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Bratu's problem, which is the nonlinear eigenvalue equation Au + 2 exp(u)= 0 
with u = 0 on the walls of the unit square and 2 as the eigenvalue, is used to 
develop several themes on applications of Chebyshev pseudospectral methods. 
The first is the importance of symmett:v: because of invariance under the C 4 
rotation group and parity in both x and y, one can slash the size of the basis set 
by a factor of eight and reduce the CPU time by three orders of magnitude. 
Second, the pseudospectral method is an analytical as well as a numerical tool: 
the simple approximation 2 ~3.2A exp( 0.64A), where A is the maximum 
value of u(x, y), is derived via collocation with but a single interpolation point, 
but is quantitatively accurate for small and moderate A. Third, the Newton-  
Kantorovich/Chebyshev pseudospectral algorithm is so efficient that it is 
possible to compute good numerical solutions--five decimal places--on a 
microcomputer in BASIC. Fourth, asymptotic estimates of the Chebyshev coef- 
ficients can be very misleading: the coefficients for moderately or strongly non- 
linear solutions to Bratu's equations fall off exponentially rather than 
algebraically with v until v is so large that one has already obtained several 
decimal places of accuracy. The corner singularities, which dominate the 
behavior of the Chebyshev coefficients in the limit v ~ co, are so weak as to be 
irrelevant, and replacing Bratu's problem by a more complicated and realistic 
equation would merely exaggerate the unimportance of the corner branch points 
even more. 

KEY WORDS: Bratu's problem; nonlinear eigenvalue problem; spectral 
methods. 

1. I N T R O D U C T I O N  

T h e  t w o - d i m e n s i o n a l  n o n l i n e a r  e i g e n v a l u e  p r o b l e m  k n o w n  as  B r a t u ' s  

e q u a t i o n  h a s  a d u a l  i m p o r t a n c e .  F i r s t ,  it  a r i s e s  in  a w i d e  v a r i e t y  o f  p h y s i c a l  
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applications, ranging from chemical reactor theory and radiative heat 
transfer to the expansion of the universe (Abbot, 1978). Second, because of 
its simplicity, his equation is widely used to test nonlinear eigenvalue 
solvers (Bank and Chan, 1986). 

The problem is defined by 

u,. x + u,.y + )o e ~ = 0 (1) 

on the square I - l ,  l ]  x [ - 1 ,  1] subject to the boundary condition 

u = 0 on all four walls (2) 

where )~ is the eigenvalue. Most other references pose the problem on the 
unit square [0, 1] x [0, 1], but the only effects of this are to (1) require 
relabeling the axes of plots of u(x,  )!) without changing the shape and (2) 
multiply our values of 2 by a factor of 4. 

Following Abbott (1978), we measure the amplitude of u(x,  y )  by its 
value at the center of the square, which turns out to be the maximum of 
the function 

A -u (0 ,  0 ) =  Ilull ~_ (3) 

Previous work has shown that Bratu's problem has but a single branch of 
solutions for all positive A. 

This new study of an old equation has two purposes. First, because of 
the intrinsic importance of Bratu's problem, it is useful to offer some new 
graphs and tables to fill in the gaps of earlier investigations. The second 
goal is to use Bratu's equation as a test for a hierarchy of both analytical 
and numerical applications of the pseudospectral method to multidimen- 
sional eigenvalue problems. We will find that this family of techniques is 
extremely successful in spite of the absence of such trendy devices as mul- 
tigrid, preconditioned iterations, and pseudo-arclength continuation. 

In the next section, we briefly explain how the high symmetry of the 
problem allows one to reduce the total Tmmber of pseudospectral basis 
functions by a factor of eight from wha t  would be needed to achieve a 
given accuracy if the symmetries were ignored. Section 3 explains how 
collocation with just one basis function at one interpolation point gives an 
analytic solution to this two-dimensional,  nonlinear eigenvalue problem, 
which is nonetheless accurate to within a few percent for all amplitudes up 
to the limit point where 2(A) is a maximum. Section 4 derives an improved 
analytic solution by a perturbative simplification with three-degree-of- 
freedom collocation. Section 5 describes a Chebyshev polynomial/Newton- 
Kantorovich numerical algorithm that is very accurate even for strongly 
nonlinear solutions. The method was so effective that all calculations were 
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done on a microcomputer using ordinary Gaussian elimination for the 
final, rate-determining step. Section 6 discusses the "corner" singularities 
and how they can be resolved if very high accuracy is needed. The article 
ends with a summary and prospectus. A few programming notes are collec- 
ted in the Appendix. 

2. SYMMETRY 

When the solution is known to have some particular symmetry 
property, this is a great boon to the application of the pseudospectral 
method (or Galerkin's method) because the equation can be solved using a 
restricted basis set, which retains only those basis functions that have the 
same symmetry as the solution. The proof is given in many books on 
applications of group theory to quantum mechanics, such as Merzbacher 
(1970) and Cotton (1963). 

The solution of Bratu's equation is symmetric about the origin in both 
x and y. Consequently, only the even-degree Chebyshev polynomials are 
needed to construct the appropriate two-dimensional basis functions. For a 
given resolution, this double parity reduces the size of the basis set by a 
factor of four. 

However, if we 
differential equation 
solution is also, in 
rotation group C4," 
multiple of 90 ~ In 

rotate the square through an angle of 90 ~ neither the 
nor the boundary conditions are altered. Thus, the 

the language of group theory, "invariant under the 
which is the group of rotations through any integral 
Section 5, we explicitly construct a basis set whose 

elements, formed as sums of T,,,(x) T,~(y) for various m and n, are sym- 
metric in both x and ), and invariant under the C4 rotation group. 

The payoff is to reduce the total number of basis functions (for a given 
desired accuracy) by a factor of eight. This is turn reduces the required 
memory by a factor of 64 (since pseudospectral matrices are dense) and the 
execution time by a factor of 512 (since Gaussian elimination is used to 
solve the needed linear equations). 

The hardest task is to recognize that a problem has certain sym- 
metries. The author knows of no simple a priori proof that the solution of 
Bratu's equation has the invariance properties described above. It is quite 
easy, however, to show that these symmetries are at least plausible in the 
sense that (1) and (2) are both invariant under 7r/2 rotations, so that it is 
reasonable that u(x, 3,) might have the same property. 

The best strategy is to guess the symmetries of u(x, y) and then deter- 
mine a posteriori if the guess is correct. If the computed solution gives a 
large residual when substituted into the original differential equation, then 
at least some of the hoped-for symmetries are missing, and one must try 
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again with a larger basis set. So long as one is careful to check the 
residuals, as described further in Section 5, one can safely exploit the full 
invariance properties of a problem even when it is not possible to prove 
these invariance properties in advance. 

3. THE SIMPLEST ANALYTIC SOLUTION:  
ONE-POINT COLLOCATION 

The pseudospectral method, also known as "orthogonal collocation," 
is thoroughly described along with its older cousin, Galerkin's method, in 
the monographs of Finlayson (1972) and Gottlieb and Orszag (1977). The 
first step is to assume that the unknown u(x, y) can be expanded as a series 
of spectral basis functions 

N 

u= X a,,~,,(x, y) (4) 
n -  1 

where the ~b,(x, y) are chosen to (1) have the property of completeness, so 
that the error decreases to 0 as N ~ 0% and (2) satisfy the boundary con- 
ditions. Substituting (4) into the differential equation then defines the so- 
called residual, R(x, y; ), a~, a2,..., aN). If the truncated series were the 
exact solution, the residual function would be identically zero, so the goal 
of all series expansion methods is to impose constraints that minimize the 
residual and can be solved for the spectral coefficients a,. Galerkin's 
method and the pseudospectral method differ only in the sense in which the 
residual is minimized. 

The pseudospectral constraints are that the residual should be exactly 
zero at N discrete "interpolation" or "collocation" points, that is, 

R(xi, Yi: ), al, a2 ..... aN) = 0, i =  1 ..... N (5) 

The most effective choice of interpolation points is to pick both x~ and Yi 
to be the roots of an orthogonal polynomial of the same family as that 
used to construct the basis functions. When tensor products of Chebyshev 
polynomials are combined to create ~b,,(x, y) as done in Section 5, for 
example, the interpolation points are roots of the Chebyshev polynomials, 
too. 

Finlayson (1972) points out, however, that although Chebyshev 
polynomials are the best basis for high-resolution numerical computation, 
they are not optimum when orthogonal collocation is applied with a 
handful of points to generate a crude but analytic approximation. The 
reason is that the Chebyshev polynomials weight the whole interval 
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[ - 1 ,  1] equally and give a very uniform approximation to an arbitrary 
function u(x, 3:). However, the solution of Bratu's equation is not arbitrary, 
because the boundary conditions determine its behavior near the walls: u 
must tend to zero as any of the boundaries is approached. Therefore, we 
want an approximation that stresses the center of the domain. This suggests 
a set of interpolation points that are closer to the origin than their 
Chebyshev counterparts. 

Finlayson describes a systematic procedure for choosing such points. 
The Chebyshev polynomials are part of a larger family known as the 
Gegenbauer polynomials, which are orthogonal on [ -  1, 1 ] with respect to 
the weight function w(x)-= ( 1 -  x2) ~', where b = -1 /2  gives the Chebyshev 
polynomials themselves. The larger b is, the more strongly the Gegenbauer 
polynomials favor the center of the interval at the expense of what would 
be higher errors near the endpoints were it not for the boundary con- 
ditions. Finlayson recommends b = 1, and this is the choice made here and 
in the next section. 

With just a single degree of freedom, the collocation point is 

(x~, Yl)= (0.447, 0.447) (6) 

where 0.447 is an approximation to (1/5)1/< The corresponding Chebyshev 
point is (0.707, 0.707), which gives an error in the maximum value of 2 that 
is nine times larger than what is obtained via (6). 

The most obvious choice of interpolation point, of course, is the center 
of the square, but this gives roughly three times the error of (6). The reason 
is that because of the high symmetry of the solution and the basis 
functions, imposing the condition that the residual function is zero at one 
point away from the origin guarantees that the residual also vanishes at 
(+x~,  -+Yl), so that our one-point approximation is effectively a four- 
point approximation. 

The lowest basis function that (1) is a polynomial and (2) vanishes at 
the four sides of the square gives 

u(x, y ) ~ A ( 1  -x2)(1 - 9 )  [1-point approx.] (7) 

Substituting this into the differential equation gives 

R(x,  y;2, A)  = - - 4 A  + 2 A x 2 + 2 A y 2 + 2 e x p [ A ( 1  - x2)(1 _ y 2 ) ]  (8) 

Since the approximation (7) automatically satisfies the boundary con- 
ditions, our sole task is to determine A so that the residual is as small as 
possible. The condition 

R(0.447, 0.447; 2, A ) =  0 (9) 
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Fig. 1. ( - - )  The eigenvalue )~(A) as given by numerical integration, compared with ( - - - - )  
the three-basis function approximation derived in Section 4 and ( - - )  the one-collocation 
point analytic approximation (10). 
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Fig. 2. The function u(x, x) - - tha t  is, u(x, y) along the diagonal of the square domain 
displayed for A = 1.39 [the limit point where 2(A) is largest I as calculated through three dif- 
ferent means. The comparison is between ( - - )  a high-resolution Chebyshev pseudospectral 
calculation, ( - - )  the three-point pseudospectral approximation, and ( - - - - )  the one-basis- 
function analytic formula, u(x, y) ~, A(1 - x2)(1 -- y2). The maximum absolute errors are 0.017 
and 0.06, respectively. Because of the symmetry with respect to the origin, only x> /0  is 
graphed. 
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Fig, 3. Identical with Fig. 2, except for A - 5 (strong nonlinearity). The maximum absolute 
errors are 1.30 for the one-point approximation and 0.81 for the three-basis-function sum. As 
explained in Section 6, u(x, y) is weakly singular at the corners, so making comparisons along 
a slice of the domain that includes the corners is a severe test of the approximations that are 
compared with the exact solution (solid curve). 

gives the analytic approximation 

2 ~ 3.2Ae 0.64A [1-point eigenvalue approx.] (10) 

Figure 1 compares the accuracy of (10) (and the improved analytic 
approximation derived in the next section) with the exact 2(A). Figures 2 
and 3.compare (7) with the exact u(x, y )  along the diagonal x = y for two 
different values of A. Table I compares the exact values of 2 and A at the 
limit point [which is defined to be where 2(A) is a maximum] with those 

Table I. A Comparison of the Exact Limit Point IDefined to be where ).(A) Is a Maximum] 
with the Predictions of the One-Point and Three-Point Approximations 

Formula 2 ..... Relative error, A limit Relative error, 
% % 

Exact 1.702 - -  1.39 - -  
One-point 1.84 8.0 1.56 12.4 
Three-point 1.735 1.9 1.465 6.3 
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of the analytic approximations. Although the approximation (7) plus (10) 
is very simple, the accuracy is remarkably good. Equation (10) correctly 
reproduces the qualitative behavior of 2(A) for all A. Even at the limit 
point, the relative error is only about 7.5 %. 

Finlayson (1972) is full of similar examples; the pseudospectral 
method is often so accurate for simple, idealized problems that a one- or 
two-point approximation is sufficient. When this is true, the residual con- 
ditions can be solved to give an explicit, analytic solution. 

4. THREE-POINT COLLOCATION: AN IMPROVED 
ANALYTIC APPROXIMATION 

The refined solution given in this section is similar to the one-degree- 
of-freedom approximation derived above except that the basis includes 
three functions: 

u(x , ) ' )~(1-x2)(1-9)[A+B(x2+y2)+Cx2y2]  (11) 

Note that the factor outside the brackets guarantees that the 
approximation vanishes at the boundaries. All the basis functions are 
invariant under the substitutions x--, ( - x )  (even parity in x), y ~ ( - y )  
(even parity in y), and x ~ y and y --, x (rotation through 90~ 

The corresponding collocation points are 

(x~,),j) = (0.285, 0.285) 

(x2, Y2) = (0.285, 0.765) 

(x3,)'3) = (0.765, 0.765) 

[interpolation points] (12) 

where 0.285 and 0.765 are the two positive roots of the fourth-degree 
Gegenbauer polynomial. By demanding that the residual function, 
obtained by substituting (11) into (1), should vanish at these three 
collocation points, we obtain three equations in three unknowns. Because 
of all the symmetries, the residual function is zero not only at the three 
points (12), but also at (0.765, 0.285) and the 12 points that are the images 
of these four points under rotations through an integer multiple of 90~ 
points in all. 

The three nonlinear algebraic equations that results from the 
pseudospectral method are too complicated to solve in closed form, but 
two simplifications are possible. First, if we take the lowest spectral coef- 
ficient A as a parameter so that the eigenvalue 2 and the higher spectral 
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coefficients are the unknowns, then the three residual constraints are linear 
in 2. Arbitrarily choosing to solve the constraint at (x2, Y2) gives 

2 = (2.667A + 4.83B + 0.127C) exp( -0 .381A - 0 .254B-  0.018C) (13) 

which is the first simplification. 
The two remaining constraint equations become 

(2.667A + 4.83B + 0.127C) exp(0.463A - 0.117B - 0.013C) 

- 3.675A + 1 .582B+0.153C=0 (14a) 

(2.667A + 4.83B + 0.127C) exp( - 0.209A - 0.053B + 0.041C) 

- 1.659A - 5 .138B-  2.439C= 0 (14b) 

These two equations are still too complicated to solve in closed form as 
they are, but note that the spectral coefficients B and C appear in the 
exponentials in (14a) and (14b) only with small numerical coefficients. If 
we drop them--on ly  from the exponentials and without approximating any 
term involving the known parameter  A- - then  ( la)  and (14b) are 
linearized, and their solutions are 

B = A (0.829 - 0.566e ~176 - 0.0787e 0.2o9A)/G (15a) 

C =  A( - 1.934 + 0.514e ~176 + 1.975e ~176 (15b) 

where the denominator of both B(A) and C(A) is 

G - 0.2763 + e ~ + 0.0483e - 0.209A (15c) 

With this second simplification, (13) and (15a)-(15c) describe an 
approximation that is no longer a simple pseudospectral solution, but 
rather a collocation-cure-perturbation approximation. Nonetheless, 
Figs. 1-3 show that it is considerably more accurate [for )~(A), at least 
twice as good]  as the single-degree-of-freedom formulas derived in the 
previous section. 

The algebraic manipulation language REDUCE was used to streamline 
the algebra needed to compute (13) and (15a)-(15c). With this tool or a 
similar language like MACSYMA, it is straightforward to derive explicit 
analytic approximations of considerably greater complexity, i.e., more 
interpolation points and a higher approximation to the solution of the non- 
linear residual constraint equations. We shall stop with the three-point 
approximation, however, and turn to high-resolution numerical 
calculations instead. 
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5. THE CHEBYSHEV PSEUDOSPECTRAL/NEWTON- 
KANTOROVICH METHOD 

To achieve high accuracy--or  even a coarse approximation for large 
amplitude--one must resort to purely numerical computation. The first 
task is to choose pseudospectral basis functions appropriate for the boun- 
dary conditions and the symmetry of the problem. 

First step: since the boundary conditions are not periodic, the building 
blocks for the basis functions will be Chebyshev polynomials in x mul- 
tiplied by Chebyshev polynomials in y. As noted above, Gegenbauer 
polynomials are more efficient for low-order analytic calculations, but 
Chebyshev polynomials are both easier to program and more accurate 
when the number of basis functions is large. 

Second step: since u(x, y)  is symmetric with respect to the origin in 
both x and y, we should restrict the basis to functions with this same 
double parity. Thus, the tensor products of Chebyshev polynomials will be 
restricted to terms of even degree like Tzm(X ) Tz,,(y), where m and n are 
integers. 

Third step: to force each basis function to satisfy individually the 
homogeneous boundary conditions, we alter the building blocks to 

0 ..... = - [ T 2 m ( X ) - I ] [ T 2 , , ( Y ) - I ] ,  m = 1, 2,...; n = l , 2  .... (16) 

Since T2,,(_+ 1 ) = 1 for all integral m, it follows that Om,,(x, y) = 0 wherever 
either [xl = 1 or ]y] = l, i.e., on all four sides of the unit square. 

Fourth step: because of the C4 rotational symmetry, we may further 
restrict the basis set to combinations that are invariant under the 
replacement of x by y and y by x. The simplest such basis functions are 
defined by 

A ..... - [r y)  + (b,,,,,(x, y)]  m < n; n = 1, 2 .... 
(17) 

=~,,,,,(x, y) m = n ;  n = l , 2  .... 

If a "square" truncation is applied to the original basis functions 
(16)--that  is, only those elements with m<<,v and n ~ v  are kept-- then 
taking the rotationally invariant combinations of (17) reduces the total 
number of basis functions to 

N = v(v + 1 )/2 [-"triangular truncation"] (18) 

and this "triangular" truncation will be used in all the numerical 
calculations described here. 

The fifth and final step is cosmetic but useful. The easiest way to 
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specify an amplitude parameter A is to choose it to be equal to the coef- 
ficient of the lowest basis function, 02dx, Y). In the analytic 
approximations of the previous two sections, this was a very convenient 
choice because all the other basis functions vanish at the origin, where 
u(x, y) is a maximum, so that A also could be interpreted as []u]lo~, the 
norm of u(x, y). We can retain this interpretation for the high-resolution 
numerical calculations by setting 

~b22(x, y) -= 1[ T 2 ( x ) -  1] [ T2(y) - 1] (19a) 

~,,,,,(x,y)=_A,,,,(x,y)-A,,,,,(O,O)~:2(x,y), m ~ n  (19b) 

where (19a) ensures that r  and (19b) guarantees that 
~b,,,,,(0, 0 ) =  0 unless both m and n equal two. 

The interpolation points are tensor products of the roots of Chebyshev 
polynomials, that is, 

xi = c o s [ ~ ( 2 i -  1 )/4v], y / =  c o s [ ~ ( 2 j -  1 )/4v] 

i<~j; j =  1, 2 ..... v (20) 

The restriction i ~ j  is consistent with the "triangular" truncation of the 
basis functions: because of the symmetries, all the interpolation points lie in 
a triangle that occupies but one-eighth the tea of the unit square. 

In a similar way, the total number of basis functions is only one-eighth 
that of the full collection of products of Chebyshev polynomials with 
m = 1 ..... 2v and n = 1 ..... 2v. Since the pseudospectral method generates full 
matrices and we choose to solve the corresponding linear algebra problems 
via Gaussian elimination without special tricks, this reduction in basis 
functions through symmetry translates into a reduction of 1/64 in memory 
storage and 1/512 in operation count. 

The Newton-Kantorovich method (Birkhoff and Lynch, 1984) was 
used to reduce the nonlinear differential equation to an iteration that 
requires solving only a linear boundary value problem at each step. The 
first step is to make the substitutions 

u(x, y) ~ u(x, y) + A(x, y) 
(21) 

2 - - . 2 + 6  

into the differential equation to obain, without approximation, 

(Axx + d.,.y) + u.~x + u.,..,. + 2z "+~ + 5e "+'j = 0 (22) 

If we now identify u(x, y) and 2 with the current iterates and A(x, y) and 

854/I/2-6 
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as small corrections, expand (22) about u(x, y) and 3, and then discard 
terms in A 2 and AcS, we obtain the iteration 

~/ 2/,) exp(u(/ ) ) ]  zlx. ~ + A,:~. + Z/~i exp(uU))A + exp(ul~))6 = - [u}~ ) + Uy.,. + 

u ( i  + 1 ) : U(l ' )  -.]- Z~, ~ ( i +  I ) = ,~,(i) .-~- 6 
(23)  

and repeat. For notational simplicity, we have suppressed the superscripts 
on A and 3, but these corrections must be computed by solving a linear dif- 
ferential equation at each iteration. 

This procedure is associated with Newton's name because its strategy 
is similar to that of the ordinary Newton's method for solving algebraic 
equations: linearize the nonlinear function via a first-order Taylor expan- 
sion and solve the linear equation to obtain a correction. Kantorovich 
showed that this idea could be extended to functionals. Technically, the 
generalized power series expansion requires evaluating a so-called Frechet 
derivative, but one can obtain the same result by multiplying A and 6 by a 
dummy scalar parameter ~ and then Taylor expanding in e. 

One unavoidable drawback of the Newton-Kantorovich method is 
that it requires a good first guess, but this can always be obtained via the 
so-called "continuation" method--beginning with a known solution and 
then marching in small steps in a parameter. Here, the amplitude A 
[-= u(0, 0)] is a natural marching parameter. The continuation method can 
be initialized for small A by using the analytic approximations derived in 
previous sections. 

In point of fact, the analytic approximations work so well so that con- 
tinuation is unnecessary unless A is large. A first guess consisting of (1))o 
based on the one-point formula and (2) a i = 0  for all i>~2 was good 
enough for convergence for A as large as 4. The range of direct solutions 
can be extended to 5 by applying the UL factorization on every iteration 
(instead of just the first) and to A = 6 by using the 2's given by the three- 
point approximation. 

Equation (23) is an unconventional boundary value problem in the 
sense that it contains a scalar unknown, the eigenvalue correction 3, in 
addition to A(x, y). The extra degree of freedom allows us to force the coef- 
ficient of the lowest basis function to be A. In a standard boundary value 
problem, 6 would be the parameter and A the unknown. (along with all the 
higher spectral coefficients), but it is quite legitimate to have 6 and A 
switch roles. 

The reward for taking the eigenvalue as an unknown is that 2(A) is 
single-valued, whereas the inverse function A(2) is double-valued. The 
point where 2 is a maximum is a "limit point" for A(Z): dA/d2= oo at 
2 = 2,m,t = 1.702. Ordinary continuation by marching in small steps in 2 
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will fail utterly in the vicinity of a limit point. Sophisticated variants such 
as pseudo-arclength continuation (Bank and Chan, 1986) allow one to turn 
the corner at the limit; Bratu's equation is popular as a test of nonlinear 
eigenvalue solvers in part precisely because it has a limit point. In the 
present instance, however, there is much simpler way to deal with the limit 
point: exchange the roles of Z and A. This method of "parameter exchange" 
has also been successful in other applications (e.g., Boyd, 1986a). 

The pseudospectral solution of (23) is obtained by writing 

N 

zl(x, 3 ')= ~ d,q),(x, 3') (24) 
i--2 

[the sum begins with i = 2  because the correction to the coefficient of 
~b~(x, y ) i s  zero],  where N = v ( v +  1)/2 as in (18); we have condensed two 
indices, m and n, into a single index with a wider range for notational and 
programming simplicity. If we write (23) in the abstract form 

LA + M 6 =  R 

where 

L =- 02/Ox 2 + ~2/~y2 + 2(i) exp(uOt) 

M -  exp(u/i) ) 

R -= -Fu/il  + u li/+ 2 t't exp(u/i))] 
L .X'.V - -  - - . [ , . 1 ,  

(25) 

(26a) 

(26b) 

(26c) 

and define a vector of unknowns a whose elements are 

al =-6, ai==_di, i = 2 ,  3 ..... N (27) 

then the usual pseudospectral condition that the truncated solution should 
exactly satisfy the differential equation at each of N discrete collocation 
points generates the matrix problem 

H a  = r ( 2 8 )  

where 

H,.1 =- M ( x i ,  y ,) ,  Hij =- (LO/)[ . . . . . . .  . ~.~ 

i =  1 ..... N; j = 2 ..... N (29) 

r i =- R ( x i ,  y,.), i = l, 2 ..... N (30) 

In a strict Newton's method, H would be recomputed and then fac- 
tored into the product of an upper triangular matrix with a lower 
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triangular matrix (UL decomposition) at every iteration. However, because 
the cost of the factorization is 0(N3/3) while the backsolve is only O(N2), 
it is much more efficient to perform the factorization only on the first 
iteration, and then employ the UL factors of H for the first iterate as an 
approximation to those of the square matrices for all the later iterates. This 
usually increases the number of iterates, but when N is large, this is a small 
price to pay for reducing the number of 0(N3/3) steps to one factorization 
for each nonlinear solution. 

When u(x, y) is a smooth function with no singularities on the com- 
putational domain, theory predicts that the error as a function of the trun- 
cation N should be O(1 ) and flat until N is large enough to at least crudely 
resolve the solution and then fall off exponentially fast as N is increased 
still further. This "exponential" or "infinite-order" convergence is one of the 
great strengths of spectral methods; finite-difference and finite-element 
algorithms suffer errors that decrease as algebraic functions of N, that is, as 
I/N ~ for some k. Table lI shows that the Chebyshev pseudospectral 
method is quite efficient for this problem. 

There is, however, a serious complication: the solution of the differen- 
tial equation has branch points in the four corners of the domain that 

Table 11. Convergence of the Pseudospectral Solution As a Function of N, 
the Total Number of Two-Dimensional Basis Functions, 

for Two Different Values of A [=-u(0, 0)1" 

Relative error Maximum error in u(x, y) 
N 2v ). in ), (divided by A ) 

A = 1.39 

10 8 1.70211 4.6 E - 5  6,8 E - 4  
21 12 1.70203 3.4 E - 8  1,5 E 4 
36 16 1.70203 3.0 E - 8  5,5 E - 5  
55 20 1.70203 9.8 E - 9  1.8 E - 5  
78 24 1.70203 3.0 E - 9  9.0 E - 6  

A = 5.0 

10 8 0.46588 9.8 E--2 6.9 E - 2  
21 12 0.49676 3.9 E - 2  2.0 E - 2  
36 16 0.51133 1.0 E - 2  4.7 E - 3  
55 20 0.51549 2.3 E - 3  1.0 E - 3  
78 24 0.51648 4.3 E - 4  2.2 E - 4  

Exact 0.51675 

"The degree of the highest Chebyshev polynomial in the basis set is also listed. 
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destroy the exponential convergence for N ~ oo but if four or five decimal 
place accuracy is adequate, then these corner branch points are probably 
irrelevant! This subtle but important issue is the theme of the next section. 

6. C O R N E R  S I N G U L A R I T I E S  A N D  M A P P I N G S  

When the amplitude of u(x, y) is small, the solution is proportional to 
that of the much-studied linear problem 

v,.~+v.,.,.= - I  (31) 

with homogeneous Dirichlet boundary conditions on all sides of the 
square. Birkhoff and Lynch (1984) give a comprehensive review and show 
that v(x, y) has singularities at the four corners of the domain proportional  
to 

r 2 log r (32) 

where r is the radial coordinate of a local polar coordinate system centered 
on a given corner. This is a very weak singularity in the senses that (1) 
singularities at crack or reentrant corners are much more severe, as 
reviewed in Birkhoff and Lynch (1984) and (2) second-order finite differen- 
ces still give an error that is asymptotically O(h2), where h is the grid 
spacing, as noted in both Birkhoff and Lynch (1984) and Haidvogel and 
Zang (1979). 

However, the branch points have a severe effect on higher order 
methods. Fourth-order finite differences give an error that decreases only as 
O(h 2) and Chebyshev methods give an error that decreases as O(I/v4), 
where v is the number of degrees of freedom in each coordinate (Haidvogel 
and Zang, 1979), 

Figure 4 shows that in one dimension, a singularity of the form 
( x -  1 )Xlog(x -  l) will produce spectral coefficients that decrease 
asymptotically as O(1/v ~k+ J). A log log plot like Fig. 4 is a good way to 
identify such algebraic convergence because the coefficients will approach 
asymptotically to a straight line with a slope of - j  if the coefficients 
decrease as O(1/nO. 

In two dimensions, the effect of the corner singularities is weakened. 
Although there is considerable scatter because the coefficients decay in an 
oscillatory fashion rather than monotonically, the data points for the 
solution of Poisson's equation can be tightly bounded by a line with a 
slope of - 6 ,  as noted 2 previously in Haidvogel and Zang (1979) and 
shown here in Fig. 5. 
2 In one dimension, the slope would be -5, but the fact that u(x, y) is singular only at dis- 

crete points, not the whole boundary, weakens the effects of the branch points in two dimen- 
sions. 
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Fig. 4. The logarithm of the absolute value of the Chebyshev coefficients plotted against the 
logarithm of the degree of the coefficient for three model functions, which have the form 
j(.,,-) - (l - x )  k log(1 - x) + (1 + ,.)k log(1 + x) for (top curve) k - 0, (middle curve) k = 1, and 
(bottom graph) k -  2. The curves approach asymptotically to straight lines with slopes of - 1 ,  
- 3 ,  and - 5 ,  respectively, indicating that la,,I ~ O(1/v I) for . / -  1, 3, and 5. The graphs for all 
three functions would curve downward more and more steeply on this log-log plot (instead of 
approaching asymptotically to straight lines) were it not for the branch points at x = + 1. 

The graph also shows the pseudospectral coefficients for a moderately 
nonlinear solution of Bratu's equation. The two clusters of coefficients can 
be tightly bounded from above by two curves that we will henceforth refer 
to as the "envelopes" of the Chebyshev coefficients; these are graphed in 
Fig. 6. Two things are very striking. First, the coefficients for the Bratu 
u(x, y) lie far above those for the solution of the Poisson equation [except 
for very large (m + n)] even though the forcing for the latter was chosen so 
that the two would have equally strong corner singularities. The 
implication is that structure created by the nonlinear term of Bratu's 
equation is much more important in determining the magnitude of the 
Chebyshev coefficients than are the corner singularities unless one is 
interested in extremely high accuracy. The "envelopes" in Fig. 6 do not 
intersect until both have logarithms of O(17), that is, until lail ~ O(10-8). 
Although the error of the solution of the differential equation is somewhat 
larger than the highest coefficients--recall that the coefficients decrease as 
O(v-6), but the error only as O(v 4)--it is clear that the branch points 
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Fig. 5. A plot of the logarithm of the absolute value of the spectral coefficients for the 
numerical solutions to two problems: ( �9  Bratu's equation for max lu(x, 3')1 A = 5, and ( �9 ) 
Poisson's equation. The x axis is log(m + n), where the highest degree polynomials in the basis 
function are T,,,(x) and T,,(r). The Poisson equation is u,, + = 2, where 2 is the Bratu 
eigenvalue for A = 5, so that the strength of the "corner'" singularities is the same for both 
solutions. 

may be safely ignored for this case unless one wants more than five digits of 
accuracy. 

In Boyd (1986b) a mapping is described, originally due to F. Stenger, 
which can be combined with the orthogonal rational function basis 
described in Boyd (1986c) to solve equations with exponential accuracy in 
spite of weak endpoint or corner singularities. As an experiment, we 
applied this trick to Bratu's equation, but even for small amplitude (where 
the corner singularities are of greater relative importance than for A = 5), 
we found that the results with a moderate number of basis functions 
( N =  55) were always inferior to those with no mapping at all. 

At first, this seems very puzzling, because the theory in Boyd (1986b) 
is quite rigorous: for sufficiently large ?7, the mapping will improve 
accuracy for solutions with corner singularities. The subtlety is that this 
statement is true only asymptotically. For moderate accuracy--several 
digits--the most efficient way to solve Bratu's equation using Chebyshev 
polynomials is to simply ignore the corner branch points. 
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Fig. 6. The curves ("envelopes") that bound the Chebyshev coefficients graphed in Fig. 6. 
( - - )  The envelope of the jail for the solution of Bratu's equation; ( - - )  the envelope for 
Poisson's equation. The straight-line envelope for the Poisson solution is characteristic of coef- 
ficients decaying as O(l/v6). The steep, downward turn of the solid curve is the exponential 
decay with v, which is typical of a function whose coefficients are dominated by singularities 
that are not within or on the boundaries. 

7. SUMMARY AND CONCLUSIONS 

This study has four main conclusions. First, symmetry is very impor- 
tant to numerical efficiency. Since the memory for dense matrices scales as 
O(N 2) and the CPU time for Gaussian elimination as 0(N3/3), the 
eightfold reduction in the size of the basis via symmetry reduces memory 
requirements by a factor of 64 and the execution time by about 512. It is 
striking that one of the three symmetries, the invariance under rotations by 
integral multiples of 90 ~ in the x y plane, is a two-dimensional symmetry 
that does not have a one-dimensional counterpart. 

Second, although the pseudospectral method is usually regarded as 
strictly a numerical algorithm, Sections 3 and 4 show that for Bratu's 
equation it is a powerful analytical tool as well. The approximation 

2(A) ~ 3 .2Ae  -~ (33) 

can be derived with paper and pencil in perhaps half an hour, yet it 
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predicts the maximum value of ). to within about 8.0 % and is qualitatively 
correct for all A. 

Finlayson (1972) gives many other examples that fall in this same 
analytically soluble class. The restriction is that the problem must be sim- 
ple--a  theoretician's problem like the Bratu equation rather than an 
engineer's task such as calculating the flow around an airliner. Nonetheless, 
it is still useful to see a two-dimensional nonlinear eigenvalue problem 
humbled by one-point collocation because it is from such simple examples 
that we gain both the theoretical understanding and the numerical 
experience to tackle the very difficult problems that demand a supercom- 
puter. 

This in turn justifies the tart words of Birkhoff and Lynch (1984) on 
the suitability of the Bratu problem as a test of nonlinear eigenvalue 
solvers: " [ i t ]  has been a favorite among mathematicians because of its sim- 
plicity, but it is by no means typical. Some idea of the complexity of real 
heat transport problems can be gained by skimming [the text of] Jacobs." 
Well, yes: one cannot be too proud of a program that has sucessfully "tur- 
ned the corner" at the limit point when a back-of-the-envelope 
approximation like (33) can do the same. 3 

Nonetheless, the simplicity of Bratu's equation does make it a useful 
tool for testing the correctness of a program even if this simplicity makes it 
inappropriate as a test of robustness. Table III presents the Chebyshev 
coefficients for A = 1 to provide an "exact" solution for such comparison 
purposes. 

This same simplicity also makes Bratu's problem all the more effective 
for illustrating our third theme: that corner singularities are so weak that 
they can be usually be ignored in applying spectral methods. Figures 5 and 
6 show that the Bratu coefficients a ..... for moderate m and n and moderate 
to strong nonlinearity are an order of magnitude larger than their counter- 
parts for the solution of a Poisson equation that has the same corner 
singularities but is linear. Replacing Bratu's equation by a more complex 
problem would merely increase the gap between the coefficients of the 
solution to the nonlinear equation and those of the Poisson problem. 

There is a crossover point where the exponential decrease of the Bratu 
coefficients for moderate rn and n is replaced by the slower algebraic decay 
that is the result of the branch points in the corners of the computational 
domain. For Poisson's equation, Fig. 5 shows that the corner singularities 
are important even for coefficients of low degree, and the same is true for 
Bratu's equation for small amplitude because the nonlinear solution is only 
a little different from that of the corresponding Poisson problem. For 

The author once rederived (33) for a colleague on the back of a paper napkin! 
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Table IlL The Lowest 36 Coefficients for the Solution of 
Bratu's Equation for A = l" 

l?l t1 a n m  DI n a.~  n 

2 2 l 4 2 0.0051361 
4 4 0.0039830 6 2 0.0031676 
6 4 0.0002267 6 6 0.0003099 
8 2 -0.0001424 8 4 0.0000257 
8 6 0.0000710 8 8 0.0000526 

10 2 0.0000236 10 4 -0.0000115 
10 6 0.0000130 10 8 0.0000201 
l0 10 0.0000142 12 2 -0.0000091 
12 4 0.0000052 12 6 0.0000007 
12 8 0.0000058 12 10 0.0000067 
12 12 0.0000046 14 2 -0.0000028 
14 4 -0.0000020 14 6 -0.0000005 
14 8 0.0000013 14 10 0.0000023 
14 12 0.0000020 14 14 0.0000011 
16 2 0.0000094 16 4 -0.0000086 
16 6 0.0000071 16 8 -0.0000050 
16 10 0.0000027 16 12 -0.0000008 
16 14 0.0 16 16 0.0000384 

"The eigenvalue is ). 1.6231 l, correct to all places shown; the maximum error in the sum of 
the first 36 coefficients is less than 0.00008. The corresponding basis functions are of the form 
~b22-0.25 [1 T ~ ( x ) ] [ 1 -  T2(y) ], with 

@,,,,, = [ I  - -  r , , , ( x ) ]  [ I  - -  T , , ( ) ' ) ]  + 6,, , , , [  1 - T , , ( x ) ]  [ I  - T , , , ( y ) ]  - -  p~b22(x ,  y )  

where c~,,,,, = 1 if m ~ n and 0 otherwise and where p is chosen so that the basis function 
vanishes at the origin, which demands [using (A2)] 

p = [ 1 - cos(rmz/2 ) ] [ 1 - cos(mz/2) ] ( 1 + 6,, m) 

stronger nonlinearity, however, the crossover point occurs only where the 
expansion, if truncated at that N, would be accurate to several decimal 
places. Even in the small-amplitude limit where the corner singularities 
have their largest relative importance, the pseudospectral method still gave 
answers to five significant figures with less than 80 basis functions. 

Our fourth finding is that because of all the symmetries and the 
negligible impact of the branch points of u(x, y) at the corners, it was 
possible to solve Bratu's problem to several decimal places on an IBM AT 
using a dialect of BASIC (True Basic, which is roughly 20 times slower than 
FORTRAN). Although, as noted by Birkhoff and Lynch in the quote above, 
Bratu's problem is too simple to be typical, it is reasonable to suppose that 
if simple nonlinear equations yield to BASIC on a microcomputer, a broad 
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class of more complicated equations can be tackled through the same 
Chebyshev pseudospectral/Newton-Kantorovich algorithms on a super- 
computer. 

Three problems remain for future research. First, is it possible to 
derive simple analytic approximations to the Bratu solution in the limit 
A ~ or? Figure 7 shows that as the amplitude increases, u(x, y)  becomes 
more and more sharply peaked about the origin and is radially symmetric 
except close to the boundaries. The term e" tends very rapidly to the Dirac 
cS-function in this same limit and the eigenvalue ). decreases exponentially 
fast with A. 

Second, although Gaussian elimination was quite adequate for the 
modest N used here, even on a microcomputer, multigrid methods would 
offer big savings in solving more complicated problems. Chan and Keller 
(1982) give a good description of multigrid combined with finite-difference 
methods--one subtlety is that the operator of the linearized equation (25) 
has both positive and negative eigenvalues for A > 1.39 when 2 is the 
parameter and A an unknown--but  pseudospectral-cum-multigrid for 
Bratu's equation remains a problem for the future. Brandt et al. (1985) 
review applications of spectral multigrid to simple linear problems. 

(o,1) (t,f) 

(o,o) (1,o) 

Fig. 7. u(x, 3,) in the upper right quadrant, [0, 1] x [0, 1], for u(0, 0) = 20. Contours are 
plotted at unit intervals. 
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The third issue is: how can pseudospectral methods be extended to 
deal with stronger singularities such as the r 2/3 branch point of the L- 
shaped membrane or the r ~/2 singularity of the slit square (Birkhoff and 
Lynch, 1984)? Would the mapping of Boyd (1986b) be useful here? 

Nonetheless, in spite of these important problems, we have made 
progress. The small- and moderate-amplitude analytical approximations 
have increased our understanding of Bratu's equation; the comparison 
between the Bratu solution and that of the corresponding Poisson equation 
has increased our understanding of Chebyshev methods and solutions with 
weak singularities. 

APPENDIX. P R O G R A M M I N G  NOTES 

One complication in two-dimensional calculations is that the basis 
functions and interpolation points, which are tensor products of their one- 
dimensional counterparts, are most naturally described by two indices. To 
use standard linear algebra software, however, each pair of indices (m, n), 
where m = 1 ..... v and n = 1 ..... m, must be condensed into a single index 
i(m, n), where i=  1 ..... N. The most convenient way to do this is through a 
preprocessing step that is a double DO or FOR loop in rn and n. Whenever 
the pair of numbers (m, n) passes the appropriate symmetry test (n ~< m in 
this case, although much more complicated conditions are possible in other 
problems), the "condensed index" i is incremented by 1 and the pair (m, n) 
is stored in arrays: 

i ~ i + l ,  i=l , . . . ,N  

ma(i+ l )=m,  na(i+ l ) = n  (A1) 

Whenever one needs to evaluate a basis function, the indices m and n for 
the ith basis function are retrieved from the N-element arrays ma(i) and 
ha(i). The interpolation points are similarly stored as arrays xa(i) and 
ya(i). 

The second programming issue is that of evaluating the Chebyshev 
polynomials and the basis functions. The traditional method, described in 
Gottlieb and Orszag (1977), is to evaluate the Chebyshev polynomials by a 
three-term recurrence, which costs O(1) operations per polynomial per grid 
point if all the polynomials at a given grid point are evaluated at once. 
Similar recurrences (Boyd, 1978) can be evaluated to compute the 
derivatives. 

Here, the programs employed an alternative based on the identity 

T,,(x)~cos(nt) (A2) 
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where 

t = arccos(x) (A3) 

The needed derivatives with respect to x are simply linear combinat ions  of 
the derivatives of cos(nt) with respect to t. For  example, 

d2T,,/dx 2 = [(sin t)( - n  2 cos nt) - (cos t ) ( - n  sin n t ) ] / s in  3 t (A4) 

Since the tr igonometric  functions and their inverses are built into most  
compi le r s - -and  computed  in hardware even on machines as humble as the 
IBM PC- - th i s  alternative is accurate and efficient. 

Running time is decreased by storing the values of the basis functions 
and their derivatives at the grid points as two-dimensional  arrays. Unfor-  
tunately, this limits the size of the largest basis set that  will fit in memory,  
so the program was rewritten to recompute  the basis functions on demand. 
All N functions are evaluated in a single subroutine for a given x and y. 
Nonetheless, even with careful optimization, the cost of recomputing the 
basis functions was as expensive as the U L  factorization until N >  100. This 
is true in spite of the fact that basis function evaluations are O ( N  ~-) and the 
UL factorization is O ( N 3 / 3 ) - - a  much larger cost in the limit N ~ oo. 

The empirical result that  forming the matrix equat ion (28) was as 
expensive as solving it for moderate  N reiterates the theme of Section 6: 
asymptot ic  estimates must be taken with a grain of salt because often N 
must be enormous  before these estimates are even qualitatively correct. The 
corner singularities dominate  the asymptot ic  magni tude of the Chebyshev 
coefficients and yet are irrelevant if N is small enough to give a +'mere" five 
digits of accuracy. Similarly, whether the basis functions are evaluated once 
or many times is asymptotical ly unimportant ,  but for practical values of N, 
storing the basis function values will drastically reduce C P U  time. 

A C K N O W L E D G M E N T  

This work was supported by the Nat ional  Science Founda t ion  under 
grants OCE8305648 and OCE8509923. 

R E F E R E N C E S  

Abbott, J. P. (1978). An efficient algorithm for the determination of certain bifurcation points, 
J. Comp. Appl. Math. 4, 19. 

Bank, R. E., and Chart, T. F. (1986). PLTMGC: A multi-grid continuation program for 
parameterized nonlinear elliptic systems, SlAM J. Sei. Stal. Comp. 7, 540 559. 

Birkhoff, G., and Lynch, R. E. (1984). Numerical Solutions of Elliptic" Problems, Soc. Ind. and 
Appl. Math., Philadelphia, pp. 43-44, 73-74, 249 250. 



206 Boyd 

Boy& J. P. (1978). Spectral and pseudospectral methods for eigenvalue and nonseparable 
boundary value problems, Mon. Wea. Rev. 106, 1192-1203. 

Boyd, J. P. (1986a). Solitons from sine waves: Analytical and numerical methods for non- 
integrable solitary and sinoidal waves, Physica 21D, 227-246. 

Boyd, J. P. (1986b). Polynomial series versus sinc expansions for functions with corner or 
endpoint singularities, J. Comp. Phys. 64, 266~269. 

Boyd, J. P. (1986c). Spectral methods using rational basis functions on an infinite interval, 
J. Comp. Phys., in press. 

Brandt, A., Fulton, S. R., and Taylor, G. D. (1985). J. Comp. Phys. 58, 96-112. 
Chan, T. F., and Keller, H. B. (1982). Arc-length continuation and multigrid techniques for 

nonlinear elliptic eigenvalue problems, SlAM J. Sci. Slat. Comp. 3, 173 194. 
Cotton, F. A. (1963). Chemical Applications qf Group Theory, Wiley, New York, p. 84. 
Finlayson, B. A. (1972). The Method of Weighted ResiduaLs" and Variational Principles, 

Academic Press, New York, pp. 97-106. 
Gottlieb, D., and Orszag, S. A. (1977). Numerical Analysis q/ Speclral Melhods. Theory and 

Applications, Soc. Ind. and Appl. Math., PhiladeIphia, pp. 1-24. 
Haidvogel, D. B., and Zang, T. (1979). The efficient solution of Poisson's equation in two 

dimensions via Chebyshev approximation, J. Comp. Phys. 30, 167 180. 
Merzbacher, E. (1970). Quantum Mechanics, Wiley, New York, p. 438. 

Printed in Belgium 


