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It is shown that the counterflow which occurs at low heat inputs in liquid helium 
below the )~ point modifies the wake behind a steadily moving sphere. The result is 
valid for a low Reynolds number and limits on the range of the physical variables 
are given. The outflow of normal fluid results in an increased drag on the sphere. 
Some discussion is given of the relevance of this result to experiments on small 
H - D  particles in liquid helium. 

1. INTRODUCTION 

Our interest in the motion of a heated sphere moving steadily in He II was 
motivated by a desire to see if a hydrodynamic explanation for the creation of 
ion-vortex ring complexes 1 could be formulated. Our interest was further stimu- 
lated by the work of Hall, z who measured the reaction pressure in counterflow, 
and by the heat-torque work of Penney, 3 Hunt, 4 and Payne 5 who demonstrated 
that super- to normal-fluid conversion can give rise to additional forces on a body 
immersed in He II. 

Basically, the problem is to solve the Navier Stokes equation for the normal 
fluid using modified boundary conditions which are brought about by the outward 
flow of normal fluid from the sphere. In order to take account, at least approxi- 
mately correctly, of the inertia of the fluid we use the technique of Oseen, 6 which 
means we must confine ourselves to a low Reynolds number R; that is, 
R = 2aU/v n < 1, where a is the radius of the sphere, U is the sphere's speed, and 
Vn is the kinematic viscosity of the normal fluid. 

Needless to say, the solution of the problem has already been worked out 
by Lamb 7 for the case of regular viscid boundary conditions. The difference 
between the Oseen and Stokes solutions for the motion of a steadily moving 
sphere has been made readily apparent by Batchelor. 8 Briefly, the difference 
resides in the behavior of the fluid at infinity. In the Stokes solution the flow is 
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symmetric about a plane passing through the center of the sphere and perpen- 
dicular to its motion, and is everywhere outward. In the Oseen solution the sym- 
metry no longer exists and at large r the flow is radially outward except for a 
wake described by a paraboloid of revolution where the flow is inward. Both 
solutions yield the Stokes formula for the drag, 6~av,p,U, where p, is the normal- 
fluid density. This drag is, in fact, equal to p,U times the inward volume flux in 
the wake at large r. From this point of view it is easy to see why the drag should 
be modified if we heat the sphere to produce counterflow. 

Lastly, the counterflow also modifies the pressure distribution over the sphere 
due to the inviscid superfluid. 

2. THE OSEEN SOLUTION 

We start with the Navier-Stokes equation for an incompressible fluid, in 
which the motion of the sphere is steady in time. 

~ + (v°. v )v .  = -(1/p.)vP + v.v2v.  (1) 

where V, is the normal-fluid velocity evaluated in a coordinate system fixed in 
the fluid, and P is the pressure. We take the sphere to be moving with velocity 
- Ui, where i is a unit vector in the x direction (which is also the 0 = 0 direction), 
and U is the speed of the sphere. For  slow, steady motion we may approximate 
OV,/~?t by Ui. VV,. Neglecting terms 0(V2), we obtain 

U(i. V)V, = -(1/p,)VP + v,VZV, 
(2) 

V . V , = 0  

Notice that the equation so obtained is equivalent to stopping the sphere and 
treating the fluid as moving by it, when V, is a small correction to the fluid velocity 
at large distances. Equation (2) yields V2p = 0, so a particular solution is obtained 
by writing P = p, Ui. V¢ + Po, where Po is the pressure at infinity. The contri- 
bution of this solution to V, is then v = - V¢, where ~b satisfies 

v 2 ¢  = 0 (3) 

Consequently, since the flow has symmetry about the x axis, 

¢ = ~ (Am rm + Bmr-"-l)Pr~(eos O) (4) 
m =  oo 

If we consider only the boundary condition at infinity where v = 0, we see that 
Ao does not enter and A1 = 0. 

To complete the solution we write V, = v + u and we find that u must satisfy 

[V 2 - (U/v,)i. V]u = 0 
(5) 

V . u = 0  

! 
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If we examine VAu ---- const., we see that this represents circles about  the x axis 
and so we may represent VA u as the curl of some vector in the x direction which 
depends on (r, 0) only. Let us write 

VAU : - -  VAX(r , 0)i = iAV X (6) 

Now we take the curl of (5), substitute (6), and arrive at 

EV 2 - ( U / v , ) i .  V]Z = 0 (7) 

In consequence of the definition of u, g must vanish at infinity, which gives 
the allowed solutions of (7). Equation (7) may be rewritten in the form 

(V 2 - K2)e-~ci'r )~ : 0 (8) 

where ~c = U / 2 v , .  The solutions of (8) which vanish at infinity are 

)~ = e . . . . .  o ~ Elkt(~cr)pt(#) (9) 
l=0  

where the k z are modified spherical Bessel functions of the third kind, which go to 
zero as r ---> oe. 

Lastly we need to express u in terms of)~. F rom (5) and (6) we have 

2M. Vu = V2u -- - VA(VA u) 

= -i(V2z) + (i. V)Vx 

= - 2M(i. VZ) + (i. V)Vx 

So, finally, 

u = - z i  + (½~c)Vz (10)  

We see then that the full solution is very complicated and in the next section 
where we discuss the boundary conditions on the sphere we shall also adopt  the 
simplest form of (4) and (9), which is what limits the present solution to a low 
Reynolds number.  

3. BOUNDARY C O N D I T I O N S  

In the two-fluid model for He II entropy is associated only with normal 
fluid. Hence if the sphere gives off heat at the rate of 4na2(2,  we have 

(2 = p S T v ,  (11) 

where p is the total fluid density, S is the entropy per g, T is the absolute tempera- 
ture, and v, is the velocity of the normal fluid away from the sphere evaluated at 
r = a. In the absence of interaction between the two fluids we must also have 
p , v ,  + psvs = 0, so that 

v s = (pn/ps) (2(pST)  -1  (12) 

at r = a, and is radially inward. The boundary condition on the surface of the 
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sphere then becomes 
V .  = - U i  + v .  (13)  

which reduces to the usual boundary condition if Q = 0. 
Since (13) involves only sin 0 and cos 0 we shall keep only those terms in (4) 

and (9) which yield such terms. In addition, we shall now explicitly assume a low 
Reynolds number so that we may take ~a small and expand the exponential in (9). 
Also, Q must  be such that there is no turbulent counterflow. 

Applying the boundary conditions we find 

i r - U cos 0 + v, = Boa -2  + 2B1 a -3  cos 0 + ~Eoko(~Ca ) 

and 

- ½  Eo[ko(~Ca ) - (tca)k'o(~Ca)] cos 0 (14) 

! tea I 
E o = (3U~ca/~)[1 - 

~.a 

B o = v,a 2 + 3Ua/4t¢ 

B 1 = Ua3/4 (17) 

The full expression for the radial and tangential components of the velocity 
field in terms of the coefficients are as follows : 

V,r = Bo r -2  + 2B1 r -3  cos 0 + ½Eo[k~(~cr ) - ko(~:r ) cos 0]e . . . . .  0 (18a) 

V~0 = Blr  -3 sin 0 + ½Eoko(~cr) sin 0 e . . . . .  0 (18b) 

We shall not go into great detail at this point but simply note that for r ~ a 
we recover the Stokes solution for the case Q = 0, and that, again for 0 = 0, the 
behavior of V, r and V,o at large r can be divided into two cases. 

Case  1 0 > ~/2 r >> 4 a i R  

V,r ~ Bo r - 2  ~ 3 U a 2 / R r  2 (19) 

 fa_13 
V , o ~ B l r - a s i n O ~  4 / r ]  sin0 

U sin 0 = BI a - 3  sin 0 + ½Eoko(~a ) sin 0 (15) 

where k; denotes c3ko/0(~cr). 
Upon  equating the coefficients of the angular terms in (14) and (15) the follow- 

ing values for the constants result : 

Bo = v,a 2 - [Ua2k'o(~Ca)/ko(~Ca)l [1 - (~ca)k'o(~Ca)/3ko(~a)~- 1 

Ba = Ua 3 - Ua3[1 -(~ca)k'o(~a)/3ko(~Ca)] -1  (16) 

Eo = (2U/ko(~Ca))[1 _ (~ca)k,o(~Ca)/3ko(tCa)l- 1 

These expressions are considerably simplified if we take the limit 1¢a --. 0. We get 
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i.e., the flow is almost purely radial and outward from the sphere. These relations 
become more exact as 0 ~ ~. 

Case 2 0 ~ 0 r >> 4 a / R  

V,r ,~ 6 (Ua2 /Rr  2) - 3(Ua/r)  (20) 

V,o ~ ¼(Ua/r) sin 0 

i.e., the flow remains almost radial but is now in toward the sphere. It is this flow 
of fluid which constitutes the wake. The dividing line between the two regions 
is given by, for r large, 

~cr(cos 0 + 1) exp [~cr(cos 0 - 1)] = 1 (21) 

This equation has the property that as r --+ 0% 0 ---> 0. From the boundary condition 
(14) we see in the absence of v, that flow is toward the sphere for 0 < re/2. An ap- 
proximate solution to (21) is 0 ~ (2/~cr) x/a. If we now relax the condition Q = 0, 
(21) becomes modified by the addition of a term 2av, /3v ,  to the right-hand side. 
A term such as this can easily be quite large in helium and increasing the right- 
hand side of (21) has the effect of decreasing 0 for a given r. Furthermore, for 
r ~ a, the presence of v, decreases the area of the sphere over which fluid is flowing 
inward. As v, is increased we reach a point where no fluid flows inward for r ~ a, 
but still flows inward for large r. This point is reached when v, = U. If we consider 
the 0 = 0 axis where V,0 = 0, we see that when v, = U a stagnation point develops 
away from the boundary of the sphere, which moves along with the sphere. 

4. VORTICITY GENERATION 

If we examine the vorticity, o = VAV,, we find that at large distances it is 
confined to the wake. The moving sphere creates vorticity at its surface which is left 
behind as the sphere moves on diffusing outward into the wake region. 9 It should 
be noted that because of the definition of o ,  v, contributes nothing to the vorticity. 
Vorticity may also be convected by the fluid and it is the balance between diffusion 
and convection which determines the shape of the wake. This is easily seen from 
our approximate solution to (21), 0 ~ (2/tcr) 1/2 = (4v, /2Ur)  1/2, which indicates 
that the wake becomes narrower the larger U. Consequently, we argue that when 
v, is such that a stagnation point separates from the sphere, convection causes a 
build up of vorticity in the neighborhood of the stagnation point. 

So far we have allowed no interaction between normal and superfluid. 
Presumably, in order to create vorticity in the superfiuid it must interact with the 
normal fluid. Similar considerations apply to creation of vortex lines in a rotating 
bucket. If such a bucket is set into rotation below the 2 point vorticity is created 
at the wall in the normal fluid, which spreads in time throughout the bucket prior 
to the normal fluid coming into solid-body rotation. If the two-fluid equations are 
coupled by a Gorter-Mell ink 1° mutual friction term, vorticity can be induced 
in the superfluid. We postulate a similar induction of vorticity in this case. 
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5. DRAG FORCE ON THE SPHERE 

The equations we have developed for the radial and tangential components 
of the induced fluid velocity reduce to those of the regular Stokes solution near 
the sphere. To calculate the drag on the sphere we use these velocity components 
to evaluate the stress tensor over the surface of the sphere. Thus, the force per unit 
area on the sphere is ~ 

f i = -¢7 ik l ' l  k = P n i  - -  ¢7~kn k (22) 

where n is a unit vector outward from the fluid, normal to the surface of the sphere. 
Since we are dealing with a sphere this reduces to 

P ) 
at r = a (23) 

Fo - G;o ) 

To calculate the drag force F o we need to project these components onto the 
direction of motion of the sphere and integrate over the surface of the sphere, i.e., 

/ -  
F D = i J~ d S ( - P  cos 0 + o';r cos 0 - a;0 sin O)r= a 

= 2na2i (P cos 0 - o-'r cos 0 + a;0 sin 0)~=, d(cos 0) (24) 

Evaluating o-'r~ and a',o we find, in terms of the coefficients (16), that 12 

4re 
Fo = ~ -  p,U[Bo - 3a2Eok'o(xa)il(Ka)/(xa)]i (25) 

where il is a modified spherical Bessel function of the first kind. At this point we 
take the value of (25) in the limit ~ca ~ 0 and O ~ 0, which after some algebra we 
find to be 

F D = a2pnVnU + 6rcatlU 1 + ~-v~/ j i  (26) 

That is, we recover the drag force correct up to a term 0(a 2) for Q = 0, and we 
see that an extra term appears when Q ~ 0. This extra term comes from the 
coefficient Bo, which in turn comes solely from the pressure term in (24). [It 
integrates to zero for the other two terms in (24).] So the physical origin of the 
extra drag term resides in the fact that the outflow of normal fluid from the sphere 
modifies the pressure distribution over the sphere. 

We have, however, omitted to take account of the superftuid component. 
To do this we recognize that we are working in the limit psVs + p,vn = 0, i.e., no 
mass transfer is occurring. It is quite trivial to evaluate vs, as we can treat the 
superfluid as an ideal fluid and find the inward radial flow due to the heat source 
from the zero-mass-flow condition, with the sphere as the coordinate origin. 



Modification of Stokes' Law for a Heated Sphere in Liquid Helium H 51 

An extra drag on the sphere will result because of superfluid-to-normal-fluid 
conversion at the sphere's surface. Let us also assume, since it does not complicate 
the problem very much, that the superfluid is also flowing with pure potential flow 
at some arbitrary direction with respect to the velocity of the sphere. Let this 
superfluid velocity be V s and 

- Ui. V s = UV~ cos q~ (27) 

The total superfluid velocity in the vicinity of the sphere will then be composed of 
v s due to the heat source, V s due to the potential flow, plus a part induced by the 
motion of the sphere. To work out the superftuid velocity components we trans- 
form to a frame where the sphere is moving through stationary superfluid at a 
velocity U1 = - U i -  V s. This means that the sphere is moving at an angle, 
/3 with respect to - i  defined by 

sin/3 = (gs/U1) sin q5 

The evaluation of the superfluid flow in terms of this new direction of motion is 
then trivial.~ 3 We then evaluate the momentum flux tensor for each fluid compo- 
nent, noting that we have already taken account of the normal-fluid pressure in 
(22). This then allows us to calculate the normal and tangential components of 
force on the sphere due to the momentum flux into the surface. Integrating over 
the surface of the sphere then gives the net drag on the sphere. As we would expect, 
this procedure gives zero drag due to the normal fluid and the answer for the 
superfluid is 

F~ = 4rcp,a2vs(Ui + Vs) (28) 

i.e., if U = 0, the superfluid drags the sphere along. In fact, in this case our result 
coincides with that of Penney and Hunt. 3 If V~ = 0, the superfluid gives rise to an 
extra term in the Stokes drag. So our result for the drag force on a heated sphere 
in helium II is 

Fo = {4rca2U(½p,,v,, + p~v~) + 6nanU(1 + 3aU/8v,)}i ~- 4na2psvsV~ 
• i 

= 6naqU(1 + 3aU/8v, + 8aQ/9pSTv,,)i + 4na2p~viV? .r (29) 
? 

In (29), the first correction in the bracket is just 3 R  and the second correction in the 
bracket is an effective Prandtl number P* for liquid heliun~ below the 2 point, 
since aQ/T has the dimensions of thermal conductivity and S :has the!:same dimen- 
sions as specific heat. Thus, we may write )~* -- aQ/pST for  the:thermometric 
conductivity; and then P* = v,])~*, so that the correction t o t h e  S~kes '  drag in 
the absence of superfluid flow is (1 + T~R + ~ p , -  t). ~;~ 4, 

6. DISCUSSION 

There are several situations which are of possible experimental interest. 
We shall only consider two such situations in order to see what (29) means in terms 
of the motion of a microsphere. We take the following situation which corresponds 
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roughly to the experiments performed by Chung and Critchlow 14 and is related 
to those done by Steyert et al. is The superfluid is made to move with velocity V~ 
in plane-parallel flow with the normal fluid stationary. Small spheres (a - 10 -2 
cm) of neutral buoyancy are suspended in the fluid. The spheres emit heat at a 
rate of 1 mW cm -2 sec -1. (This is not unreasonable if the source of heat is ab- 
sorbed room-temperature  radiation and the spheres are a hydrogen-deuterium 
mixture). Initially, we will ignore the fact that the velocity necessary to achieve a 
Reynolds number  of ~ 1, which is the limit of validity of the Oseen solution, is 
less than 5 x 10 .2 cm sec -1 above 1.5 K, and assume we can ignore the Oseen 
correction to the normal-fluid drag. We then find that the particle velocity is given 
by 

U = F~(IP* + { ) - t  (30) 

Thus when P* ~ 0, U ~ F~ and in the same direction, and for P* >> 1, U --* 0. 
A plot of the quantity in brackets vs. temperature is shown in Fig. 1 for the above 
conditions. The data for the figure are taken from Wilks. 16 Over a considerable 
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Fig. 1. A plot of the quantity (~P* + ~)-1 appearing in Eq. (30) vs. temperature 
for the conditions given in the text. 
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range of temperature P* ~ 4, and we would expect U ~ V~/7. If 0 were a factor 
of 10 bigger we would expect U ~ V~/2. Similarly, U is increased if a is made large. 
This corresponds reasonably well with what was observed by Chung and Critchlow. 
Above V~ ~ 0.1 cm sec- 1 they found U > Vs. Our criterion for significant con- 
vection of vorticity by normal-fluid motion into the sphere is v, g U. At this point 
we expect the normal-fluid flow about  the sphere to become quite complicated and 
its effect upon t h e m o t i o n  is uncertain, though it is likely that the normal-fluid 
drag will be reduced due to dragging of the normal fluid by the superfluid. The 
conditions we have used give U ~ 5 x 10-2 cm sec-1 for this effect to set in 
which by virtue of (30) implies V s ~ 0.35 cm sec-1. Chung and Critchlow saw 
indications of turbulent flow with U ~ V~ for 0.1 < V s < 0.3 cm sec -1. 

The second situation we wish to examine is that of a sphere being moved by 
an external force through stationary liquid helium. Again assuming R such that 
we can ignore corrections to the drag force due to the normal fluid, the terminal 
velocity U s of the sphere will be given by the usual Stokes Law if the sphere is 
unheated. If the sphere is heated the terminal velocity Un is given by 

Un = UsP*(P* + s ) -~  

If P* is large no effect will be seen. If P* is made small U n becomes considerably 
reduced. A small sphere may be heated by embedding in it a radioactive material. 
For  example, if 1 #Ci of an c~ emitter is embedded in a 10-# sphere and all the 
energy liberated per disintegration is emitted as heat from the sphere's surface 
this amounts  to ~1  mW cm -2 sec -1 and P* is large. However, if we embed 
100 #Ci, P* is about 0.5 and Un ~ Us~3. Under these conditions, then, treated 
and untreated spheres should show a considerable sedimentation effect. 

7. C O N C L U S I O N  

We have developed an expression for the drag on a heated sphere which is a 
good approximation up to a Reynolds number  of about  unity. In terms of the 
parameters  of a given situation this means the sphere's velocity U must be less 
than v,/2a. This in turn means that the effective Prandtl number  P* must be 
greater than about  two. We have discussed two experimental situations and shown 
that the two-fluid counterflow generated at the sphere can lead to unwanted 
complications in an experimental situation. We have shown that the normal-  
fluid motion as well as the superfluid motion must be taken into account in deter- 
mining the additional drag forces on a moving, heated object in helium II. 
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