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A phenomenological theory of parafluidity, i.e., an enhancement of fluidity due to 
order-parameter fluctuations, is presented for helium near the 2 transition. The 
generalized time-dependent Landau theory of second-order phase transitions is 
reviewed in general and is applied to the superfluid transition in helium as a particular 
example. In helium, it is found that parafluidity is manifested in the divergences of 
the mass diffusivity Dm oc e -~, the thermal conductivity t¢ oc e -~, the first-sound 
amplitude attenuation ~ ~ lel- ~, and the second-sound damping D 2 ~ (-g)-~,  which 
are all consistent with the dynamic scaling hypothesis. Here a characteristic relaxa- 
tion time Zo oc ]el- 1 is used, where e = (T - To)/Tc and T o is the transition tem- 
perature. Although there are not enough experimental data to confirm our formulas, 
the present approach is seen to agree in order of magnitude with available experiments. 
Finally, the sound absorption above a ferromagnetic transition is calculated by adding 
a diffusion term to the generalized time-dependent Landau equation. The result thus 
obtained agrees in order of magnitude with experiments in nickel. 

1. INTRODUCTION 

The classical Landau theory 1 of second-order phase transitions, which 
introduces the universal concept of the order parameter, is extremely useful for a 
qualitative understanding of the phase transition. In many systems, however, the 
classical Landau theory is quantitatively incorrect, since the classical critical 
exponents 2'3 are not observed in experiments. On the other hand, the scaling laws 
of Widom,5 Kadanoff,6 and others 2 are well satisfied by systems with nonclassical 
critical exponents. We can reconcile the classical Landau theory and the scaling- 
law approach by noting that each has its own range of validity. 2 In general the 
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classical range, where the classical Landau theory is valid, is close but not too 
close to the transition, whereas the critical range, where the scaling laws apply, is 
in the immediate vicinity of the transition. Despite its failings in the critical range, 
the Landau theory has an advantage over the scaling-law approach: the Landau 
theory can predict not only the temperature dependence of the critical behavior, 
i.e., critical exponents, but also the magnitude. 7 Amit and Luban, s W o n g ,  9 and 
others 1°'11 have been able to generalize the Landau theory so that the predictions 
of the generalized Landau theory agree with that of the scaling laws in the critical 
range. Furthermore, Stauffer t ~ has shown that the predictions of the generalized 
Landau theory agree in magnitude within 50 ~o with experimental results of the 
phase transitions in ferromagnets, classical gases, quantum gases, binary mixtures, 
and superfluid helium. 

The above considerations are restricted to static phenomena near the transi- 
tion. An extension of the scaling-law approach to critical dynamic phenomena 
has been formulated by Ferrell et a l., ~ 2 and Halperin and Hohenberg.13 Likewise, 
our purpose is to extend the generalized Landau theory to critical dynamic 
phenomena, using the 2 transition in helium as a prototype. In this manner, we 
hope to understand quantitatively, for example, the observed anomalous increase 
in the thermal conductivity of helium as the 2 transition is approached from above. 

In Section 2 we formulate the generalized time-dependent Landau theory. 
The theory is applied in Section 3 to the calculation of the thermal conductivity 
and mass diffusivity in helium I near the 2 transition. The resultant divergence in 
these dynamic properties is a manifestation above the superfluid transition of 
parafluidity, or greatly enhanced fluidity due to order-parameter fluctuations. In 
Section 4 we calculate the contribution of order-parameter fluctuations to first- 
sound absorption in helium I, extend the calculation to helium II, and make con- 
tact with second-sound damping. As another application of the theory, we con- 
sider in Section 5 the sound absorption above the ferromagnetic transition and 
compare the prediction with experiments in nickel. A brief conclusion follows 
(Section 6). 

2. GENERALIZED TIME-DEPENDENT LANDAU THEORY 

The generalized Landau expansion s-ll  for the free-energy functional F{~b} is 

/ ,  
F{~h} J dr[fo + AolV¢I 2 + A]~I 2 + Bill" + CI~I 6 + ' . . ]  

~/l~l a <constant,  Ikl~ < 1 
(1) 

where ~b is the order parameter; fo is the free-energy density of the unordered 
phase; ~ = ( T - T ~ ) / T c ;  T~ is the critical temperature; A o ~:lel -"~, A ~:lel ~, 
B o: lel ~-2B . . . .  ; ~ is the amplitude correlation length given by (Ao/A) ~ above 
T~, k is a wave vector, and all the critical exponents are defined as in Reference 2. 
To be concrete, we consider ~ to be complex as in helium. The order parameter is 
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determined by the stationary condition 

6F{~,}16¢* = 0 (2a) 

which gives the relation 

L{~}~ - [ - A o  V2 + A + 2Bl¢12 + 3Clq, I 4 +. . .3~,  = 0 (2b) 

if the surface integrals 

f 6~0*AoVqs. + complex conjugate (2c) d~ 

are discarded. The surface integrals (2c) vanish if, at the surface, 

(V¢), = 0 (2d) 

which is satisfied for an isolated superconductor.7 For helium, the correct boundary 
condition at a surface is probably closer to ¢ = 0. In the present work, we ignore 
the surface integrals. 

In the critical range, the calculation of static phenomena 11 based on (1) and 
(2) consists essentially of rewriting the classical results with general critical 
exponents. Similarly to calculate dynamic properties, we rewrite the classical time- 
dependent Landau theory with general critical exponents. 

The classical time-dependent Landau theory x4'ls assumes that the order 
parameter relaxes to its equilibrium value according to 

O¢lOt = -R<, .  L<,{q~}O (3) 

where the classical relaxation coefficient Rcl is a constant and La{~,} is given by 
(2b) with the classical exponents and without the terms CI ~'14 + . . . .  We now rewrite 
(3) with general critical exponents 

O~klOt = - R. L{ ~b} ~, (4) 

where the temperature-dependent relaxation coefficient R is to be taken from 
experiments, and L{~k}¢ is given by (2b). In general, the temperature dependence 
of R cannot be related to the critical exponents because of the existence of different 
transport modes with differing frequencies, strengths, and decay rates in the various 
phase transitions. However, for a particular system the critical exponent of R can 
be thus related; ~6 e.g., in the two-dimensional Ising model, Suzuki et  al. ~7 have 
indicated that R oc e +. Equation (4) has been proposed previously in calculations 
on the first-sound absorption in helium by Prokovskii and Khalatnikov x s and by 
Wong19; and the agreement of the predictions of (4) with the dynamic scaling 
hypothesisX2.13 was pointed out by DiCastro et al. 2° We call Eq. (4) the generalized 
time-dependent Landau equation, and the ensuing theory the generalized time- 
dependent Landau theory. 

To supplement Eq. (4) we write down the expression for the order-parameter 
current density below T~ in the limit of zero field : 

jC'(r, t) = (Ao/h i ) (~*V~/  - ~,V~*) (5) 

It is easy to verify that j¢ = nsvs with the superfluid number density 21 
ns = (2mAo/h2)l¢l  2, and the superfluid velocity v, = (h /m)V(phase  of ~b), where m 
is some mass (e.g., for helium m is equal to the mass of the helium atom). It is 
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customary to define a superfluid density p~ = mn~ and the current density 
j = m] ~. Then it is straightforward to show that j = psv~; and for a system with 
uniform I~kl, holV~l 2 1 2 = ~p~v~. Above To, Eq. (5) is still applicable, since the mean- 
square value <1~12) [cf. Eq. (6) below] is nonzero as a result of fluctuations, and 
the quantity Pv = (2m2Ao/h2)(l~12) can be interpreted as the parafluid density 
inside fluctuations of volume ~3, which has a finite lifetime in accordance to (4). 
Since parafluidity will be discussed in detail in Section 3, it is only necessary at this 
point to recognize that (5) can be successfully applied on both sides of the phase 
transition. 

In the classical range, the use of the classical equation (3) or its equivalence 
has led to the successful predictions of anomalous fluctuation effects in dynamic 
properties. For example, above T~ the electric conductivity and the diamagnetic 
susceptibility in a bulk superconductor 22-26 and the thermal conductivity in a 
van der Waals gas 27 have been shown to diverge as ~-+. The phenomenological 
approach ofH. Schmidt 2 s for the electrical conductivity of a superconductor is most 
useful because it is in complete correspondence with the microscopic theory of 
Aslamazov and Larkin. 22 An essential step in the calculation of H. Schmidt, 25 
which is not used in two other phenomenological calculations,2 a,24 is a Kubo-type 
formula that relates the electrical conductivity to the current fluctuations. By means 
of(5) with Ao = h2/2m, the current fluctuations are expressed in terms of the Order- 
parameter fluctuations, which are in turn calculated by the time-dependent 
Ginzburg-Landau equation, i.e., Eq. (3). These considerations for a superconductor 
in the classical range have been emphasized recently by Ferrell. 26 

In the critical range, we calculate the dynamic properties in the generalized 
time-dependent Landau theory by following the procedure used by H. Schmidt, 25 
but with (4) replacing (3). In the examples treated here, the difference between the 
present procedure and the plausibility argument of DiCastro et al. 2° (in the classical 
range, between H. Schmidt 25 and others 23'2a) is not an essential one; however the 
difference is significant for a superconductor in a nonzero magnetic field. 28'29 

3. PARAFLUIDITY IN HELIUM ABOVE THE SUPERFLUID 
TRANSITION 

As far as we know, the word paraconductivity was first used by Ferrel126 
to describe the diverging electric conductivity above the superconducting transi- 
tion, in loose analogy with the diverging paramagnetic susceptibility of a ferro- 
magnet above the Curie point. Similarly, in a superfluid transition we use para- 
fluidity to mean the enhanced fluidity due to order-parameter fluctuations with 
finite lifetimes and finite ranges, and parafluidity is manifested above T~ in diverging 
thermal conductivity and mass diffusivity. The major difference between para- 
conductivity and parafluidity, .as far as calculations are concerned, is that the 
former occurs in the classical range, whereas the latter occurs in the critical range. 
This difference necessitates the use of the generalized time-dependent Landau 
equation (4) to describe parafluidity. 
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3.1. Plausibility Arguments 

Parafluidity can be made plausible 2° by analogy with the arguments used 
for paraconductivity. 2a'24'26 In helium I (T > T~), spontaneous order-parameter 
fluctuations produce islands of superfluidity (~ ~ 0) which cannot persist but must 
relax to the equilibrium value, ( ~ ) =  0, in accordance with (4). The typical 
fluctuation has a finite range of the order of ~ = (2Ao1:o) ½ and a finite lifetime of the 
order of Zo = 2)~0 R -  1, after which a new set of fluctuations will replace the pre- 
ceding ones. Here Xo is the static susceptibility given by )~o ~ =  02F/OJ/2= 
2A + . . . .  The finite lifetime % leads to the following estimate of anomalous 
transport. The mean-square fluctuation, 

<1012) -- (AZ) -x ( d~,1012 exp (-AF{~b}/knT) (6) 
d 

where 

AZ = f dO exp (-AF{O}/kBT) 

AF{~b} = F{0} - F{(~b)} (7) 

is given by the equipartition theorem as <lOl2> oc kBr~xoU a oc (Ao~) -1, where 
kB is the Boltzmann constant; and the mean density of the parafluid can be taken 
to be pp = (2m2/h2)Ao(lOI 2) oc ?-1. In helium II ( r ~  T~), the thermal con- 
ductivity t¢ is infinite and the mass flow through capillaries is frictionless. As a 
result of fluctuations, t¢ and the mass diffusivity D,. experiences in helium I an 
anomalous mode of transport, whose contribution is proportional to the mean 
parafluid density times its mean lifetime, i.e., ppxo oc ZoO- 1. Taking Xo oc Ic2 x~[ oc 
5-x and ~ oc los-11 oc e -~, where c2 is the second-sound speed and Ps the super- 
fluid density, we find the parafluid contribution to r and Dr,, which we distinguish 
by primes, to be 

~:' oc D;, oc ~0~-~ oc ~-~ (8) 

Note that the temperature dependence of ~¢' agrees qualitatively with experi- 
ments. 3°'31 Similarly, the finite range ~ of the order produced by the fuctuations 
results in an increase of the free energy, 32 i.e., 

F' = -kBTln AZ, (9) 

which can be reduced with the aid of (7) to F'  oc ~-3 In ~. Taking ~ oc e-~, we 
find the parafluid contribution to the specific heat Cp to be 

Cp oc In I~-11 (10) 

which is in qualitative agreement with experiments, a3'34 Although the restriction 
to wavelengths around ~ in the reduction of(9) to (10) is open to question, the authors 
feel that a previous attempt a5 to incorporate the logarithmic singularity in Cp is 
not correct, and tend towards the treatment based on (9). 
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3.2. Thermal Conductivity and Mass Diffusivity 

To calculate x and D m quantitatively, we begin with the Kubo-type for- 
mulae a6,a7 which relate x and D m to the correlations of the heat current density j~ 
and the mass current density jo, respectively: 

1 
x - --2kBT 2 ~,-.olim [limk...O ~jq(k, co)j~(- k, -co))] (11) 

ap _ 1 lim [lim (j~(k, co)j~(-k, -co)>] (12) 
D,,,~-~ 2kaT~,-.o k-.O 

where p is the total mass density and/~ is the chemical potential. We consider 
helium I near T~ to be described by a quasi-two-fluid model: a parafluid with a 
finite lifetime, and the rest of the fluid, the normal fluid. The mass current density 
is jP = j + pnv., where j can be interpreted as the parafluid current and is given 
by the mass of the helium atom, m, times the order-parameter current density (5); 
p, and v. are the density and velocity, respectively, of the normal fluid. The heat 
current density is taken to bej q = pTSv.  = TS(p/p,.)(j p - j), where S is the entropy 
per unit mass of the total fluid. In this manner, the parafluid contribution to both 
x and Dm near T~ is given by 

x' = , _---tgP = 1 lim [lim ~(Jk" J-k>] (13) 
TcS 2 Dm~l~ 2kaT~ ~-.o k-~O 

where Jk is m times the Fourier transform of (5): 

Jk = j(k, co) = 2mAo ~ k,,i,* ,I, (14) 
- - T  , Wk'-½kWk'+½k 

with 

and 

k' =~ (k', co') 

dk' ~doY 

~Pk = ~b(k, co) = f dr f dt [exp ( -  i(k . r - cot))]¢(r, t) 

Since the parafluid contribution to D,,(~plOlz) is the only contribution in the case 
where the normal fluid does not fluctuate appreciably, we expect the result of(13) 
for D'~(Op/dp) to be applicable to helium in a porous medium where motion in the 
normal fluid is damped out by viscosity. For thermal conductivity, the parafluid 
contribution is the main contribution in situations where the density fluctuations 
reflected in (jP. jP) and the entropy fluctuations a8 are negligible. Density fluctua- 
tions are not important 1 a except perhaps in an unaccessible temperature range very 
close to T~ ; however, entropy fluctuations are not negligible in the experimentally 
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accessible range for bulk helium. It is not clear a priori whether all factors of the 
specific heat Cp will be in r '  as calculated from (13), in comparison with that from 
extended dynamic scaling, 13 since Cp can be considered as arising from the 
normalization of the entropy fluctuations 3s which we have neglected. As we shall 
see, the logarithmic dependence of r' from (13) agrees with the theoretical pre- 
dicffons of Reference 12. The spirit of (13) is analogous to calculations of the 
electrical conductivity of a superconductor 22-26 above T~, in which only order- 
parameter fluctuations are considered since the lattice damps out any motion of 
the normal fluid. 

Now we calculate the contribution of order-parameter fluctuations to 
( j .  j), in analogy to the classical calculation by H. Schmidt. 25 Using (14), we have 

( J ~ ' J - k >  = Y~ k ' .  " * * k (¢~'-,~¢k"+~¢k"+,~¢r-~k> (15) 
k'k" 

If the fluctuations with different k are statistically independent, we can factorize 

(d/g,--½k~k'+~k~k"+~k~k,,--~k> = k'k,,(~V-½/~V-½k><~V+½k~k,+~k> (16) 

and obtain 

(j~.j_k} = 2__.__£o 21k'l(~'-½kek-½k>(¢~'+~kek'+½k> (17) 
k' 

which can be represented by Fig. 1. If the anharmonic terms in (1) can be ignored, 
we can calculate the time-independent mean-square fluctuations from (6) and (7) 
and get 

<¢~¢k'> = 6kk'2kBTc;(k 
(18) 

Zf ~ = Zo1(1 ÷ [k12~ 2) 

where the static susceptibility X0 is given by Xo ~ = 2A + . . . ,  and the amplitude- 
correlation length ~ = (2AoZo) ½. To obtain the fluctuation spectrum near T~, it is 
sufficient to consider a linear approximation to the generalized time-dependent 
Landau equation (4), which after Fourier transforming can be written as 

( - i c o  + r~)C,k = 0 
(19) 

Fk -- F0(1 ÷ ]k[2~ 2) 

k 
l 

k'+k 
Fig. 1. Schematic representation of Eqs. (17) and (38). Decay of 
one transport mode (,-,..,,-x.) into two order-parameter fluctua- 
tions ( , ). 
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where the relaxation frequency is given by Fo = Zo 1 = R/2Zo. In this manner, we 
obtain the fluctuation spectrum 

(~b'~¢k,) = 6kk,2kBT~Xk 
(20) 

Zk = xk2Fd(F~ 2 + 092) 

such that 

Zk = Zk (21) 

The conditions on (18) and (20) are restriction Ikl~ < 1 on (1), and the restriction 
09% < 1 on (4). Substituting (20) into (17), we can perform the o9' integration 
explicitly and obtain 

f ' (Jk'Jk) = (4knTcFoZo) 2 2F+F_ 092 ..[_ (F+ -q- F_) 2 

(22) 

where F+ = Fk,±~k. Equation (22) is the desired result for the current-correlation 
function. 

Equation (22) can be substituted back onto (13) to give 

r '  ,~gp 8(m) 2 f dk' Ik'[ 2 (23) 
O 2  = = 5 (2,0 

Substituting (19) into (23) and performing the k' integration, we obtain the final 
form : 

x' ~,Op 1 [ml 2 Zo ~ Zo(~) 
= ~ ] k . T ~  Co ~ (24) 

T~ 2 = vm~-~ 16~ h = 

where %(e) and ~(e) are to be evaluated for T > T~ and Co = 2.38 x 10- lo g/cm 2. 
Since the order parameter O is not a constant of the motion above T~, the 

frequency dependence of the order-parameter correlation function (20) cannot be 
determined from hydrodynamics. This has prevented a direct check of the restricted 
dynamic-scaling hypothesis, x3 If we apply the asymptotic matching condition 
to the characteristic frequencies of the order-parameter correlation function 
above T~ [Eq. (20)] and below T o assuming the dominance of the second-sound 
mode, we obtain F(lkl = ~-1) ,~ c2~-1 ~ ½D2~-2 or Zo x(e) "~ ½c2~-1 ~ 102  ~ -  2, 
where c2 oc (pflCp) ~ oc e ~ is the second-sound speed, and D2 is the second-sound 
damping. Note that the above relations were obtained solely from restricted 
dynamic scaling, unlike Reference 20. Thus from (24) we have x'(e) oc D',,,(e) oc ~-~, 
which is in qualitative agreement with calculations based on mode-mode 

• coupling, 38'39 and for x'(e) with experiments in bulk helium. 3t Determination of 
Zo(e) offers a direct check of the restricted dynamic-scaling hypothesis as applied 
to helium. 

Quantitatively the assessment of (24) is less clear because of the scarcity of 
experimental results for Zo(e). In order to fit the measured thermal conductivity, 
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we take ~(e) = (1.6 A)e -~ from Mamaladze 4° and 

Zo(e) ~ 0.6 x 10-x°5-1 sec 

Using (25) in (24), we get 

t¢'(~) ~ 0.5 x 10-% -~ W/cm °K 

(25) 

(26) 

which agrees to 30% with the bulk measurements of Ahlers, 3t in the range 
10 - 6  < g < 10 -3 .  The estimate (25) for Zo(e) is larger by about one order of 
magnitude than the estimate Zo(e) ~ 2~/c2 ~ 2~2/D2. A better fit to x' can be ob- 
tained by letting ~o(e) oc e- z, z < 1, or by logarithmic corrections to e- 1. However, 
for order-of-magnitude comparisons it suffices to take ~o(e) oc e- 1. 

Gould and Wong 41 have recently derived microscopically the parafluid 
contribution to the thermal conductivity and found x'(e) oc e -~. Thus the present 
work bears the same relation to Gould and Wong ¢1 as the work of H. Schmidt 2s 
to that of Aslamazov and Larkin? 2 

The quantity D'(Op/alt) can be measured if a pressure gradient is applied to 
helium I in capillaries so narrow that no viscous flow is possible and only a homo- 
geneous flow independent of the capillaries' radii occurs. The mass current density 
is then given by the parafluid contribution j = D',.(ap/dp)Vl~. The mean velocity 
induced by parafluidity is given by Vp = j /p = p -  1D'~(Op/a#)Vk~. Using (25) in (24), 
we find that helium I under its own gravitational pressure (# = gz) f lows  with 
parafluid speed 

vp(e) = 0.6 x 10-st -~ cm/sec (27) 

which agrees with the plausibility arguments of Wilkins. 4s No existing experi- 
mental test for (27) is known to us. Wilkins 42 has attempted to extend the theory to a 
two- or one-dimensional geometry by taking into account only the reduction in 
phase space. A calculation including the effects of the boundary condition ~k = 0 
should be performed in order to evaluate the effects of parafluidity in restricted 
geometry. 

The present calculation of the parafluid drift velocity, Eqs. (13)--{27), is 
necessary only if one desires to express the mass diffusivity in terms of Zo and 4. If 
instead the thermal conductivity x' is used as a free parameter of the theory, then 
vp can be directly expressed in terms of x' by 

Vp = p -  x(~c'/T~S2)V/t (28) 

The main assumption that is necessary to derive (28) is that the two-fluid formula 
for the heat current with zero flow in He II, j~ = p TSv,  .~ - TSj, also holds for the 
finite-lifetime fluctuations in He I. A direct experimental test for the validity of 
j,i = pTSv,, in He I would be to measure the drift velocity of impurities in He I in a 
heat current. Assuming that the impurities move with the normal fluid, the drift 
speed close to the 2 transition is given by 

v, = f l /p T~S (29) 

which is equal to 2 x 10 - 3  era/see forff = I mW/cm z. 
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If we utilize the information from hydrodynamics and restricted dynamic 
scaling, we find that Zo(5) oc 5-x(C;)~,,where_ ,--C;(C+P) is the specific heat below 
(above) T~. Then we find that v~(5) oc D=(5) oz x (5) oc e-¢(C~) ~, which agrees with 
the theory of Reference 12, but  is to be compared with r'(5) oz 5-~C-~/(C;) -~ from 
extended dynamic scaling, ta 

Below T~, the effective thermal conductivity is extremely large and easily 
masks all parafluid effects. If we neglect the k = 0, 09 = 0 component of the 
current, then the form of the current correlation function is the same as for above, 
i.e., as given by (13) and (24), but z0 and ~ are now the values below T~. It has been 
suggested *a that the mass diffusion and perhaps also the spin diffusion of He 3 
impurities in He* behave similarly to the thermal conductivity near T~ and give 
an 151 -* divergence t 3 on both sides of T~. Such an experiment would yield informa- 
tion on the relaxation times above and below T~ and verify the dynamic parafluid 
effects on both sides of T~. 

3.3. Factorization of the Fluctuations 

We consider now in more detail the factorization (16) in the critical range, by 
analogy with the estimates in the classical range. 26 After Fourier transforming, 
we can write the free energy (1) above T~ as 

F{$} = Fo + ~ (A + A0(kl2)l~bk[ 2 +, ~ B~'~+k,,_k,tPk~,~k,, + ' ' "  (30) 
k k'k"k 

If the anharmonic terms in (30) are negligible, then the correlation function 
(~b*~bk,) is given by (18). We can estimate the correction due to the anharmonic 
terms by substituting (18) into ~,kk' B(~b~k)(~k*~kk')" As the minimum wavelength 
of interest is of the order ~, we note that the anharmonic correction for fluctuations 
with wavevectors [kl ~ ~- 1 can be neglected if 

1 >> ~ B ( ~ b k ) / A  oc ~-3kBT~ZoB/A oz 53~-~-2p (31) 

Since the equilibrium value of the order parameter below T~ is given by I~ol 2 -- 
-A/2B, we can express (31) in terms of the Ginzburg factor A~ : 

>> AG = 4~eknT~xo~-31~o1-2 ~ 5 av-(2-~) (32) 1 

which is the well known Ginzburg criterion 2 for the critical range. From this point 
of view, the Ginzburg criterion (32) indicates that the harmonic fluctuation terms 
(~k*~k,) are large compared with the anharmonic corrections. The generalized 
Landau theory (1) is applicable to systems that do not obey the scaling relation 

+ 2fl = 3v. From the Josephson inequality** 3v > 2 - ct and the scaling rela- 
tion 7 + 2fl = 2 - ct which is a direct consequence of (1), we see that AG is finite 
in the immediate vicinity of T~. Analogous arguments can be presented below T, 
and also lead to the Ginzburg criterion. Thus according to (32), long-wavelength 
fluctuations (lit[ ~ 1/¢) are statistically independent in the critical range. 

The above considerations were based on (18), which is derived from (6) and (7) 
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with anharmonic terms in (1) neglected, and the assumption that only wave- 
vectors , , -~ - t  should be taken into the k sum (31). Revzen 45 has recently 
questioned the validity of (6) and (7), and based on a gauge-invariant formulation 
has proposed a new zeroth-order form, i.e., ignoring anharmonic terms in (1): 

(~b~kk) = [exp ( 2 k B T ~ z k ) -  1 _ 1] - 1 (33) 

which reduces to (18) for 2kBT¢gk >> 1, and eliminates any short-wavelength 
divergences in the k integrals. The effect of (33) in an integral over k is to introduce 
an effective cutoff, Xk" 1 = 2kBT¢, which is independent of the temperature difference 
and corresponds to the Brout criterion 46 for the critical range. Integrating (31) to a 
temperature-independent cutoff, we get AB oc e -2a which diverges at T~. Thus 
according to the Brout criterion, our factorization (16) would not be allowed in the 
immediate vicinity of T~. However, in the classical Landau theory Hohenberg 46 
has argued that the Ginzburg criterion, and not the Brout criterion, is the proper 
estimate of the classical range; and the Ginzburg criterion has been used by FerrelP 7 
to estimate the anharmonic terms in the classical range. We have seen in the 
calculation for the thermal conductivity, and later for the sound absorption, that 
only Ikl " 1/4 are important in the integrals over k. Therefore we assume that in 
helium the Ginzburg criterion and not the Brout criterion is the correct one to 
estimate the factorization effects (31). With this proviso, we shall continue to 
ignore the anharmonic corrections. 

4. FIRST-SOUND ABSORPTION IN HELIUM 

The first calculation of the first-sound absorption near the superfluid transi- 
tion in helium was performed by Landau and Khalatnikov (LK) t4 using the 
classical time-dependent Landau equation (3). The general idea of LK was that the 
relaxation of the order parameter provided the dominant mechanism for sound 
absorption below T~, but LK did not recognize that because of fluctuations a 
similar mechanism is applicable above T~. Levanyuk 15 remedied this oversight of 
LK and considered sound absorption brought about by the interaction of the 
sound wave with time-dependent fluctuations in the order parameter below and 
above T~ in the classical range. For helium there is no classical range, and we 
consider now the calculation of the first-sound absorption in the critical range. 

4.1. Above the Superlluid Transition 

The sound absorption can be expressed 36'48 in terms of the commutator of the 
perturbed Hamiltonian, which is in turn related by the fluctuation-dissipation 
theorem to an anticommutator correlation function. The resultant anticommutator 
involves a four-~b correlation function, which can be factorized and evaluated as 
in Section 3. In this manner, we can calculate the contribution to the sound 
absorption from order-parameter fluctuations if the coupling Hamiltonian 
between the sound waves and the order-parameter fuctuations is known. 
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Consider a small change in sound-wave pressure 6p; we assume that the per- 
turbed energy at constant ~k and S is given by 

ap (34) 
#,S 

where F is the free energy (1) with anharmonic terms neglected. Ignoring the gradient 
term, we write the coupling Hamiltonian density as 

Hi(x)  = Gltp(x)126p(x) (35) 

where x = (r, t) and the temperature-dependent vertex G is 

/a(2Xol) I 
G(e) = ~ aT~ ]saP = Y-ff-ff (2gT~X°)-*Cz/Cp oc (36) 

If A depends only on T - T~(p) and not on p explicitly, the specific heat C x at 
constant susceptibility, Zo = (2A + . . . ) -  :, is given by the derivative of the entropy 
parallel to the ).-line in the p-Tplane.  Then in helium, 33 we find C z = 5joule/  
gm °K. 

If the pressure variation is taken to be 6p(x) = pe ikx, then the amplitude 
attenuation is given by a = lg/2cE pcE/p 2, where E t 2 = = :~pv o is the total energy 
density of the sound wave, Vo = p/pc is the amplitude of the fluid velocity, p is the 
mass density, c is the sound speed, and/~ is the energy dissipation per unit volume. 
By the time-dependent perturbation theory and the fluctuation--dissipation 
theorem, 36'as we can write the first-sound amplitude attenuation as 

ot = pZ eik"([Hl(x), Hi(0)]) 

_ pc 03 2 
p2 4-k--/T~ ~ eikX(Hl(x)Hl(O)) (37) 

E='- f dr f at 
Substituting (35) into (37) and factorizing the resulting four-~k correlation function 
as in (16), we obtain 

o~ pcG 2 S" 
~2 - 4kBT ~ ~, (~b*4bk'>(~b*' +k~k' +k> (38) 

which like (17) can be represented by Fig. 1. Substituting (20) in (38), performing the 
~ '  integration, and taking the limit a~zo << 1, Ikl~ << 1, a) = clkl, we find that 

ot pcG 2 F 
co --'~ = _~__~_n2 knT~ j dk,lk,12Z~,ri; 1. (39) 

Using (36) we find the final form for the amplitude attenuation: 

x 170 g3v-2 +2~TO (40) 
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At TI = T~ + 10-5°K,  with % given by (25), (CJC r) = 0.35, (OTdOp) -~= 
l l4a tm/°K,  49 ~ = (1.6 A)e-~, 4° and 7 = {, we obtain from (40) 

ct/~o 2 = 2 x 10-1*sec2/cm at T1 = T~ + 10 -3 °K (41) 

This value (41) is smaller by a factor of 8 than the experimental results of Barmatz 
and Rudnick. 5° The reason for this discrepancy is not clear, although there are 
several doubtful numerical factors (e.g., 7 # {) which may affect (41) by a factor 
of 3. The predicted temperature dependence ~(~)/(./)2 = 1 x 10- lse-  1 sec2/cm - i, 
does not agree with the e -~r dependence measured 5° over one decade above 
T1 = T~ + 1 0 - ,  OK. However, at 22 kHz and T~ we find mr 0 = 1.9, which is beyond 
the range of validity of (40). In general for t~ro ,~ 1, the absorption peak can be 
expected to be rounded, l* and this has a great influence on the apparent critical 
exponent of 0t, but relatively little influence on the magnitude of ~t. One can check 
this possible explanation of the 22 kHz data by measuring e in the same temperature 
range with a lower frequency. 

There have been other attempts to explain the first-sound absorption above 
T~. In the theory of Wong, ~9 the inherent asymmetry of the Marcelja 5t model for a 
superconducting transition is exploited to give ~t/092 oc e -¢ above T~ and 
or/to 2 oc e-  1 below T~. Below T~, the theory of Wong is similar to LK ;14 but above 
T~, part of the anharmonic corrections neglected in the present calculation is 
included in a self-consistent Hartree approximation.5 ~ A difficulty of this approach 
is the reconciliation of the predicted %(e) oc e - i  and the To(e) oc 2- ~ dependence 
obtained from the thermal conductivity measurements. Above T~, Tsuzuki 52 
obtained e/e92 oc e-  ¢ by considering the effect of the decay of a first-sound mode 
into two first-sound modes v/a a vertex of three order-parameter fluctuations. A 
difficulty of Tsuzuki's approach is the neglect of the decay of a first-sound mode 
into two-order parameter fluctuations (Fig. 1), which is the dominant contribution 
to the anomalous thermal conductivity. Szepfalusy 5a and Ichiyanagi 54 have sug- 
gested the form m/Ikl 2 oc e-xf(Ikl¢)  and fitted e oc Iklae -*  above T~. From the 
present approach, one may get such an additional factor (Ikl~) -~ if the k' integra- 
tion in (39) diverges for low Ik'l. But such is not the case for our approximations, 
which give f = 1 above T¢. 

4.2. Below the Superfluid Transition 

Since the order parameter has a nonzero mean value• ~k o below T~, it is con- 
venient in helium to take ¢o "lined up" along the real axis, Im ¢o = 0, and to 
separate the fluctuations about  ~ko into amplitude (longitudinal, II) and phase 
(transverse, .1_) fluctuations. The frequency spectrums are like (20), apart from a 
factor of 2: 

((I,k~'±) 2) = kBrcz~ '± (42a) 

z~ '± = z ~ " .  2r~,'J-/E a~2 + (r~'J-) 2] (42b) 
where 

{ F~ = (R/2z~) = F o ( - e ) ( 1  + Ikl2~ 2) 

F~ = (R/2x~) Fo( - ~)1 kl 2~2 
(42c) 
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with F o ( -  ~) = 1/Zo(- ~) = [R/2Xo ( -  e)] = ( -  2 R A  + . . . )  and ~ = (2AoXo) i, 
We ignore the dampihg due to the phase fluctuations as it vanishes in the long- 
wavelength limit. Henceforth all fluctuations are amplitude fluctuations and the 
superscript I] will be suppressed. 

In (38), we separate out the contribution of ~h o and write 

_ P cG2[- 2 2 ~ ,  ~,-57-7|~bo(~bk) + (~k2)~ko z + (~b2,X~k~,+k> (43) 
09 2 / k" 

where the sum includes only the fluctuations. The first two terms correspond to 
the relaxation of the equilibrium order parameter, which was considered by LK 
in the classical range, and yields the amplitude attenuation [substitute (42) into 
(43)] 

0t0/09 2 = pcG2~2ZoZo(1 + (.02z2)-l(Cx/fp)2 

~ pc/~ -~p] T~aG ~o(-~1 ~ ~ o  (09~o << 1) (44) 

where the last equation follows from Eq. (4) of Stauffer, ~ ~ AC e is the difference in 
the specific heat across T~ and z0(-e) is the relaxation time below T~. If we use 
Zo(-a) cc e- l ,  as above T~, we see that ~o/09 2 ~ a -1. The amplitude attenuation 
due to fluctuations, ~/09a, which is given by the third term in (43), is present on 
both sides of T~, and has the same temperature dependence as (40). However 
below T~, the correlation function Zk contains not only a central relaxation peak 
[Eq. (42)] but also two second-sound peaks 37 centered around +092 = +c21kl. 
In other words, Eq. (4) is probably incomplete below T~. Therefore we must modify 
(42b), and as an example we write 

Zk 2Fk 7k 7k 
)~-~ = z¢09 2 + F~ + z~(09 _ 09z) z + ~,2 + z~(09 + 09z) 2 + ~,~ (45) 

where 2yk = D2lkl z gives the damping of second sound and z¢ + z~ = 1 according 
to the sum rule (21). If we use (45) instead of (42b) in deriving (44), we see that (44) 
must be multiplied by the factor z~ < 1. If the second-sound peaks are small, 
i.e., z~ << z~ ~ 1, then el/a0 ~ A~(e/32) < 1, and c~0 according to (44) and (.25) turns 
out to be 5 times larger than the experimental data. 5° In other words, (25) gives a 
~0(- ~) about 5 times larger than the estimate of Barmatz and Rudnick. 5° In the 
limit z¢ << z~ ~ 1, the amplitude attenuation e ~ ex is mainly due to the second- 
sound peaks, which is the main mechanism considered in the mode-mode coupling 
theory; 38 and ~x can be obtained from (39) if we replace Fk by Yk = ½D2lkl 2- In 
this manner, we get 

09---T- ~ 09------7-- = pcknT~ [D2( - -  e ) ~ (  - -  G ) / ~ 2 ] -  l(Cx/Cp)2 (46) 

If we fit ~t~(-~)092 to the measured amplitude attenuation at 22 kHz, we can invert 
(46) and deduce D2(-~). Using ~(-e)/092 ~ 0.6 x 10-a81al-~sec:/cm,5° and 
~(-e)  = 1.2 Alel-~'4° we obtain from (46) a D 2 smaller than the measured one ~5 by 
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a factor of 50. This result is outside our numerical inaccuracies. We conclude that 
the first-sound damping in He II is mainly due to the LK relaxation of the equili- 
brium order parameter [Eq. (44) multiplied by an unknown zc ~ 1] and not due to 
the decay of a first-sound mode into two order-parameter fluctuations with a 
small central peak and large second-sound modes. 

From dynamic scaling, 2° we see that Zo(-5)oc ~(--/~)/C2(--8 ) OC lel-~(C~)~. 
Assuming ~o(-e) oc ~1(-5), we find ~t(-5) oc lel-a(C~-)-~ and D2(-5) oc 
lel-~(C~-) -~. Ferrell et al. 12 obtained the same expression for D2(-5), but for 
they get ct(-5) oc lel-~(C;)-~, which disagrees withour result. The discrepancy is 
traced back to the assumption by Ferrell et al. ~2 that the second viscosity (2 is the 
dominant contribution to the damping of both first and second sound, which 
leads to 0t oc D2~. From (46) we see that the first-sound absorption is inversely 
proportional to the damping of the critical mode, which is consistent with other 
transition (see next section). Note that our logarithmic dependence for ~t agrees with 
that of Ichiyanagi 54 if we assume isothermal sound propagation. 

We can apply the present method directly to the calculation of the second- 
sound amplitude attenuation 0t2 and obtain 0t 2 = E2/¢2psv 2 ~- (c2/Ps $2) [ /~2/( t~T)2] ,  
where /~2 is the second-sound energy dissipation per unit volume, and fiT = 
c2vJS is the temperature variation. If we only relate oc 2 to 0~ then we expect that the 
problems connected with ~k would cancel out and that the second-sound damping 
D 2 ~ -  2¢3~2/0) 2 can be expressed directly in terms of the measured ~t. In calculating 
the energy dissipation /~2, we replace Hl(x  ) = (df/ap)~,,s. bp by Hz(x ) = 
(af /aT)~,~.6T; and the respective vertex functions are related by G/G2 = 
(aTJgp)(Cx/C~). In this manner we obtain for the ratio of the amplitude attenua- 
tions 

c2/ .s21G212 = c2/o,s2 Ic;I  
= I T !  pc(d /OpYl 

Using c 2 = (ycS2ps /pC;  ), we can write 

D2(_5) = 2[TcSI21t~Tcl-2" " "  " p~(-e) ~(-e) (47a) 
c~pCx] I dp ] p o~ 2 

= 0.4 x 10-41el -~ cm2/sec (47b) 

where we have used p~(-5)/p = 2.40 lel ~ and ~(-5)/o92 = 0.6 x 10-x8151 -x sec2/ 
cm, 5° to obtain (47b). This result (47b) is by about a factor of 2 smaller than the 
measured 55 D 2 ( - 5 ) =  1.02 x 10-41el -~ cm2/sec. 

Usui s6 has recently generalized the classical Pitaevskii 57 theory of super- 
fluidity to the critical range. Upon fitting the calculated first-sound damping to 
experiments, he finds in his theory a similar expression for D2(-5) as in (47b) but 
with the coefficient 0.7 in place of 0.4. The generalized Pitaevskii theory is more 
complicated than the present approach, e.g., in Reference 56 the equation of 
motion for the order parameter reduces to the generalized time-dependent Landau 
equation (4) if only the resistive part of B is retained ; and in principle the generalized 
Pitaevskii theory takes into account density and entropy fluctuations, which have 
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been ignored in the present theory. Nevertheless, because of its simplicity, the 
present theory can display the physical processes involved better than the Pitaevskii 
approach. Furthermore, we have shown that the present theory is easily applied 
to helium and other systems (see next section) above T~, which is yet to be done in 
the generalized Pitaevskii theory. . 

5. SOUND ABSORPTION ABOVE THE FERROMAGNETIC 
TRANSITION 

If we apply our sound-absorption formalism to other second-order phase 
transitions below To, we have the same problems as in helium. For example, in 
ferromagnets there are spin-wave peaks in Xk, and in iron5 s and nickel 59 the central 
peak is too small to be observable. Therefore we discuss only the paramagnetic 
case T > T c. 

The paramagnetic state obeys a more general equation than (4), i.e., a diffusive 
term must be added :a6 

- DV 2 ~k = - R .  L{~b}~k (48) 

Beginning with (48) instead of (4) we see that (19) is replaced with 

F k = z o t(1 + [k12~ 2) + Dlk[ 2 (49) 

where z0 is as before the zero-wavevector relaxation time. In general, if we substitute 
(49) into (39) the net result is that z 0 in (40) must be replaced by 1/F (Ikl = ~ - 1 )  
apart from numerical factors• In the physically interesting limit D~-2 >> Zo t, 
the relaxation term can be ignored and we have, as in (46) 

a s2y 2 ~ ,,.[1 OT~I2 [Cxl 2 (50) 

where we have written (50) for a general-order parameter of rank s (s = 1 for 
scalar, s = 2 for spinor, s = 3 for 3-dimensional vector, etc.) which obeys (48). 
From dynamic scaling,l a we can take for the paramagnetic state D(e) oc ~-~ ÷ (,/2), 
where r/is the critical exponent measuring the deviation of the spin-spin correlation 
function from the classical Ornstein-Zernike form. Thus we find 

~(~)/02 oc :2+~. +~+2~ (51) 

Ifwe take v ~ ~ and t/~ 0, then we get a(e) oc e "m agreement with Kawasaki. e° 
Equations (40), (51), and (50) are very similar to the result from the mode-mode 
calculation of Laramore and Kadanoff,61 apart from the numerical factor s2/128n. 
The numerical discrepancy arises in Reference 61 from the estimate of the q 
integral ~ by ~-3. 

• Quantitatively, we evaluate (50) at e = 10 -2 with the values for nickel 
D =,0.53 × 101'*A2/sec,  59 ~ = 36A, 59 (t3TJt~p)= 0.37°K/kbar, 62 7 = 4, c = 5 
km/sec, Cx/C p ~ 1 because of the large background, and obtain 

~(e = 10-2)/~02 = s 2. 3 x i0 -21 sec2/em. (52) 
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Golding and Barmatz 63 measured in nickel ot = 0.1 dB/cm at e = 1 0  - 3  and 
09 -- 60 MHz. Extrapolating their data with their critical exponent of 1.4 for g, 
we obtain 

~(e = 10-2)/o92 = 3.3 x 10 -21 sec2/cm.  (53) 

Equation (52) agrees very well with (53) if there exists only one degree of freedom 
(s = 1) as in an Ising model. However, because of the various extrapolations and 
numerical uncertainties, an agreement between (52) and (53) better than a factor of 
4 is fortuitous. Nevertheless, the agreement of (52) and (53) in order of magnitude 
is sufficient to confirm our rather surprising factor of 52/128~ in (50), which is 
absent in the calculations using mode-mode coupling. 61 As was noted in Reference 
63, if the values of the critical exponents as measured in nickel, ~/= 0.08, 59 
Ct = 0.10, 64 v = (2 - ct)/3 ~ 0.64, were inserted into (51), we obtained 

0~(e)/to 2 oc e-1.47 (54) 

which is in good agreement with the experimental v a l u e  63 e -1 .4+  o.t. However, we 
note that the measured critical exponent 59 for the diffusion constant 0.5 ___ 0.05 # 
½v(1 + r/) ~ 0.35, which casts some doubt on the reliability of (54). 

Our Ansatz [(34)--(36)] for the coupling energy obviously cannot be correct 
in systems where an applied pressure above T~ produces a nonzero equilibrium 
order-parameter, e.g., the liquid-gas transition; the only coupling that we have 
taken into account is a shift in the transition temperature. Also for magnetic systems, 
our results and those of Reference 61 disagree with some experiments, e.g., in 

.RbMnF 3. For discussion in greater detail, see Reference 61. 

6. CONCLUDING REMARKS 

The present scarcity of experimental data precludes any conclusive confirma- 
tion of our results. If future research should agree with our results, then the present 
approach seems to us to be a useful complement of the existing calculations of 
critical dynamic properties. Unlike the dynamic-scaling hypothesis 12'13 which 
relates the critical exponents of Zo or D to the static exponents and the dispersion 
relation for the critical excitations below T~, the present approach cannot predict 
the divergences of 3o and ~, which must be taken from experiments. On the other 
hand, the phenomenological approach can be checked quantitatively, i.e., as to the 
magnitude (critical coefficient) as well as the temperature dependence (critical 
exponent) of the critical behavior. The order-of-magnitude agreement between 
our results and available experiments confirms our numerical factors (e.g., s2/128r0 
which are absent in the results in Reference 61 from mode-mode coupling. Com- 
pared with mode-mode coupling, 35'61 the present approach is simpler and 
quantitatively more accurate; compared with the dynamic-scaling approach, t2'13 
it is more instructive in giving detailed information as to which processes and 
which wavevectors are important in a particular dynamic property. 

The generalized Landau theory of second-order phase transition is thus shown 
to be useful in the critical range not only in calculating static properties but also 
dynamic properties via the time-dependent version. Further investigation is needed 
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to understand the role of the anharmonic terms in the order-parameter fluctuations 
(particularly the cutoff problem) and the effect of the neglected fluctuations in 
energy and density. 

NOTES ADDED IN PROOF 

The high-frequency sound absorption in He I has been recently calculated by 
K. Kawasaki [Phys. Letters 31A, 165 (1970)] using the mode-mode coupling 
theory. For low frequencies, the result of Kawasaki agrees with our Eq. (38). 
At high frequencies, the main contribution to the absorption comes from short- 
wavelength (<<4) fluctuations which we have ignored. Hence our argument for 
the factorization of the 4@-correlation function (Fig. 1) is no longer valid for high 
frequencies. 

Problems with logarithmic factors in a mode-mode coupling theory have 
been raised by P. Szepfalusy (private communication and to be published). Our 
result for the sound absorption is likewise unreliable as far as logarithmic factors 
are concerned. If the real part corresponding to the diagram of Fig. 1 is assumed 
to give the change Ac in the sound speed [cf. H. S. Bennett, Phys. Rev. 185, 801 
(1969)], then we find Ac oc Cp 2 in He I, whereas experimentally Acoc C~ -1. 
Thus the sound absorption ~ is too small by a logarithmic factor. See discussion 
on page 613. 
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