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Abstract 

There is an increasing body of experimental studies demonstrating the toxic effects of oxygen-derived free 
radicals. Evidence supports an important role for free radicals in ischemic injuries, inflammation, and 
chemical-induced tissue injury. Free radicals are involved in normal biochemical processes like oxidative 
reduction and cellular metabolism; however, they also mediate disease processes. The participation of 
oxygen free radicals in lysis of red cells is important in some situations of  intravascular hemolysis. This 
article will review neutrophil-derived oxygen free radicals, emphasizing: (1) their effects on the erythro- 
cyte and (2) how these effects may be attenuated. 

Neutrophil-derived oxygen free radical generation 

Many substances are capable of activating neu- 
trophils to release reactive oxygen products, in- 
cluding bacteria and their constitutive compo- 
nents, the membrane activator phorbol myristate 
acetate (PMA), opsonized zymosan, immune com- 
plexes, chemotactic peptides derived from comple- 
ment components, and synthetic oligopeptides 
such as N-formyl-methionyMeucyl-phenylalanine 
[1-7]. 
When the neutrophil is activated, a series of meta- 
bolic activities is stimulated. Collectively, these 
changes are termed the "respiratory burst." The 
respiratory burst is associated with increased oxy- 
gen uptake, NADPH production from the hexose 
monophosphate shunt, and the reduction of oxy- 
gen, forming superoxide anion (02)  and H 2 0  2, 
The majority of oxygen consumed by the leuko- 
cytes is converted into superoxide anion or reactive 
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oxygen products [6, 8]. Molecular oxygen taken up 
by the leukocyte is univalently reduced to H 2 0 .  

e e-- e-- c -  
O 2 - - ~ 0  2 --~H2O 2 --~" O H  -~H20 

The intermediate products, superoxide anions, hy- 
drogen peroxide, and hydroxyl radicals of this 
pathway are reactive in biological systems to vary- 
ing degrees [9, 10]. The formation of 0 2  results 
from a membrane-bound NADPH oxidase. Since 
NADPH oxidase is a surface-bound enzyme, a 
proportion of O 2 diffuses into the extracellular 
space [5]. Molecules of 0 2  are capable of forming 
H202 and oxygen by the dismutation reaction. 
However, the spontaneous rate of dismutation is 
very slow in biological systems [9]. Superoxide dis- 
mutase (SOD) catalyzes the reaction and is deemed 
responsible for the majority of H 2 0  2 evolved by 
the leukocyte [11]. The hydroxyl radical is postu- 
lated to form from the modified Haber-Weiss or 
Fenton reaction where a transition metal (iron) 
serves as a redox agent [11]. 

0 2 + Fe3 +-+ 0 2 ~ Fe  z+ 

Fe 2+ + H 2 0 2  ~ F e  3 + + O H - +  .OH 
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Other reactive oxygen species have been postu- 
lated or identified to exist. An important species is 
hypochlorous acid (HOC1), formed by th6 oxida- 
tion of C1- via the leukocyte myeloperoxidase - 
HzO z complex [12]. 
The formation of toxic oxygen-derived free radi- 
cals by leukocytes is an important quality required 
for host defense against infection. The ability of 
leukocytes to produce O~ is necessary for destroy- 
ing some types of bacteria. Chronic granuloma- 
tous disease is associated with the inability of  
phagocytic cells to exhibit the respiratory burst 
[81. 
Free radicals are defined as molecules or atoms 
with one unpaired electron occupying an outer or- 
bital [10]. Some free radicals in the presence of 
oxygen can degrade lipids by peroxidative injury 
[13]. Free radical initiators are capable of extract- 
ing hydrogen atoms from unsaturated fatty acids, 
generating a free radical. This results in electronic 
instabilities and rearrangement of existing bonds 
resulting in the formation of conjugated dienes 
[13]. This may be followed by the addition of oxy- 
gen to the diene to form the fatty acid peroxyl 
radical, which can be converted into a lipid en- 
doperoxide. A postulated sequence of events with 
a polyunsaturated fatty acid (PUFA) is shown in 

Fig. 1. Additionally, the peroxyl radical can react 
with another unsaturated fatty acid producing a 
lipid hydroperoxide and other alkyl radicals. Al- 
ternatively, the result may be the formation of 
malonaldehyde, malondialdehyde (MDA), conju- 
gated dienes, or Schiff bases can result from the 
reaction of MDA with amino acids and their esters 
[13-!5]. 
MDA reacts with free amino groups from nucleic 
acids, proteins, phospholipids, and amino acids. 
The reactivity of MDA may result in cross linking 
and intermolecular bridging [14, 16]. Furthermore, 
the conjugated Schiff base N,N'-amino imino- 
propene can be formed which has a characteristic 
fluorescent emission range of 440-470 nm when 
excited at 360 nm [14, 16, 17]. These fluorescent 
pigments were demonstrated to be very similar to 
lipofuscin, which has been extracted from different 
animal tissues [17]. Furthermore, toxic 2-alkenals 
and 4-hydroxyl-2-alkenals can be elaborated by 
oxygen-derived radical attack upon polyunsatu- 
rated fatty acids (PUFA) [18-20]. In addition, 
oxygen radicals are capable of degrading numer- 
ous macromolecules including hyaluronic acid, 
collagen, inactivating enzymes, mediating the ag- 
gregation of gamma globulin, and causing oxi- 
dative inactivation of proteins including anti- 
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Figure 1 
The pathway for formation of lipid peroxidation products. 
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proteases [21-28]. There are also numerous stud- 
ies demonstrating the cytotoxic range of oxygen 
radicals originating from activated phagocytes. In- 
vestigation has shown direct cytotoxic effects from 
oxygen radicals upon erythrocytes, endothelial 
cells, fibroblasts, tumor cells, platelets, and sper- 
matozoa [29-38]. 

Mechanism of oxygen-free radical mediated 
erythrocyte toxicity 

The participation of oxygen radical species in 
hemolytic states has been suggested for some time 
[39, 40]. In various hemolytic phenomena, the role 
of oxygen radicals has been suggested [41, 42]. 
Erythrocyte lysis may be the end result of minor 
defects in the red blood cell (RBC) membrane. The 
structural integrity of the membrane is an impor- 
tant feature for its resistance to peroxidative attack 
[43]. Erythrocytes are also susceptible to oxidative 
stress due to unsaturated membrane phospholipids 
[44], continued exposure to high oxygen tension, 
and a plethora of transition metals capable of serv- 
ing as redox agents [45, 46]. The presence of 
hemoglobin and other hematin compounds may 
also augment the process of lipid peroxidation [47]. 
When an oxidizing stress overwhelms the reductive 
process of the red blood cell, a defect may ulti- 
mately result in hemolysis due to the inability of 
RBCs to resynthesize damaged components [45, 
48]. The destruction of red cells is postulated to 
occur by either membrane oxidation or hemo- 
globin denaturation. 
During oxidant injury, the erythrocyte membrane 
is stripped of phosphatidylethanolamine (PE) be- 
fore the cells begin to hemolyze [49]. PE contains 
a significant amount of polyunsaturated fatty 
acids which are susceptible to lipid peroxidation 
[50]. PE can be regenerated by transfer of fatty 
acids from a neutral lipid pool through phos- 
phatidylcholine to PE [49]. Lubin et al. have 
demonstrated increased acid transfer during per- 
oxidant injury. However, peroxidation destroys 
the fatty acids of PE at a faster rate than that of 
transfer, and hemolysis still occurs. The degrada- 
tion of PE may also alter the structural relation- 
ship of the intgral membrane protein, spectrin, and 
result in hemolysis [51]. 
Stimulated neutrophils release reactive oxygen 
species capable of causing red cell membrane dam- 
age to intact cells and erythrocyte ghosts [31, 52, 

53]. Peroxidative injury may directly alter 
sulfhydryl groups of spectrin by forming disulfide 
bridges [51]. In addition, there is evidence that 
altered hemoglobin becomes attached to the inner 
layer of the red cell membrane via disulfide link- 
ages [54]. Stimulated neutrophils also increase 
membrane-bound hemoglobin and methemo- 
globin and promote RBC immunoglobin binding 
to membranes [55]. MDA is also capable of cross 
linking free amino groups in the membrane. These 
linkages promote membrane rigidity and increase 
the splenic entrapment of RBC [49, 56, 57]. 
Hemoglobin alterations may be reflected in globin 
chain amino acid substitutions. The substitutions 
may change the physical and chemical properties 
of the heme pocket such that its iron can facilitate 
the formation of oxygen radicals [48, 58]. 
Furthermore, RBC membrane-bound enzymes, 
such as Na+/K + ATPase, are affected by carbonyl 
containing substances liberated from oxidized 
phospholipids [59]. The inhibition of Na +/K + AT- 
Pase may also be related to degradation of phos- 
phatidylserine which is associated with this enzyme 
[60]. Inhibition of Na+/K § ATPase will result in 
increased osmotic fragility. Goldstein demon- 
strated that exposure of RBC to ozone resulted in 
increased osmotic fragility associated with produc- 
tion of MDA [6]. It was also demonstrated that 
H20 2 stimulates replacement of membrane fatty 
acids with isotopically labeled fatty acids [6]. In 
addition, H202 can react with human RBC caus- 
ing a cross linking of spectrin to hemoglobin [61]. 
During oxidizing conditions, the presence of su- 
peroxide dismutase, catalase, and radical scav- 
engers can provide protection against red cell lysis 
[30]. 

Attenuation of intravascular hemolysis 
by neutrophil-derived toxic oxygen products 

Recently, we demonstrated that remote thermal 
trauma to the skin of rats consistently results in 
intravascular hemolysis and the hemolytic pro- 
cess can be dramatically reduced by antioxidant 
interventions [62]. We probed into the membrane 
characteristics of red cells isolated from thermally 
injured animals. Thin layer chromatography and 
gel electrophoretic examination of membrane 
proteins failed to demonstrate significant altera- 
tions. Similarly, assays for fluorescent products, 
MDA, and diene conjugates from erythrocyte 
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ghost extracts consistently failed to show evidence 
for the presence of  these products (data not 
shown). These findings are in accord with other 
investigators who repeatedly failed to isolate 
M D A  in freshly drawn human blood when sub- 
jected to exogenous oxidative stresses [45]. The 
inability to detect M D A  in vivo may result from 
reactive carbonyl groups which can cross link with 
a variety of  macromolecules [63, 64] as previously 
discussed. Although experiments in vivo have 
failed to provide evidence for the presence of  
MDA,  red cells exposed to hydrogen peroxide un- 
der in vitro conditions demonstrate M D A  and its 
derivatives [50]. As discussed previously, altered 
hemoglobin can bind internally to red cell mem- 
branes [54] and external oxidizing conditions can 
lead to linkage of  surface membrane sulfhydryl 
groups [51]. Both of  these defects result in in- 
creased red cell membrane rigidity and possible 
splenic entrapment [56]. Thus, defective red cells 
could be sequestered in the sinusoids of  the spleen 
eliminating them from circulation before detect- 
able levels of  lipid peroxidation products could 
accumulate. 
Intact human and feline erythrocytes incubated in 
the presence of  activated neutrophils show produc- 
tion of  methemoglobin [65, 66]. It has been postu- 
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lated that oxidized hemoglobin resulted from the 
diffusion of  O~ via RBC membrane anion channels 
while H 2 0  2 appears to be freely diffusible across 
cell membranes. Our previous studies consistently 
failed to detect significant levels of  methemoglobin 
in RBC from thermally injured rats. This is not  
surprising due to the relatively high activity of  rat 
methemoglobin reductase as compared to humans 
[67, 68]. 
It has been established that thermal injury acti- 
vates the complement system; however, the precise 
mechanism is unknown [69]. Complement activa- 
tion can produce RBC lysis associated with the 
C5b-9 membrane attack complex or, indirectly, by 
the opsonization of  RBC following uptake of  C3b 
on surfaces of  RBC [69-73]. In our studies, red 
cells isolated from thermally injured rats did not 
demonstrate complement uptake; however, it is 
possible that there were small quantities which 
were insensitive to detection [62]. Our studies fur- 
ther demonstrated that depletion of  either comple- 
ment or circulating neutrophils precluded the on- 
set of  intravascular hemolysis after acute thermal 
injury [62] (Fig. 2). The depletion of  circulating 
neutrophils prior to thermal t rauma reduced by 
92.5% the amount  of  hemolysis as compared to 
PMN-sufficient animals. Circulating neutrophils 
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Figure 2 ABSORBANCE SORET MAXIMA -(412nm) 
Effect of protective interventions on intravascular hemolysis in thermally injured rats at 15 minutes after thermal injury. Animals were 
pretreated 10 minutes prior to thermal injury with polyethylene glycol (PEG)-catalase (1200 U/kg), PEG-SOD (1025 U/kg) (both 
intravenously administered) or with dimethyt thiourea (DMTU) (1000 mg/kg), or dimethyl sulfoxide (DMSO) (1.5 mg/kg) injected 
intraperitoneally. Complement and neutrophil (PMN) depletion were accomplished by intraperitoneal injection of CVF (40 U/rat) and 
rabbit antiserum (5.0 ml/kg body weight) against rat neutrophils at 24 and 18 hours, respectively, prior to thermal injury. The Soret 
Band (412 nm) was utilized for the quantitative determination of hemolysis. Each bar represents the mean (+_ SEM) of intravascular 
hemolysis from five separate animals. Significance (p value) of each point was derived by comparison with plasma hemoglobin values 
of unprotected thermally injured rats. (*p < 0.05, **p < 0.005, ***p < 0.001). 
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Table 1 
In vitro hemolysis induced in cobra venom factor (CVF)-treated blood 
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Blood donor Treatment of blood # of Hemolys i s  Significance Protection 
animals from 

hemolysis 

Normal None 4 0.79 + 0.19 - - 
Normal CVF* 6 17.93___0.29 <0.001 
Normal CVF+catalase (100 U/ml) 6 6.27_+0.71 <0.001 68.0 
Normal CVF+ SOD (100 U/ml) 7 5.73_+0.25 <0.001 71.2 
Normal CVF +deferoxamine (0.25 mg/ml) 6 5.35_+0.53 <0.001 73.4 
Normal CVF+iron saturated deferoxamine 6 15.27_+0.78 <0.001 15.2 

(0.25 mg/ml) 
Complement-depleted CVF 4 10.20__.1.79 <0.005 45.1 
PMN-depleted CVF 6 9.13_+1.21 <0.001 51.3 
Normal phorbol myristate acetate (PMA) 4 20.8 _+ 1.70 < 0.001 - 

(200 ng/ml) 

* 0.1 U/1.0 ml rat blood. 

require activation to initiate RBC lysis. This was 
demonstrated in vitro by phorbol-stimulated P M N  
which lysed 75% of  intact RBC [74]. Complement 
depleted animals when thermally injured also dis- 
played a lack of  hemolysis, which is not surprising 
since complement also functions to activate neu- 
trophils. As previously discussed, the hemolytic 
process following acute thermal injury could be 
dramatically attenuated by pre-treatment o f  ani- 
mals with SOD, catalase, and hydroxyl radical 
scavengers. These findings were further substanti- 
ated by in vitro studies which demonstrated that 
catalase and SOD protected red cells from lysis 
[30, 52, 75]. In efforts to determine if an in vitro 
model could stimulate the in vivo observations, we 
added the complement activator, cobra venom fac- 
tor (CVF), in limited amounts to rat blood. As 
shown in Table 1, RBC lysis occurred, as revealed 
by a 23-fold increase in the absorbance (at 412 nm) 
of  plasma after the addition of  CVF to whole 
blood. A reduction (by 68%) in hemolysis occurs 
when catalase (100 U/ml blood) was present. A 
similar reduction in hemolysis was obtained with 
the presence of  an equivalent amount  of  super- 
oxide dismutase (SOD). The hemolytic event was 
also susceptible to the presence of  the iron chelator 
deferoxamine (0.25 mg/ml) in which case there was 
a 73% reduction in the amount  of  hemolysis. The 
specificity of  this protective activity was demon- 
strated by the loss (by 84.8%) of  protective effects 
When iron saturated deferoxamine was used. For  

comparison, it was demonstrated that an addition 
of  200 ng of  the potent leukocyte activator phor- 
bol myristate acetate (PMA) to normal rat blood 
(1.0 ml) resulted in hemolysis that was at least as 
effective as that produced by addition of  CVF to 
rat blood (Table 1). A critical role for the iron- 
binding protein lactoferrin in oxygen radical-in- 
duced hemolysis by neutrophils has also been 
shown. By employing an antibody against lactofer- 
rin, PMN-mediated RBC cytotoxicity was reduced 
by greater than 85% [55]. 

Summary 

During oxidizing conditions, erythrocyte hemoly- 
sis may result from membrane alterations such as 
the formation of  disulfide bonds with integral 
proteins and the degradation o f  fatty acids. The 
presence of  anti-oxidant enzymes and radical scav- 
engers during oxidizing conditions largely prevents 
in vitro red cell lysis. In addition, intravascular 
hemolysis following thermal trauma is prevented 
by anti-oxidant therapy and the intervening meth- 
ods such as granulocyte or complement depletion. 
Alternately, the requirement o f  both complement 
and neutrophils and the protection displayed with 
SOD, catalase, and hydroxyl radical scavengers 
indicate that complement-mediated hemolysis may 
account for a relatively small amount  o f  intravas- 
cular hemolysis. This is further supported from 
our  studies with red cells isolated from thermally 
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injured rats which [1] failed to demonstrate com- 
plement uptake, [2] hemolysis occurred by comple- 
ment or phorbol ester-stimulated neutrophils, and 
[3] the hemolytic effect was attenuated in the pres- 
ence of hydroxyl radical scavengers (DMSO, 
DMTU), the antioxidant enzymes superoxide dis- 
mutase and catalase, and the iron chelator defer- 
oxamine. Additionally, other investigators have 
demonstrated an important role of iron and lacto- 
ferrin in erythrocyte hemolysis by stimulated neu- 
trophils. These observations suggest that thermal 
injury-induced red cell lysis can be accomplished 
through activation of neutrophils with the subse- 
quent release of oxygen radicals. Furthermore, 
complement mediates the neutrophil activation 
but does not seem to participate directly in the 
intravascular hemolysis. 
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