vol 2 6(o9 - COvo) (1) 

The summation is over the complete set of exact energy eigenstates Iv) 
with total momentum k; Iv) is coupled to the exact ground state 10) by 
density fluctuations p~- with matrix elements (P~)~0; and covo =- co~ - co o is 
the exact excitation frequency. To be specific, we consider as a prototype 
the Bose liquid ; other examples abound in the literature and will be treated 
later. If p~- couples 10) only to the one-phonon state I t)  and to no other, one 
finds with the aid of the f sum rule the well-known Feynman 2 one-phonon 
excitation spectrum, 

co~ = k2/2mS(k) (2) 

where S(k) is the static structure function. Since (2) overestimated the ex- 
citation spectrum of liquid 4He, Feynman and Cohen 3 (FC) attempted to 
lower the spectrum by introducing the concept of backflow on the basis of 
semiclassical and physical arguments involving number conservation. Sub- 
sequently Miller, Pines, and Nozieres 4 (MPN) advanced a microscopic 
picture of backflow in terms of an excitation dragging a cloud of virtual 
excitations which would serve to reduce the excitation energy as well as to 
conserve number. In both of these approaches, the physical picture of back- 
flow is developed in terms of the motion of an impurity atom through the 
Bose liquid. To gain an understanding of backflow in a pure quantum liquid, 
one had to proceed by analogy or from a picturesque and qualitative 
description. 

An offshoot of the vagueness connected with backflow can be found 
in the widely used 4-8 two-term separation of S(k, co) of liquid 4He 

N -  1S(k, co) = Z(k) 6(o9 - cok) + X(k, co) (3) 

Equation (3) was first written down by MPN, 4 who interpreted the 6- 
function term as the discrete contribution coming from "single-particle 
excitation from the condensate" and the second term X(k, co) as the con- 
tinuum contribution coming from "multi-particle excitations." Such an 
interpretation is motivated by the fact that if p~- couples 10) only to the 
one-phonon state ] 1), then the background X(k, co) disappears and only the 
&function term remains. The remaining one-phonon state is identical to 
the Feynman one-phonon state which contains no backflow. However, it is 
not clear whether the introduction of backflow would change the M P N  
interpretation or even the form of (3). 
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In this paper, which is largely pedagogical, we shall be concerned with 
making more precise the vague but physically obvious notion of backflow 
from a purely quantum mechanical point of view, i.e., beginning with 
Eq. (1). Although the basic idea of this paper is extremely simple, we feel 
that the implications of this simple idea are sufficiently important to warrant 
a full discussion. In Section 2 we divide the density excitations into two 
groups: the single excitations and the multiexcitations. This division and 
the f sum rule are used to derive exact expressions for the backflow con- 
tribution to S(k, co) and for the discrete single-excitation spectrum. It is 
shown that the backflow arises from virtual multiexcitations and the real 
multiexcitations give rise to a background. The derivation is carried out 
for a variety of quantum fluids : Bose liquids, Fermi liquids, charged quantum 
liquids, quantum solutions, an impurity atom dissolved in quantum fluids, 
and phonons in solids. It is shown that, contrary to the M P N  interpretation 
of (3), S(k, co) can be separated into three contributions (single-excitation, 
backflow,and background) such that the residue Z(k) in (3) contains in fact 
multiexcitation contributions through the backflow. In a neutral fluid the 
backflow contribution to S(k) is shown to appear first at the k 3 term, whereas 
the background contribution is shown to contribute to the k ~ term. O~ the 
other hand, in a charged fluid, both the backflow and background con- 
tributions to S(k) are shown to be order k 4. Thus, the Feynman relation (2) 
is shown to break down at a term k 2 higher than the leading order, because 
of backflow for neutral fluids (backflow and background for charged fluids). 
The exact expression for the discrete density excitation spectrum cok 
emphasizes the role of multiexcitations (backflow and background) in 

F lowering the Feynman spectrum cok to the exact cok. It is shown t h a t t h e  
effective mass m* of an impurity atom of mass m~ dissolved in a quantum 

* > rn~ For  a system of fluid is generated solely by the backflow and that m~ _ . 
phonons in a solid, it is emphasized that the Debye-Waller  factor plays the 
role of the elastic form factor and is not in general the intensity function of 
the one-phonon &function. 

In Section 3 we discuss some specific applications of the exact results. 
It is argued that the backflow and background contributions to S(k, co) are 
insensitive to the presence or absence of long-range order. Existing data 
on S(k, co) in the liquid and solid phases of 4He appear to confirm these 
expectations for both the backflow and background. It is pointed out that 
the role of Debye-Waller  factor e-2w in a solid is similar to that of the 
condensate density n o in a Bose liquid. In neutral quantum fluids, the inter- 
play of the negative backflow contribution and the positive background 
contribution is shown to lead to an inflection point in S(k) at small k, in- 
dependent of quantum statistics. Estimates of these inflection points in 
liquid 4He and in liquid aHe are consistent with experiments. Finally, 
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speculations concerning the shape of the phonon spectrum at large wave 
vectors in liquid 3He and in 3He-4He solutions are presented. 

2. BACKFLOW AND DENSITY EXCITATIONS 

The concept of backflow was introduced by FC 3 and by M P N  4 on 
the basis of an application of number conservation. It is well known that 
the f sum rule is a direct consequence of number conservation, barring 
velocity-dependent interparticle potentials. To derive an exact quantum 
expression for backflow, it is clear that we need to exploit the f sum rule: 

Y~ I(p~)~012co~o = Nk2/2m (4) 
v 

where N is the total number of bosons (fermions) and m is the mass of the 
boson (fermion). The general approach is to separate the exact eigenstates 
Iv) into the single-excitation states [1) and the multiexcitation states in), 
where the single-excitation states [1) are defined as those states that would 
exhaust the f sum rule in the long-wavelength limit. In other words, the 
states [1), which may have a discrete and/or continuous spectrum, satisfy 

lim I(Pk)~O]2colo = Nk2/2m (4') 
k ~ 0  

where the sum over the continuous parts of COlo is understood. It seems 
reasonable to assume that the separation of Iv) into I1) and In), although 
defined only in the k-~  0 limit, remains valid over a finite range in k as 
long as the states [1) are well defined. Effecting such a separation in (4) and 
substituting back in (1) yields the desired expression for the backflow con- 
tribution to S(k, co). 

2.1. Bose  Liquids 

We apply this approach first to Bose_ liquids, and make no assumption 
about the presence or absence of Bose-Einstein condensation. It is a well- 
known fact that in the k ~ 0 limit the phonon exhausts the f sum rule. The 
excited states Iv) can thus be divided into I1), the one-phonon state, and the 
remaining state In), the multiphonon states. Because of phonon-phonon  
interaction, the energy eigenstate [1) cannot have a definite number of 
(bare) phonons;  however, the renormalized (experimental) one-phonon 
state 7 is well defined and can be approximated by a discrete energy eigen- 
state over a wide range of k. It is in the latter spirit that we call the energy 
eigenstate [1) a discrete one-phonon state and ignore the width of the state. 
Separating out the one-phonon state in (4), we find 

+ 2 I(P~-)lol a = N(kE/2rncok) - c o f ~  [(Pk )~ol coco (5) 
n 
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where ogk -- o91o is the discrete one-phonon spectrum. Inserting (5)into the 
definition (1), we find a natural three-term division of S(k, o9): 

N-1S(k, 09) = ZV(k)6( 09 - ogk) + Y(k) 6(o9 -- ogk) + X(k, o9) (6) 

where 

ZV(k) =- k2/2mo9k (7) 

Y(k) -- - -o9klN-1 2 I(p2).o12~,,o < 0 (8) 
n 

S(k, o9) -- N -a ~ I(p~-),o[ 2 6(09 - 09,o ) (9) 
/ I  

The three terms on the right-hand side of (6) can now be interpreted. The 
first term is evidently the Feynman one-phonon contribution. The second 
term, Y(k)5(o9 - o9k), arises from the virtual (o9,o need not be equal to o9) 
excitation of multiphonons, as can be seen from (8). In contrast, the last 
term X(k, o9) [see (9)] arises from excitation of real (O9,o must be equal to o9) 
multiphonons. In keeping with the usual microscopic picture of backflow 
in terms of virtual excitations, we can identify (8) as the exact quantum 
expression for the backflow contribution to S(k, o9). Furthermore,  (9) can 
now be called the background contribution. Comparing (6) with (3), we see 
that the residue Z(k) in (3) cannot be interpreted as arising solely from 
one-phonon contributions but contains mult iphonon contributions through 
the backflow term, Z(k) = ZV(k) + Y(k). 

In the k -~ 0 limit, we know by construction that only the one-phonon 
term ZV(k)5(o9- COk) survives. Hence the three-term division (6-9) of 
S(k, o9) makes sense in the small-k limit only if the backflow and background 
contributions are relatively small and can be considered as corrections to 
the one-phonon contribution. To demonstrate this, we define the structure 
functions 

fo NS~(k) = de) og~S(k, co), l = - 1, 0, 1, 2 , . . .  (10) 

where So(k) - S(k) is the static structure function. Inserting (6) into (10), 
we find 

St(k ) = Ze(k)og~ + Y(k)og~ + Xl(k) (11) 

Xz(k) = N -1 ~ I(p~-).ol/(og.o) t > 0 (12) 
n 

Following the standard sum rule arguments of M P N  which we do not 
reproduce here, we conclude that in the small-k limit, (pk +).o oc k 2 and o9.o 
is a constantsince In> is a mult iphonon state. F rom (8) we see that Y(k) oc k 3, 
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and from (12), X t ( k )  oc k 4. Hence as k ~ 0 the one-phonon Feynman result 
is obtained, as expected. Furthermore,  we see that the Feynman relation 
(2) breaks down at the k 3 term because of backflow, rather than at the k 4 

background term. Therefore as k-- ,  0 the correction due to backflow 
dominates the background contribution to S(k). 

The identification of (8) as the exact quantum expression for backflow 
can now be checked for the features ascribed to backflow by FC. First we 
consider number  conservation. F rom (8) and (12) we see that Y(k) satisfies 

Y(k) = -Xl (k) /co  k (13) 

F rom 1 = 1 in (11), it is apparent  that the f sum is satisfied if and only if 
(13) is satisfied. Hence number  conservation is satisfied, since Y(k) was 
constructed so. A further feature ascribed to backfiow by FC is that the 
one-phonon spectrum should be lowered if backflow and the concomitant  
background are taken into account. Using (11) and (13), we find the following 
simple, exact, and equivalent expressions for r which arise directly from 
the division (6): 

o k = ~(k2/2m) - X ~ ( k ) J / [ S ( k )  - Xo(k)~ (14a) 

o9 2 = E(k2/2m) - X ~ ( k ) ~ / [ S _  ~(k) - X_ l(k)] (14b) 

Ok = ES(k) - Xo(k)~/[S_ ~(k) - X_~(k)] (14c) 

It  is useful to rewrite (14a) in the form 

F 
o k  = o k  + EXo(k ) /S ( k ) ]  E~ - O . o i  (15) 

where ~.0 - X l ( k ) / X o ( k )  is the average multiexcitation energy. By defi- 
nition, ~n0 > Ok and from the positivity of X o / S  we find 

Ok --< Ok v (16) 

v is lowered because of the presence of Hence the Feynman spectrum o k 
multiexcitations with an average energy higher than co k. Loosely speaking, 
the multiexcitations repel the spectrum o v to a lower energy Ok- 

The three-term division (6)-(9) was first derived in a rigorous microscopic 
calculation of S(k~ oJ) in the long-wavelength limit in a simple one-parameter  
model of a Bose gas. 9'I~ The explicit expansions in k of the functions ZV(k), 
Y(k), and X,(k) in Refs. 9 and 10 can be used to verify the above results. All 
expressions are verified with one exception: X_l(k)  was found in the 
rigorous model calculation to be ock 4 In k. Hence the simple sum rule 
arguments are not precise enough to give logarithmic dependences. On the 
other hand, since in the rigorous model calculation we found Y(k)oc k 3 
with no logarithmic factor, we have no reason to doubt  the sum rule argu- 
ments for the small-k dependence of the backflow Y(k). 
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We emphasize that the. f sum rule, rather than another 0)~ sum rule, is 
used here to determine the backflow. Other 0)z sum rules involve new 
functions and thus are not suitable. The exception is the coo sum rule, which 
is really not a sum rule but a definition of S(k); thus it does not act as a 
physical constraint, in contrast to the f sum rule. The separation of S(k, 0)) 
effected by Hall and Feenberg 6 can be viewed as one based on the o3 o sum 
rule. 

2.2. Fermi Liquids 

We consider here normal Fermi liquids with couplings sufficiently 
strong that the zero-sound mode is well defined. For  such Fermi liquids, 
the single-excitation states consist of a dlscrete zero-sound state I1) and a 
continuous single-pair state 12). Since 0)k -- e)1o 
the I1) state in the f sum rule (4) to get 

I(P~-)lol 2 = g(k2/2m0)k) -- 0)k 1 Z  
q 

__ (.Ok 1 2 I(P; )nOI20)nO 
n 

where 0)qk =- 0)20 is the continuous single-pair 
the intermediate momentum q. Substituting (17) 

is discrete, we separate out 

[(p+)20120)qk 

(17) 

spectrum that depends on 
into (1), we find 

N-IS(k ,  0)) = N-1SL(R,  0)) + Y(k) 6(0) - ok) + X(k, 0)) (18) 

where the single-excitation contributions are grouped together into the 
Landau dynamic structure function 

N - 1 S L ( k ,  0)) = [(k2/Zm0)k) + ye(k)] 6(0) - 0)k) + Xe( k,  0)) (19) 

YP(k) = -0)~- 1N-1 Z I (P~)2o120) .k  (20) 
q 

XP(k, 0)) =- N -1 ~ I(P+)2012 c5(c0 - -  0)qk) (21) 
q 

The multiexcitation functions Y(k) and X(k, 0)) are given formally by the 
same expressions as in Eqs. (8)-(9). As before, we introduce the structure 
functions (10), which can be written 

where 

S,(k) = S~(k) + Y(k)o~ + X,(k) 

S/L(k) = [ZF(k) + YP(k)]0)~ + X~(k) 

xtP(k) --= N-1  Z [(Pk+)zol2(0)qk) z 
q 

(22) 

(23) 

(24) 
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Only processes involving single excitations are included in the Landau 
theory;  those involving multiexcitations are completely ignored. In par- 
ticular the backflow of virtual single pairs are included; and from (20) and 
(24) we see that the single-pair backflow YP(k) satisfies YP(k) = -X~(k)/cok, 
which ensures that SL(k, co) satisfies the f sum rule. The corrections to the 
Landau theory are contained in the two multiexcitation contributions, 
backflow Y(k) and background X(k, co), which are formally given by the 
same expressions as those for the Bose liquid. Hereafter the word backflow 
(without any adjectives) shall be used to refer ~to this universal backflow due 
to virtual multiexcitations. 

To obtain the small-k dependences of the various terms in (22)-(24), 
we use the standard arguments as found in Ref. 1 to estimate the matrix 
elements (0~no. We find that as k ~ 0, YP(k)oc k, X~(k)oc k l+z, SL(k) 
oc k x+l, Y(k)oc k 3, and Xt(k ) oc k 4. From the compressibility sum rule 
(l = -1 ) ,  we see that the difference between the (first) sound speed c 1 and 
the zero-sound speed Co = limko0 (cok/k) arises solely from the single-pair 
states, which justifies the calculation of the sound speed difference 1 within 
Landau's theory. This fact is well known;  the present emphasis is that 
backflow does not alter the statement. From the coo sum rule (1 = 0), we 
see that because of backflow the Landau expression for S(k) breaks clown 
at the k 3 term, rather than the k 4 background term. Once again as k -~ 0 
the backflow contribution dominates background contribution. 

As in the derivation of (14), the discrete zero-sound spectrum o) k can 
be written 

(k2 /am)  -- X~(k) - X~(k) 
(25) 

cok = S ( k ) -  X P ( k ) -  Xo(k ) 

The zero-sound spectrum in Landau's  theory COk L corresponds to neglecting 
Xl(k) and Xo(k ) in (25) and can be considered the Fermi analog of the 
Feynman spectrum co F. Equation (25) can be rewritten many ways, in 
particular 

X~ [co~ - ~no] (26) 
COk = COkg + S(k)----- X-oP(k) 

where c~,o is the average multiexcitation energy. Since S ( k ) -  X~(k) is 
L depends on the sign of COk - -  ( ~ n O "  positive, the sign of the shift COg - COk 

Hence, roughly speaking, the multiexcitations can be thought of as repelling 
L the zero-sound mode from (2) k to (.O k . 

2.3. Charged Quantum Fluids 

The discussions in Sections 2.1 and 2.2 have been restricted to neutral 
quantum fluids in which the two-particle interaction is short range. Because 
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of the long-range Coulomb potential in a charged fluid, the discrete phonon 
mode found in the neutral fluids is drastically changed to the discrete plasmon 
mode. The major distinction, however, is that in a charged quantum fluid 
the plasmon state I1) by itself exhausts the f sum rule as k --* 0. Hence the 
multiexcitation state in) includes the single-pair state. The resulting S(k ~) 
has the same form as (6)-(9), where cn k is to be interpreted as the plasmon 
mode. Likewise, the structure functions are given by (11)-(12). Since r k 

const as k ~ 0, we have Y(k)oc k 4, X/(k)oc k 4 as k--* 0. Hence for a 
charged quantum fluid, the Feynman relation breaks down at the k 4 term, 
where both backflow and background contribute. In this sense, at long 
wavelengths backflow is not as important  for a charged fluid as for the 
neutral fluid. Such a conclusion is also apparent from comparing the discrete 
single-excitation spectrum given by (14) and (25). 

2.4. Quantum Solutions 

We consider a two-component quantum solution which is a mixture 
of a Bose liquid and a Fermi liquid. More components with either statistics 
can be easily handled if necessary. To be specific, we consider neutral com- 
ponents. The dynamic structure function S(k, co) for the system is still 
defined as in (1) but with 

Pk = pb + Pfk (27) 

where pk b and p~ are density fluctuations for the bosons and fermions. The 
f sum rule takes on a slight modification : 

I(p~ )vol2COvo = N k 2 / 2 #  (28) 
v 

where N = N b q- N r is the total number of bosons and fermions, the re- 
duced mass p is defined by 

1 N b Nf 
= -  + -  (29) 

I.t N m  b N m f  

and m b (mf) is the mass of the bosons (fermions). Equation (28) together 
with (27) and (29) is implied by the following partial f sum rule : 

Z +~/]2 [(Pk )~o] ~GO = (N~Np)l/2(k2/2m~) fi~p, a, fl = b, f 
v 

(30) 
+czfl2 , 2[(pk )vol -- <, O]pk[v) (v]p~+lO> + <O]p~[v) (, vlP~.+] O) 

The single-excitation states consist of the phonon state ]1) and the single- 
pair state 12). The discrete phonon state [1) is coupled to the ground state 
[0) by any density fluctuation p~,+, ~ = b or f, whereas the continuous 
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single-pair state 12) is coupled to 10) only by p~+. Separating the discrete 
phonon state I1 ) in (28), we get 

I(Pk+)lol 2 N(k2/R#cok)-cok 2 f +  12 : 1 ](/Ok )201 ('Oqk - -  ('Ok 1 E [ ( /9 ;  )n0[2(A)n0 ( 3 1 )  
q n 

Substituting (31) into (1), we get again a three-term division of S(k, co): 

N -  1S(k, co) = N -  1SS(k, co) + Y(k) 3(co - cok) + X(k, co) (32) 

where the single excitation S~(k, co) is given by 

N-1SS(k, co) = Ek2/21~cok + YP(k)3 cS(co - cok) + xP( k, co) (33) 

The single-pair functions YP(k) and XP(k, co) are given by (20) and (21) with 
/O~ replaced by p~+, and the multiexcitation functions Y(k) and X(k, co), 
are given by (8) and (9) with/ok + given by (27). Once again we see that the 
backflow Y(k) is given by the same expression (8). The analysis for the 
structure functions (10) is similar to that in the previous sections and will 
not be repeated. The main point here is that the analysis of quantum 
solutions is essentially no different from that of a single-component system. 

2.5. Impurity Atom Dissolved in Quantum Fluids 

As mentioned in the introduction, FC and M P N  developed the picture 
of backflow in a pure Bose liquid largely by analyzing the motion of an 
impurity atom through the liquid. Our present task is just the opposite: 
having analyzed backflow for quantum fluids, we now specialize to the 
impurity problem. 

The system of a quantum fluid plus an impurity atom of mass m i can 
be treated as a limit quantum solution in which the number of one com- 
ponent, the impurity component,  approaches one. From (30) we see that 
the f sum rule for impurity density fluctuations is 

[(p~+)~o]2covo = k2/2ml (34) 
v 

Since Iv) are exact eigenstates of the system with total momentum k, there 
exist states ]k) in which k is carried entirely by the impurity atom with no 
(real) excitations in the fluid. Such a zero-excitation state tk) clearly has a 
discrete spectrum e k = COko. Further excitation of the system must involve 
the fluid. For  example, there can be a single excitation of the fluid with 
momentum q and the impurity with k - q ; such a state 11) has a continuous 
spectrum O91o that depends on q. States in which the fluid has multiexcitations 
are represented by In). Separating out the discrete zero-excitation state [k) 
in (34), we find 

I(p~+)k0[ 2 = (k2/2miek) -- e; 1 ~ '  I(p[+)~ol2co~o (35) 
v 
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where the prime denotes the, absence of the state Ik) in the sum. Compar ing 
(34) with (4) and (35) with (5), we see that Section 2.1 can be transcribed 
to the impurity problem by setting p [  ~ i+ Pk , N ~  1, co k ~ e k , E  - ' ->E;.  In 
particular the expressions for the impurity dynamic s t ruc ture  function 
Si(k, co) can be written in analogy to (6)-(9). However, as the impurity moves 
through the quantum fluid, there exist two types of backflow : one consisting 
of virtual single e x c i t a t i o n s  and the other of multiexcitations. 

To find the effects of both types of backflow on the impurity, we con- 
sider the impurity static structure function Si(k, co), which is given by ex- 
pressions analogous to (11)-(12). However, since the impurity density 
fluctuation is p~+ -- exp (ik.  Ri) , where R i is the impurity position, we find 
the following form-factor sum rule 

Si(k) - Y' I(p~+),012 o ~ i +  =< IPkP~ 10> = 1 (36) 
v 

Hence the impurity spectrum ek is given by 

G = [ (k2 /2ml )  - X~(k)]/[1 - X~(k)] (37) 

As k -~ 0, [(P~+),o[2 ~ k2 since the impurity current is not conserved, Since 
COlo = coq + ek_q, C01o ~ k ~ as k ~ 0; similarly CO.o ~ k ~ Thus as k -~ 0, 
X~(k) ~ k 2, X~(k) ~-. k 2, and e k ~ k 2. If we write e k = k 2 / 2 m  * as k --* 0, 
then the effective mass m* is seen to be generated by the backflow X~(k): 

1 1 
- 2 lim [k-  2X~(k)] (38) 

m* m i k ~ o  

If only the states L1) were included in X~(k), then (38) would yield the Landau 
effective mass m L, as  calculated in Landau 's  Fermi liquid theory or quantum 
hydrodynamics.  F rom the positivity of X~(k), we see that both types of 
backflow can only increase the impurity mass : 

m *  _> m L > m i (39) 

which is a limiting Case (F~ ~ 0) of the Leggett 11 inequalities (see appendix). 

2.6." Phonons in a Solid 

In contrast  to a liquid, a solid has a nonuniform ground-state ex- 
pectation value of the local particle density. Here it is unimportant  whether 
or not the solid is crystalline (long-range order) or not. What  is important  
is that  the lattice vibrations are well-defined phonons,  where the lattice 
can be defined as the zero-phonon solid. 

First we consider elastic scattering, in which no phonons are excited. 
The zero-phonon state Ik), which corresponds to the lattice carrying the 
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total momentum k transferred to the system, has a discrete spectrum 
e k =- COkO = k : / 2 M ,  where M is the mass of the lattice. If the momentum k 
is applied to the ith atom with mass rn at the lattice site rl, i.e., p~§ 
= exp (ik. rl), as in the M6ssbauer effect, the analysis in Section 2.5 can be 
taken over and the lattice recoiling spectrum e k is given by (37). Clearly the 
backflow of virtual phonons generates the mass M from m. In the limit of 
an infinitely large lattice M -~ oe, we find no recoil and (37) reduces to the 
f sum rule (34) with mj ~ m. Also the scattering becomes perfectly elastic 

Siel(k, co) = {exp [ -  2W(k)]} 6(co) (40) 

where the Debye-Waller  factor e-2w is just the elastic form factor [(pl, +)ko[ 2. 
Since the static structure function Si(k) satisfies the form-factor sum rule 
(36), the Debye-Waller  factor can be given by 

e - 2 w  = 1 - ~ '  [(p~+)vol 2 = 1 - k E / 2 m N  (41) 
v 

, i§  2 o / y ,  c5 _-__ y ,  I(Pk )~ol ~ I(pi,+)~ol 2 (42) ~ / ~  
V I V 

where the average phonon energy N is introduced via (34). It is important 
to note that e-2w is defined not by the f sum rule (34), where [k) does not 
even appear, but by theform-factor  sum rule (36) with m i ~ m. If, however, 
the momentum k is applied to the solid as a whole (as in scattering experi- 
ments) rather than to the ith atom, then the elastic form factor [(p~)kOl a 
may contain, depending on the nature  of the long-range order, interference 
(Bragg) peaks, and the Debye-Waller  factor (the single-atom elastic form 
factor) plays the role of the envelope of the interference peaks. In either 
case, the Debye-Waller  factor cannot be construed as backflow. 

Now we consider inelastic scattering, in which ph0nons are excited. 
The single-excitation state is the one-phonon state I1), which has a discrete 
spectrum colO---COk~" with a branch index 2 labeling the three linearly 
independent polarizations. To apply the f sum rule (4), we expand p~- in 
terms of the' complete orthonormal set ekx of polarization vectors 

p~- = ~ p~-~(k, ek;.) (43) 

Substituting (43) into (4) and separating the one-phonon state I1), we find 
S(k, co) in the form 

N - 1 S ( k ,  co) 2 m X l : t ( k ) l  ~(co - Okx ) -[- X(k ,  (.o) 

+ 2 X l 2 ( k  ) ~ N -  1 ~.[(flk~)nol ('0n0 (44) 
n 
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and the background X(k, co) is given formally by (9). Note that the Debye- 
Waller factor does not appear in (44), in contrast to elastic scattering. 

The harmonic one-phonon form of S(k, co) can be obtained by com- 
bining (43) with (4) and (36) to yield a sum rule, for a given 2, in the form 

~'~ I(Pk~)v~176 -- N (k" eka)2 e - 2 w  (45) 
1 + e 2w Z'v [(Pk+)v01 e 2m 

Expanding the denominator in (45), we find that in the one-phonon approxi- 
mation the left-hand side of (45) reduces to I(p~z)101Zcoka, which results in 
the harmonic one-phonon Sn(k, co) : 

N -  1Sn(k, co) = e- 2W(k) E (k" e k ; ~ )  2 3(O9 -- COk2) (46) 
x 2mcok)~ 

Inclusion of the multiphonons neglected in (46) gives rise to two effects: 
First the inelastic form factors by virtue of the form-factor sum rule (36) 
cancel the Debye-Waller factor, and second the multiphonon s by virtue of 
the f sum rule (4) introduce backflow and background terms--the net 
result being that (46) turns into (44). Hence the Debye-Waller factor in 
general should not be confused with the intensity coefficient of the one- 
phonon h-function. 

3. DISCUSSION 

In the present approach, a basic distinction is made between single 
excitations, i.e., density excitations that exhaust the f sum rule in the k -~ 0 
limit, and multiexcitations. We emphasize that all the semiphenomenological 
theories of quantum fluids, e.g., quantum hydrodynamics, Landau's Fermi 
liquid theory, and extensions thereof, are essentially single-excitation 
theories. Because of this fact, these theories pioneered by Landau are simple, 
germane, and extremely useful. 

As a rule the single-excitation theories give correctly the leading k 
dependence of the structure functions. The exceptions are the structure 
functions S~(k) with ! _> 3, for which high-energy multiexcitation states are 
given considerable weight and thus may contribute to the leading k de- 
pendenc.e. When I < 3 the single-excitation structure function Sll)(k) breaks 
down two orders in k later due to multiexcitations, i.e., at the O(k e) term in 
the expression 

St(k) "-- SI1)(k)E1 + O(ke)],  l = - 1, 0, 2 (47) 

Since the single-excitation theories are well known, we wilt spend the 
remainder of the discussion on the general features of the effects of multi- 
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excitations, in particular on some speculations concerning the structure 
functions and the discrete single-excitation spectrum. 

3.1. Generality of  Backflow and Background 

Our treatment of S(k, co) was not tied to the presence or absence of 
long-range order. It is obvious, however, that the single-excitation spectrum 
cok can depend strongly on long-range order. For example, a crystalline 
lattice would introduce the periodicity of the reciprocal lattice onto the 
one-phonon spectrum COk as a function of k, solely from the kinematic 
constraints of energy and crystal momentum conservation. It is clear that 
such kinematic constraints cannot specify completely mult iphonon processes 
and thus the mult iphonon contributions do not follow the periodicity of 
the reciprocal lattice. For  this reason, we expect that the backflow con- 
tribution to S(k, co) is relatively insensitive to the presence or absence of 
long-range order. 

The backflow contribution to S(k, co) can be isolated by forming the 
ratio of the co moment of Z(k) J(co - cok) to the f sum rule: 

f o o , / f  o Hl(k ) = do  coZ(k) 6(co - cok de) c0S(k, co) 

= 1 - 2 r n X l ( k ) / k  2 (48) 

Since Hi(k) depends only on multiexcitations through the backflow Xl(k), 
we expect that (48) to be relatively insensitive to long-range order. In par- 
ticular, we can expect Hi(k) to be roughly the same in the liquid and solid 
phases of 4He. Comparison of the solid 4He data ~2 with the superfluid 
4He data ~ confirms these theoretical expectations. Such a comparison was 
carried out by Werthamer 13 but the one-phonon intensity function Z(k) 
was incorrectly identified with the Debye-Waller  factor, which as we have 
emphasized in Section 2.6, is not connected with backflow at all. This mis- 
interpretation has spread to the extent that Z(k) in superfluid 4He has been 
called an effective Debye-Waller  factor for the l iquid) 

To appreciate the role of e -2w, we introduce the s i n g u l a r  f sum rule, 
which is a mathematical construct that gives the exact contribution to the 
co moment of S(k, co) of all s i n g u l a r  diagrams, i.e., those with an isolated 
one-phonon line, of the density response function. The singular dynamic 
structure function Sslng(k, co), which is proportional to the imaginary part of 
the singular diagrams, picks up, among other things, a delta function from 
the isolated one-phonon line. Note, however, that only one term in 
&i,g(k, co) is proportional to the one-phonon delta function; therefore it is 
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erroneous to identify the whole of Ssing(k , co) with Z(k) 6(o9 - COk). Explicitly 
the singular f sum rule for phonons in a solid 14 is 

fo ':dco co) = [ -  2W(k)]} k2/2m (49) coSsing(k~ [exp 

and for a Bose liquid 1~ is 

fo ~ co) = no[k2/2m + MHlV(k) - MH2V(k) - p] (50) coSsing(k, 

where n o is the condensate density,/~ is the chemical potential, and MHF(k) 
is the Har t ree-Fock matrix self-energy. In a solid e-2w plays the role of n0, 
in furnishing the link between ,the density correlation function and the 
fundamental amplitude correlation function. In other words if e-EW(no) 
vanishes in a solid (Bose liquid), the poles of the density correlation function 
need not be the same as the displacement (field) amplitude correlation 
function. The interpretat ion of e-2w as the one-phonon intensity function 
is equivalent to the identification of n o with Z(k), which is clearly wrong, 

From the present point of view, the anomaly in the solid bcr 4He 
data 12 appears to be in the lowest transverse mode T1[011], which does not 
show the general backflow but behaves as the harmonic one-phonon ap- 
proximation (46). 

It is also clear from the same reasoning that the 'background X(k, co) 
should be relatively insensitive to long-range order. Such a theoretical 
expectation is qualitatively confirmed in two separate regions in (k, co) 
space. At the high-co and relatively low-k region, light scattering measure- 
ments 15 of solid hcp, solid bcc, and liquid 3He showed very little change in 
the scattering profiles as a function of energy shift. At the high-e9 and high-k 
region where the single-excitation state 11) no longer exists, we find from 
the f sum rule that the average multiexcitation energy is simply 

~no = kE/2mXo(k) (51) 

which approaches the free-particle spectrum as k ~ 0o. The background 
X(k, co) itself can be obtained by approximating the sum over In) by the 
two-excitation state 12), 

X(k, co) ~ ~ I(py)2ol 2 &(co - k2/2m - k .  q/m) (52) 
q 

which has a width (from the k .  q/m term) that increases linearly with k. 
Neutron scattering measurements 7'8'12 have confirmed the existence of this 
"independent-particle" background in the various phases of 4He: solid 
hcp, solid bcc, superfluid, and normal liquid: 
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3.2. Inflection Point in S(k) 

One of the results for neutral quantum fluids in Section 2 is that in the 
long-wavelength limit the backflow contribution to S(k, 09) dominates the 
background contribution. Explicitly we have found that Y(k)~  k 3 and 
X~(k) ,-~ k 4 as k -~ 0. Since Y(k) is negative and Xz(k ) is positive, we expect 
from (11) that at long wavelengths (assuming a nominally linear phonon 
spectrum) S(k) would show an inflection point due to the interplay between 
the negative backflow contribution and the positive continuum contribution. 
Note that this is a general property of the multiexcitation contributions to 
S(k) and does not depend on the underlying particle statistics. However, 
this inflection property does depend on whether the interaction is Coulombic 
or not. In a charged quantum fluid, we have found that S(k) ,~ k 2, Y(k) -~ k 4, 

Xz(k) --, k 4 as k - ,  0. Hence to leading orders in k we do not expect from 
these considerations an inflection point in S(k) of a charged quantum fluid. 

The location and visibility of the inflection point in S(k) of a neutral 
quantum fluid depend of course on the relative magnitudes of the co- 
efficients, which we now estimate for liquid 4He and liquid 3He. If we write 
Y(k) = - a k 3 +  . . . , X  0 = bk*.+ . . . ,  and ignore the phonon dispersion, 
then the inflection point would occur at k~ = a/2b. From (13), we see that 
the ratio of the backflow to background contribution is 

, _  r (k) /Xo(k)  = Xl(k ) [OkX0(k) ] - 1 (53) 

The right-hand side of (53) is just the ratio of the mean multiexcitation 
energy N,0 to the single-excitation energy co k. For  liquid *He, N,o is ap- 
proximately 7 18 K and o) k ~ -  ck in the long-wavelength region, where c is 
the sound speed. Taking the long-wavelength limit, we find a/b = N,o/C 

0.99 A-  1 and the inflection point in S(k) of 4He should be at 

kl 4) ~ 0.5 •-1, 

which is in agreement with previous estimates.* For  liquid 3He, the situation 
is not so clear, since there are no measurements of the multiexcitations. If 
we make the assumption that Nno in 3He is roughly the same as that in *He, 
since the multiexcitations are more insensitive to the particle statistics than 
the single excitations, then from the sound speed ratio c3/c 4 ~ 0.8, we 
expect that the inflection point in S(k) of 3He should be at 

kl 3) ~ ,  0.6 A-  1 

Hallock 16 has measured S(k) for liquid 4He and for liquid 3He and has 
found a gentle shoulder displaying an inflection point in S(k) for each of 
the quantum liquids. The positions of the inflection points are consistent 
with the above estimates. 
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3.3. Phonon Spectrum in Liquid 3He 

The phonon (zero-sound) spectrum in liquid 3He is given by (25) or 
(26). Since liquid 3He is a strong-coupling Fermi liquid in the sense that as 
k -~ 0 the phonon (zero-sound mode) itself nearly exhausts the f sum rule, 
we make the reasonable assumption that the phonon would dominate the 
f sum rule over the finite range in k in which it is well defined. In other 

L F and obtain words in (25) and (26), we neglect X~ and X P so that cog ~ cok 

F [Xo(k)/S(k)]  Vm, o - COkJ (54) CO k ~ 0 )  k - -  

which shows that the effect of the multiexcitations is to push COk F downward. 
The effect of the neglected single pairs would be to push col upward. A rough 
plot of COk F for liquid 3He shows a roton minimum at k F ~ ~ 1.7 A-1 with 
energy A3 ~ ~ 22 K and a maximum at ~ 1.4 A-1 with energy -,~ 24 K, and 

F lies above the single-pair continuum. The impreciseness the whole curve COg 
of these numbers is due to a lack of agreement of S(k) as measured by x-ray 
scattering.16,1 ~ To investigate co k, wc form the ratio of (54) with the phonon 
spectrum of liquid 4He, (14), 

CO(k 3) S(4)(k) -- X(04)(k) k2/2m3 - X~3)(k) 
CO(k4) -- S(3)(k ) _ X(oa)(k) k2/2m4 _ X(4)(k) (55) 

Since the small-k behavior of CO(k 3) is well known, we concentrate on the 
large-k behavior. A very crude estimate can be obtained from (55) by ex- 
trapolating to the finite-k region the multiexcitation equalities valid in the 
infinite-k limit, viz., X(o3)(k) = X~04'(k) and H~a)(k) = H~4)(k), where Hl(k  ) is 
defined in (48). Equation (55) then reduces to 

co(k 3) m,~ 1 - Xo(k ) /S (k )  
(56) 

CO(k *) m 3 R ( k ) -  Xo(k ) /S (k )  

where R ( k ) =  S(3)(k)/S(4)(k) and Xo(k) /S (k )  refers to 4He. Using existing 
data 7'16'17 on 3He and 4He, we estimate from (56) a minimum in CO(k a) at 
k 3 ~ 1.6 A-  1 with energy A 3 ~ 9 K, if the phonon in 3He is still well defined. 

3.4. Phonon Spectrum in 3He-4He Solutions 

The phonon spectrum in a 3He-4He solution can be written 

k 2 / 2 # -  X~(k) XoP(k) [~p 
COk = S(k) -- Xo(k) S(ki ---Xo(k) - cog3 (57) 

where /1 is defined in (29) and c~ P - X~(k ) /Xg (k )  is the average single-pair 
spectrum. At a low concentration x of aHe atoms dissolved into liquid 
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b 4He, COk is approximately equal to the boson spectrum cog 

b k 2 / 2 m b  - -  Xlb(k) 
cog = S b ( k  ) _ X~0(k) (58) 

evaluated at the reduced solution density. Since a low concentration of 
3He in liquid 4He forms a weak-coupling Fermi liquid, it is reasonable to 
assume that the leading x correction to cob comes from the single-pair states 
rather than the multiexcitations; then we have from (57)-(58) to leading 
order in x 

b Xg(k),  b k2 
(-O k - -  (,O k ~ '  Z ~ ( ~ ( c o  k - -  ~ P )  + X 2 m f Z b ( k )  + . . .  (59) 

where the Bose intensity function Zb(k) -- Sb(k) - Xb(k) is known to be 
b and the spectrum cog is repelled to an energy positive. At low k, ~ a  ~ COk 

higher than cob, i.e., the leading x correction increases the sound  speed 
evaluated at the reduced solution density. If at large k, (~P is larger (smaller) 
than COb, then the spectrum cog is repelled to an energy lower (higher) than 

b Note that the argument rests entirely on the form of the average single- (,O k . 

pair spectrum c~ P, which is not known. Nevertheless we see from (59) that 
the behavior of COk would reflect the qualitative features of (~a as  to whether 
(~P c r o s s e s  co~ or not. A similar conclusion was drawn on the basis of a 
detailed calculation 18 using an extended quantum hydrodynamicmodel .  
The phonon shift COk - -  COb measured by neutron scattering 19 is an oscillating 
function of k with a minimum shift that is negative. Since the measurement 
was taken at 1.6 K, which is much greater than the characteristic (Fermi) 
temperature (T F ~ 0.3 K), the T = 0 relation (59) is not directly applicable. 
Nevertheless it is difficult to understand the negative shift on the basis of 

b A more definitive conclusion for c5 p awaits a (59) unless c5 P crosses cog. 
low-temperature neutron scattering experiment. 

3.5. Concluding Remarks  

By the use of the f sum rule, we have attempted to isolate the multi- 
excitation contributions to S(k, co), to separate it into backflow and back- 
ground, and to illustrate its generality. We have seen how multiexcitations 
can affect the intensity function Z(k) through the backflow, as well as give 
rise to a background X(k, co). The exact expression for backfl0W hopefully 
has clarified the concept of backflow pioneered by FC. From the exact 
expressions for the single-excitation spectrum COk, we have seen how the 
multicxcitations effectively repel thc single excitations, i.e., level repulsion. 
In short, the presence of multiexcitations is seen to have a profound effect 
on the single excitations. 
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We have centered our attention on the f sum rule because of its re- 
lationship to number conservation. The other sum rules involving S(k, 0)), 
which have not been used here, undoubtedly would be quite useful in setting 
bounds for various physical ,quantities (see, e.g., Ref. 6) and in determining 
the density excitation spectrum at long wavelengths (see, e.g., Ref. 20). Such 
considerations are important and are reserved for future study. 

APPENDIX. THE LEGGETT INEQUALITIES 

We give here a plain derivation of the Leggett 11 inequalities for the 
Fermi liquid in a quantum solution, which were originally derived by field- 
theoretic techniques. The basic idea is to exploit the fact that in a quantum 
solution the fermion number density and spin density are conserved but in 
general not the current or spin current. We begin with the response functions 

20)v~ (A1) z ~ r  0)) I(CL~ -- 0)~o + i0+ v 

where G + can be the density, spin-density, current, or spin-current operator. 
The excited states Iv>, coupled to the ground state 10> by ~ ,  can be divided 
into the single i-excitation states [1> and the multiexcitation states In}. 
Concentrating on the longitudinal-current response function ~ ,  we separate 
out the single-excitation part 

~j(k, 0)) = g~l)(k, 0)) + ~}")(k, 0)) (A2) 

�9 = F , + 20) 1~ (A3) ~}l)(k, 0)) 
""l(J~)1~ - -  0)20 -[- i0+ 

#"~")(k, o)) ---~ ~ IU~).ol z 
n 

Since the current is not conserved, 

20)n0 
(A4) 0)2 2 - 0) .0 + i0  + 

lira ~-(1) ~ j  (k, 0)) = 0, lim 
k/co~O k/co~O 

From number conservation it follows that 

o~(n) ~ j  (k, 0)) < 0 (A5) 

Using (A5), we see that 

~o 2 N 
~ ( k ,  0)) = -- + ~ (k ,  e)) 

m 

0)2 N 
lim 7~-~(k, ~) < -- 

k/a,--*O k - -  ~l  

(A6) 

(A7) 
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I t  is wel l  k n o w n  1 t h a t  t he  l e f t -hand  side of  (A7) is equa l  to  N(1 + 1F1)/m* ; 

h e n c e  we  o b t a i n  o n e  of  L e g g e t t ' s  i nequa l i t i e s  

m*/(1 + 1F1) > m (A8) 

A s imi la r  ana lys i s  o f  the  sp in  l o n g i t u d i n a l - c u r r e n t  r e s p o n s e  f u n c t i o n  yie lds  

m*/[1 + (1/12)Z1] > m (A9) 

E q u a t i o n  (A8) is to  be  c o m p a r e d  wi th  (39). 
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