SUBJECT: A Minimum Transmission Loss Tschebycheff Two-Pole Matching Network

BY: J. L. Dautremont, Jr., and P. H. Rogers

DATE: October 13, 1954

Introduction

When dealing with bandwidths in the order of 10 to 300 megacycles, the question of matching a partially reactive load to a transmission line presents a serious problem. The special case of a reactive load that consists of a resistance shunted by a capacitor is considered in the following sections. This problem is represented schematically in Figure 1. The minimum transmission loss for this problem was derived by Bode\(^1\) (See Appendix A). It may be expressed

\[\text{FIG. 1} \]

\[\text{Matching Problem.} \]

in db as

\[\psi_o = 10 \log_{10} \frac{\text{Exp} \left(\frac{1}{(f_2 - f_1)RC} \right)}{\left[\text{Exp} \left(\frac{1}{(f_2 - f_1)RC} \right) \right]} - 1 \]

(1)

where:

- \(\psi_o \) is the minimum transmission loss over the passband in db
- \(f_2 \) is the upper cutoff frequency
- \(f_1 \) is the lower cutoff frequency
- \(f_2 - f_1 = f_\Delta \) is the passband or bandwidth
- \(R \) and \(C \) are indicated in Figure 1.

A plot of the minimum transmission loss versus \(\omega_\Delta RC \) appears in Figure 2. The problem becomes one of finding the network whose response approaches this minimum transmission loss as closely as possible, with a given complexity.

Networks can be synthesized to approach this theoretical optimum as closely as desired; however, in general, the number of circuit elements increases rapidly as the theoretical limit is approached. The two pole network shown in the following sections is rather simple as far as matching networks are concerned, and hence, a desirable type of network to use in electronic circuitry. The parameters for the two pole network have been determined so as to minimize the difference between its response and the theoretical minimum transmission loss curve.

In general, it is very wasteful of gain bandwidth product to match perfectly at any frequency. It is possible to obtain considerable improvement by allowing a nominal mismatch over the band. This improvement for a two pole network can be seen in Figures 2 and 5.
Fig. 2

$\omega_{\Delta RC}$ vs. Transmission Loss.
1. Derivation of Equations for the Two-Pole Minimum Transmission Loss

Tschebycheff Matching Network

This section outlines the derivation of a Tschebycheff matching network with a transmission loss equal to or less than a prescribed maximum within a bandwidth \(\omega_A \). The network considered is shown in Figure 3.

The frequency response of a Tschebycheff filter can be expressed as

\[
\frac{P_2}{P_a} = \left| \frac{E_2(j\omega)}{E_1} \right|^2 = \frac{A^2}{1 + \varepsilon T_n^2(\omega)} \tag{2}
\]

where \(A^2 \) is an arbitrary constant and \(T_n(\omega) \) is a Tschebycheff polynomial defined by:

\[
T_n(\omega) = \cos(n \cos^{-1} \omega) \tag{3}
\]

The solution to Equation 2 is given in Appendix B and results in:

\[
\frac{E_2(p)}{E_1} = \frac{A}{\prod_{k=1}^{n} (p-p_k)} \tag{4}
\]

where \(p_k = \sigma_k + j\omega_k \)

\[
\sigma_k = -\sin \frac{2k-1}{2n} \pi \sinh \gamma \\
\omega_k = \cos \frac{2k-1}{2n} \pi \cosh \gamma \\
\gamma = \frac{1}{n} \sinh^{-1} \sqrt{\frac{1}{\varepsilon}}
\]

For a two pole Tschebycheff response (\(n = 2 \)), equation 4 becomes

\[
\frac{E_2(p)}{E_1} = \frac{A}{p^2 + p\omega_A \sqrt{2} \sinh \gamma + \omega_A^2 \left(2 \sinh^2 \gamma + 1\right)} \tag{5}
\]
The response of the circuit shown in Figure 3 is given by

\[
\frac{E_2}{E_1} = \frac{a^2}{LC} \frac{1}{p^2 + p\left(\frac{a^2_R}{L} + \frac{1}{RC}\right) + \frac{1 + a^2}{LC}}
\] \hspace{1cm} (6)

Equating the coefficients of like powers of \(p \) in equations 5 and 6 yields

\[
\omega_\Delta \sqrt{2} \sinh \gamma = \frac{a^2_R}{L} + \frac{1}{RC}
\] \hspace{1cm} (7)

and

\[
\frac{\omega_\Delta^2}{2} (2 \sinh^2 \gamma + 1) = \frac{1 + a^2}{LC}
\] \hspace{1cm} (8)

Solving these equations results in an expression for \(a^2 \)

\[
a^2 = \frac{\sqrt{2} \omega_\Delta RC \sinh \gamma - 1}{(\omega_\Delta RC)^2 \frac{2}{2} (2 \sinh^2 \gamma + 1) - \sqrt{2} \omega_\Delta RC \sinh \gamma + 1}
\] \hspace{1cm} (9)

The response of the network shown in Figure 3 with the element values adjusted according to equations 7 and 8, and with the bandwidth normalized, is shown in Figure 4.
db INSERTION LOSS

$\Delta \text{dB}_{R} = \text{Ripple in Decibels}$
$\Delta \text{dB}_{N} = \text{Nominal Mismatch in Decibels}$
$
\Psi_{2} = \text{Transmission Loss in Decibels}$

Fig. 4

Frequency Response of Low Pass Two Pole Matching Network.

From equation 2, the points of maximum transmission loss occurs when

$T_{n}^{2}(\omega) = 1,$

or

$\omega = \pm 1, \ 0 \ 	ext{for} \ n = 2.$

However, from the circuit of Figure 3 at zero frequency

\[
\frac{P_{a}}{P_{2}} \bigg|_{\omega = 0} = \frac{(1 + a^{2})^{2}}{4a^{2}}
\]

or

$\Psi_{2} = 10 \log_{10} \left[\frac{(1 + a^{2})^{2}}{4a^{2}} \right]$

where P_{a} is the available power from the generator and P_{2} is the power delivered to the load. Ψ_{2} has its minimum value for $a^{2} = 1$. a^{2} is
restricted to values less than or equal to one; hence for a small \(\gamma_2 \), \(a^2 \) should be as large as possible. \(a^2 \) is a function of \(\omega_\Delta RC \) and \(\sinh \gamma \) as is seen from equation 9. The maximum value of \(a^2 \) for a given \(\omega_\Delta RC \) subject to the restraints imposed on \(a^2 \) by equation 9 may be found by evaluating

\[
\frac{\partial a^2}{\partial \sinh} = 0
\]

(11)

This results in the following two equations

\[
a^2 = \frac{1}{\sqrt{1 + (\omega_\Delta RC)^2}} \]

(12)

and

\[
\sinh^2 \gamma = \frac{1}{2} \left[\frac{1 + a^2}{1 - a^2} \right] \]

(13)

(See Appendix C for this solution to equation 11) Solving equation 8 for \(L \) one has

\[
L = \frac{1 + a^2}{\omega_\Delta^2 C \left(2 \sinh^2 \gamma + 1 \right)} \]

(14)

Substituting the value of \(\sinh^2 \gamma \) from equation 13 into equation 14 results in

\[
L = \frac{1 - a^4}{\omega_\Delta^2 C} \]

(15)

We have now determined the parameters of the circuit so that its response has a minimum transmission loss for a given value of \(\omega_\Delta RC \).

A measure of the efficiency of this network is obtained from Figure 5 where the ratio of the theoretical maximum load power to the load power for this network has been plotted against \(\omega_\Delta RC \).
The efficiency of the normal two pole filter network is also plotted for comparison.

2. Design Procedure for Two Pole Bandpass Matching Networks with a Tschebyscheff Response

Figures 10 and 11 have been included in this section for the purpose of evaluating the design before it is made. For a required $\omega_0 RC$, the transmission loss for the network may be determined from Figure 10 and the ripple in its response from Figure 11.

In the following design procedure it is assumed that the bandwidth, resistance levels, and capacitance are given.

Design Procedure

Given: ω_0, R, C, and φ^2 which are defined by Figure 6.

Fig. 6

STEP 1: Determine the value of a^2 for the given value of $\omega_0 RC$ from Figure 12.

STEP 2: Calculate L from Equation 15

$$L = \frac{1 - a^4}{\omega_0^2 C}$$
This determines the values in the network shown in Figure 7.

STEP 3: The low pass network is changed to a bandpass network by resonating the reactive elements at the geometric mean of the upper and lower cutoff frequencies (See Appendix D).

STEP 4: The output impedance (a^2R) is changed to the desired output impedance level (See Appendix E).

where

\[
L_1 = \frac{L_0(b-1)}{b} \quad b^2 = \frac{a^2}{\phi^2} \\
L_2 = \frac{L_C}{b} \quad C_2 = b^2 C_L \\
L_3 = \frac{L + (1-b)L_C}{b^2}
\]

Example of Design Procedure

\[
R = 5000 \text{ ohm} \quad f_\Delta = 20 \text{ mc} \quad \phi^2 R = 50 \text{ ohm} \\
C = 7 \mu\text{f} \quad f_0 = 200 \text{ mc}
\]
\omega_{\Delta RC} = 2\pi \times 20 \times 10^6 \times 5 \times 10^3 \times 7 \times 10^{-12} = 4.4

From Fig. 10 \quad \gamma_2 = 2.3 \text{ db}

From Fig. 11 \quad dB_r = 0.655

STEP 1: From Fig. 12 for \omega_{\Delta RC} = 4.4, \ a^2 = 0.225

STEP 2:

\[L = \frac{1 - a^4}{\omega_{\Delta RC}^2} = 8.6 \mu h. \]

STEP 3:

\[L_c = \frac{1}{\omega_0^2 C} = 0.0907 \mu h \]

\[c_L = \frac{1}{\omega_0^2 L} = 0.0738 \mu \mu f \]

STEP 4:

\[b^2 = \frac{a^2}{\phi^2} = \frac{0.225}{\frac{50}{5000}} = 22.5 \]

\[b = 4.75 \]

\[L_1 = \frac{L_c(b-1)}{b} = \frac{0.0907(3.75)}{4.75} = 0.0716 \mu h \]

\[L_2 = \frac{L_c}{b} = \frac{0.0907}{4.75} = 0.019 \mu h \]

\[L_3 = \frac{L + (1-b)L_c}{b^2} = \frac{8.6-3.75 \times 0.0907}{22.5} = 0.367 \mu h \]

\[c_2 = b^2 C_L = 1.66 \mu \mu f \]
FIG. 12

$\omega_{\Delta RC}$ VS. a^2
APPENDIX A

DERIVATION OF MINIMUM THEORETICAL TRANSMISSION LOSS

The equation due to Bode,\(^1\) representing the minimum realizable reflection coefficient for the network of Figure 1, is

\[
|\rho| = \exp \left[-\frac{n}{(\omega_2 - \omega_1) RC} \right] \quad (A.1)
\]

\[
\left| \frac{1}{\rho} \right|^2 = \exp \left[-\frac{1}{(f_2-f_1) RC} \right] \quad (A.2)
\]

The absolute value of the reflection coefficient is defined as:

\[
\left| \rho \right|^2 = \frac{P_a - P_2}{P_a} \quad (A.3)
\]

Where \(P_a\) is the power available from the source and \(P_2\) is the power which gets to the load. Hence, from equation 2

\[
\frac{P_a}{P_2} = \frac{\left| \frac{1}{\rho} \right|^2}{\left| \frac{1}{\rho} \right|^2 - 1} \quad (A.4)
\]

So

\[
\psi_0 = 10 \log_{10} \left[\frac{\left| \frac{1}{\rho} \right|^2}{\left| \frac{1}{\rho} \right|^2 - 1} \right] \quad (A.5)
\]

But, from equations A.1 and A.4

\[
\psi_0 = 10 \log_{10} \left\{ \exp \left[\frac{1}{(f_2-f_1) RC} \right] \right\} - 1
\]

APPENDIX B

LOCATION OF POLES FOR A TSCHEBYCHEFF RESPONSE

\[\frac{E_2(j\omega)}{E_1} = \frac{A^2}{1 + \varepsilon T_n^2(\omega)} \]

\[T_n(\omega) = \cos(n \cos^{-1} \omega) \]

Set:
\[\cos^{-1} \omega = \varphi \]
\[T_n(\omega) = \cos n\varphi \]

Let \(\varphi \) be complex:
\[\varphi = \xi + j\eta \]
\[T_n(\omega) = \cos n(\xi + j\eta) \]
\[T_n(\omega) = \cos n \xi \cosh n \eta + j \sin n \xi \sinh n \eta \]

But:
\[T_n^2(\omega) = -\frac{1}{\varepsilon} \]
\[T_n(\omega) = \pm j \sqrt{\frac{1}{\varepsilon}} \]

Hence:
\[\sqrt{\frac{1}{\varepsilon}} = \sin n \xi \sinh n \eta \]
\[\cos n \xi = \cosh n \eta = 0 \]

Since:
\[\cosh n \eta \geq 1 \]
Then:
\[\cos n \xi = 0 \]

Hence:
\[n \xi = \frac{n}{2}, \frac{3n}{2}, \frac{5n}{2}, \frac{7n}{2}, \ldots \]
\[\xi = \frac{(2k-1)n}{2n} \text{ for } k = 1, 2, 3, \ldots, 2n \]
Hence:
\[\sin n \xi = \frac{1}{n} \]
\[\sinh n \eta = \sqrt{\frac{1}{\varepsilon}} \]
and
\[\varphi = \left(\frac{2k - 1}{2n} \right) n + \frac{1}{n} \sinh^{-1} \sqrt{\frac{1}{\varepsilon}} \]

Remember that:
\[\omega = \cos \varphi = p/j \]
\[\varphi = \xi + j\eta \]
\[\omega = \cos(\xi + j\eta) \]
\[\omega = \cos \xi \cosh \eta + j \sin \xi \sinh \eta \]
\[\omega = \cos \left(\frac{2k - 1}{2n} \right) n \cosh \eta + j \sin \left(\frac{2k - 1}{2n} \right) n \sinh \eta \quad \text{(B.1)} \]

Define
\[p = \sigma + j\omega \]

The poles of \(E_2(j\omega)^2 \) are found by substituting \(p/j \) for \(\omega \) in equation B.1 and identifying the real and imaginary parts.

Hence:
\[\sigma_k = \sin \left(\frac{2k - 1}{2n} \right) n \sinh \eta \]
\[\omega_k = \cos \left(\frac{2k - 1}{2n} \right) n \cosh \eta \quad \text{(B.2)} \]

for \(k = 1, 2, ..., 2n \)

The poles specified by equation B.2 lie on an ellipse with foci at \(\pm j \). This follows from the fact that:
\[\frac{\sigma_k^2}{\sinh^2 \eta} + \frac{\omega_k^2}{\cosh \eta} = 1 \]

The poles in the left half plane are given by \(p_k \), where \(p_k = \sigma_k + j\omega_k \) and
\[\sigma_k = -\sin \left(\frac{2k - 1}{2n} \right) n \sinh \eta \]
\[\omega_k = \cos \left(\frac{2k - 1}{2n} \right) \cosh \varphi \]

for \(k = 1, 2, \ldots n \)

Thus, \(\frac{E_2(p)}{E_1} \) may be expressed by:

\[
\frac{E_2(p)}{E_1} = \frac{A}{\prod_{k=1}^{n} (p - p_k)} \tag{B.3}
\]
APPENDIX C

DETERMINATION OF PARAMETERS FOR MINIMUM TRANSMISSION LOSS FOR A GIVEN $\omega_\Delta RC$

Equation (9) of the Introduction was

$$a^2 = \frac{\sqrt{2} \omega_\Delta RC \sinh \eta - 1}{(\omega_\Delta RC)^2(2 \sinh^2 \eta + 1) - \sqrt{2}\omega_\Delta RC \sinh \eta + 1}$$

It was shown in the Introduction that it was desirable to have a^2 as large as possible in order to minimize the transmission loss. We can do this mathematically by

$$\frac{\partial}{\partial \eta} \frac{a^2}{\sinh \eta} = 0$$

$$\sqrt{2} \omega_\Delta RC \left[\frac{(\omega_\Delta RC)^2}{2} (2 \sinh^2 \eta + 1) - \frac{\sqrt{2} \omega_\Delta RC \sinh \eta + 1}{4} \right] - \frac{\sqrt{2} \omega_\Delta RC \sinh \eta - 1}{2} \frac{(\omega_\Delta RC)^2}{2} (2 \sinh^2 \eta + 1) - \sqrt{2}\omega_\Delta RC \sinh \eta + 1 \right]^2$$

Since this equation is zero we can equate the numerator to zero and solve for $\sinh \eta$.

$$\sinh \eta = \frac{1}{\sqrt{2} \omega_\Delta RC} \left[1 + \sqrt{1 + (\omega_\Delta RC)^2} \right]$$

Substituting this value for $\sinh \eta$ in the original equation for a^2 yields

$$a^2 = \frac{1}{\sqrt{1 + (\omega_\Delta RC)^2}}$$
Solving equation C.3 for ω_A and substituting in equation C.2 gives

$$\sinh \gamma = \frac{1}{\sqrt{2}} \frac{\sqrt{1 + a^2}}{\sqrt{1 - a^2}} \quad (C.4)$$
APPENDIX D

LOW PASS TO BAND PASS TRANSFORMATION

A scheme for transforming from low pass to bandpass is given in Fig. D.1. The resulting two pole bandpass circuit and typical response curve appears in Figure D.2.
LOW PASS

\[C \]
\[L \]

BANDPASS

\[\begin{align*}
 \omega_0^2 &= \frac{1}{L_C C} = \frac{1}{L_C L} = \omega_1 \omega_2 \\
 \omega_2 - \omega_1 &= \omega_\Delta
\end{align*} \]

WHERE:

FIG. D.1
LOW PASS TO BANDPASS TRANSFORMATION.

\[\frac{2E_2}{E_1} \]
\[\begin{array}{c}
 \omega_1 \\
 \omega_0 \\
 \omega_2 \\
 \omega_\Delta
\end{array} \]

4\(\Delta^2\)
\[\frac{4\Delta^2}{1 + \epsilon} \]

FIG. D.2
BANDPASS TWO POLE MATCHING NETWORK.
APPENDIX E

IMPE DANCE LEVEL TRANSFORMATION

To change the impedance level of the two pole bandpass Tchebycheff network, follow the steps in Figure E.1.
FIG. E.1

FINAL CIRCUIT FOR TWO POLE BANDPASS MATCHING NETWORK.