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Exponentially Convergent Fourier-Chebshev 
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The Clenshaw Curtis method for numerical integration is extended to semi- 
infinite ([_0, 30] and infinite [-0% oc] intervals. The common framework for 
both these extensions and for integration on a finite interval is to (1) map the 
integration domain to tc[0, z], (2) compute a Fourier sine or cosine 
approximation to the transformd integrand via interpolation, and (3) integrate 
the approximation. The interpolation is most easily performed via the sine or 
cosine cardinal functions, which are discussed in the appendix. The algorithm is 
mathematically equivalent to expanding the integrand in (mapped or unmap- 
ped) Chebyshev polynomials as done by Clenshaw and Curtis, but the 
trigonometric approach simplifies the mechanics. Like Gaussian quadrature, the 
error for the change-of-coordinates Fourier method decreases exponentially with 
N, the number of grid points, but the generalized Curtis-Clenshaw algorithm is 
much easier to program than Gaussian quadrature because the abscissas and 
weights are given by simple, explicit formulas. 

KEY WORDS: Quadrature; rational Chebyshev functions; adaptive 
quadrature; numerical integration. 

1. I N T R O D U C T I O N  

Clenshaw and Curtis  (1960) in t roduced a simple method for evaluat ing 

integrals: expand the in tegrand f ( x )  as a series of Chebyshev polynomials  

and then integrate the series term by term. Because the Chebyshev 
approx imat ion  converges exponential ly fast with the number  of terms, N, 
retained in the t runcat ion,  it follows that  the accuracy of the 
Clenshaw-Cur t i s  quadra ture  increases exponent ial ly  with N, too. This rate 
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of convergence is the same as that of Gaussian quadrature, but the 
accuracy is not quite as good: the Chebyshev method is exact when the 
integrand is a polynomial of degree N whereas the N-point Gaussian 
algorithm is exact for polynomials of degree 2N. However, the quadrature 
weights and abcissas for the Chebyshev procedure are given by simple 
analytic formulas, whereas those for Gaussian quadrature must be stored 
in large tables, so the Chebyshev method is significantly easier to program, 
especially for large N. 

The great strength of the Clenshaw Curtis algorithm, however, is its 
suitability for adaptive quadrature. The authors note when N is increased 
in Gaussian integration, it is necessary to recompute the integrand at each 
of the new abcissas. However, if the Chebyshev "trapezoidal rule" grid is 
employed, then whenever N is doubled, half of the new grid points are 
identical with the old and all the previous function evaluations can be 
reused. In this context of N-doubling adaptation, the expand-in- 
Chebyshev-and-integrate method is clearly superior to Gaussian 
integration. 

In this note, the Chebyshev integration method is extended from finite 
intervals to semi-infinite and infinite intervals. Because the mechanics of 
N-doubling adaption is adequately described in Clenshaw and Curtis 
(1960), we shall discuss only how to evaluate the integrals for fixed N, but 
we shall review integration on x ~ [ -  1, 1 ] in order to discuss all the cases 
from a unified viewpoint. 

The key idea in extending the Clenshaw-Curtis method to unbounded 
intervals is that of mapping: by making a change-of-coordinate, an infinite 
or semi-infinite interval may always be mapped into a finite one. However, 
we differ from Clenshaw and Curtis by mapping the integration onto the 
interval [0, ~] and expanding the integrand as a Fourier series instead of 
approximating the integrand as a Chebyshev series on [ - 1 ,  1 ]. Because 
this transformation-to-a-Fourier problem has some advantages (explained 
below) even for integrals on a finite interval--Clenshaw-Curtis's original 
problem--we will discuss three separate integration ranges: (1) [ - 1 ,  1], 
(2) [0, oo ], and (3) [ - o %  oo]. Other intervals of integration can always 
be mapped into one of these three cases through a simple linear change of 
variable. 

Section 2 offers an abstract overview of the method before the specific 
formulas for each of the three intervals is explained in Section 3. Since the 
convergence of these methods is intimately related to that of the underlying 
series, which in turn is discussed in Gottlieb and Orszag (1977), Voigt et  al. 

(1985), and (for the unbounded intervals) Boyd (1987a, b), we shall leave 
the justification of these mappings to these earlier works. However, Sec- 
tion 4 does offer some brief illustrations of how these previously derived 
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concepts apply to numerical integration. The final section is a summary. 
Previously unpublished formulas on the sine and cosine "cardinal" 
functions for trigonometric interpolation are collected in the Appendix. 

2. AN OVERVIEW OF I N T E G R A T I O N  BY M A P P I N G  
A N D  E X P A N S I O N  

The evaluation of the integral 

f 
og 

I = - Q(y)  dy (2.1) 

has three main steps. The first is to change variables to the trigonometric 
coordinate, t ~ [0, ~z], via 

y - f ( t )  (2.2) 

where f ( t )  is the mapping function. The integral becomes 

I = - Q ( f [ t ] ) f ' ( t )  dt (2.3) 

where f ' ( t )  =- df/dt. 
The second step is to expand the integrand as a truncated Fourier 

series via trigonometric interpolation: 

N N 

q ( t ) - Q ( f [ t ] ) f ' ( t ) = a o +  ~ ancos(nt)+ ~ bnsin(nt) (2.4) 

Since the goal is numerical integration, this series form is not very useful; it 
is more convenient to combine the trigonometric basis functions into new 
functions Cj(t) that are equal to 1 at the j th  interpolation point and vanish 
at all the others, than is, 

1, i = j  
C/(ti) = o, i # j  (2.5) 

where the ti are the interpolation points. 
There is no generally accepted name for the C]s; by analogy with the 

Whittaker cardinal functions (Stenger, 1981), which in fact closely resemble 
the Cj(t), we shall refer to the functions defined by (2.5) as the 
"trigonometric cardinal functions." 

The three changes-of-coordinate discussed in the next section give q(t) 
which can be expanded as either a sine series {all an = 0; finite and semi- 
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finite intervals} or a cosine series {bn=0 for all n}. The sine and cosine 
cardinal functions are given in the Appendix. 

Because of (2.5), the approximation to q(t) becomes simply 

N 

q(t) - ~ q(tj) C:(t) (2.6) 
j = l  

The third and final step is to integrate q(t) by integrating each of the 
cardinal functions. We obtain 

N 

I= ~ wjQ(yj) (2.7) 
j = l  

where the quadrature abscissas are the images of the evenly spaced 
trigonometric grid under the mapping 

yj= f(tj), j= 1,..., N (2.8) 

and where the quadrature weights are defined by 

wj-f ' ( t j )  f f  Cj(t)dt (2.9) 

In the next section, we discuss the implementation of tis common 
framework for each of the three classes of intervals. 

3. QUADRATURE MECHANICS 

Although there is more than one type of grid that gives exponential 
accuracy in trigonometric interpolation, we shall use the "trapezoidal rule" 
grid, which is defined by splitting the interval t e [0, ~] into subintervals of 
length 1IN and then placing the grid points at the boundaries of each sub- 
interval. The reasons for this choice are that (1) the "trapezoidal" grid 
allows evaluations of the integrand to be reused when N is doubled and (2) 
the grid points at t = 0 and ~ can usually be omitted since at those points 
q(t) is always 0 in sine interpolation, and often 0 in cosine interpolation. 

The cosine mapping used for the finite interval is simply the transfor- 
mation that takes the Chebyshev polynomials in y into the cosine functions 
in t via the identity Tn(y)=cos(nt). Thus, our quadrature formula on 
[ - 1 ,  1] is identical with that of Clenshaw and Curtis (1960) even though 
the derivation is quite different. 
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The mappings for the semi-infinite and infinite intervals are justified at 
length in Boyd (1986a, b), so without further ado the quadrature formulas 
are the following: 

(1) y e [ - 1 , 1 ] :  

y =cos( t )  (3.1a) 

;~ fo I1 =- Q(y) dy = Q(cos(t)) sin(t) dt (3.1b) 
--1 

N 

~ w,Q(cos(t,)) (3.1c) 
i - - 1  

t , ~ T r i / ( N + l ) ,  i = 1 , 2  ..... U (3.1d) 

N 

w,=-sin(t~)[2/(N+ 1)J ~ sin(j t , )[1-cos(j~)]/ j  (3.1e) 
j - I  

(2) ym [0, oo]: 

y = L cot2(t/2) (L is a user-chosen constant) (3.2a) 

'~---fo Qi" ~-- fo Q~cot~(,/~, 2~ s~t/l ~/el-cost~ll~ t3.~b/ 
N 

~ wiQ(L cot2(t/2)) (3.2c) 
i = 1  

t i -z~i / (N+l) ,  i = 1  ..... N (3.2d) 

N 

w i = {2L sin(t,)/[1 - cos(ti)] 2 } [ 2 / ( N +  1)] ~ sin(jti)[1 - cos(j~)]/j 
j = l  

(3) 
(3.2e) 

y ~ [ - ~ , ~ ] :  

y = L cot(t) (L is a user-chosen constant) (3.3a) 

;~ fo ~ I 3 ~ Q(y) dy -- Q(L cot( t))L dt/sin2(t) (3.3b) 
- - o o  

N + I  

~ ~ wiQ(L cot(ti)) (3.3c) 
i = 0  

t, = irc/(N + 1), (3.3d) 

~L~/[sin2(t,)(N + 1) 1, 
w, = (Lrr/[sin2(ti)(2N + 2),1 (3.3e) 

i = 0 ,  1,..., N +  1 

0 < i < ( N + I )  

i = 0  and i = N + l  
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The map constant L for the unbounded intervals is O(1) and may be 
optimized through trial and error or by applying the analytic estimates of 
Boyd (1982). The role of the map parameter is thoroughly discussed in 
Boyd (1986a, b). 

As explained in these earlier works,each of these mappings normally 
transforms Q(y) into a Fourier cosine series in t. [Certain exceptional cases 
are discussed in Boyd (1986a, b).] However, the change-of-integration 
factor, f '(t), introduces a subtlety. 

For case (3), y ~ [ -  0% oo ], this factor is 1/sin2(t), which is symmetric 
about t = 0. It follows that q(t) for the infinite interval can be expanded as 
an exponentially convergent Fourier cosine series. The formulas for cosine 
interpolation then give (3.3e), which shows that the usual trapezoidal 
rule--only accurate to O(1/N 2) for general functions--has an error that 
decreases exponentially fast with N when the integrand q(t) is obtained by 
change-of-coordinate in an infinite integral. 

For the other two cases, however, f ' ( t)  is antisymmetric about t = 0. 
This implies that q(t) must be expanded as a Fourier sine series even 
though Q(y(t)) is a cosine series. The result is that we must use the more 
complicated weights shown in (3.1e) and (3.2e), which follow from 
integrating the sine cardinal functions. The trapezoidal rule is only accurate 
to O(1/N 2) for these two cases, but we can achieve exponential accuracy 
for the same grid points merely by changing the weight functions wi. 

One other subtlety is that for the unbounded intervals, Q(y) must 
decrease sufficiently fast as y ~ m so that q(t) is bounded at t = 0  and 
t = z. [The integral may still be well defined even if q(t) is unbounded at 
these end points, but the accuracy will not decrease exponentially with N. ] 
This is more restrictive than the conditions for Q(y) to be expandable in 
terms of the (mapped) Fourier cosine functions (Boyd, 1986a, b). Thus, 
tanh(y) is approximated by the first 20 odd cosines to within a maximum 
absolute error of 10 -8 on y~  [ - 0 %  oo] with the map (3.3a) with L = 2 ,  
but the corresponding quadrature scheme fails because q(t) is singular as 
lit 2 as t-~ 0. We can sum up this requirement as the following: 

Theorem. A necessary (but not sufficient) condition for the mapped 
Fourier quadrature scheme to converge exponentially fast with N, the 
number of grid points is that 

(a) 

(b) 

Proof 
t =TZ. 

Q( y ) decreases as O( y 3 / 2 ) a s y ~ o o ;  ye [O,  oo] (3.4a) 

Q( y ) decrease as O( y -  2) as ly[--, oo; y e  [--o% oo] (3.4b) 

Taylor expansion of q(t) [ -  Q(f(t)) f ' ( t ) ]  about t = 0 and 
[] 
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The final comment  on the mechanics of  quadra ture  is that  the for- 
mulas for integration on [ - 0 %  oc ] have been written in terms of N +  2 
points because one usually omits the end points at t = 0 and t = ~. The sole 
exception is when Q(y) decreases as 1/y 2 precisely: if Q(y) decays more  
rapidly, then these points do not  contr ibute to the integral, and if Q(y) 
decays more  slowly, the integral in t is unbounded  at the endpoints. 

4. N U M E R I C A L  EXAMPLES:  I L L U S T R A T I O N S  O F  
A S Y M P T O T I C  B E H A V I O R  

The theory of Boyd (1982) shows that the asymptot ic  Fourier  coef- 
ficients of a function q(t) which is derived via a change of coordinates from 
a function Q(y) on an infinite or  semi-infinite interval is the sum of two 
distinct types of terms: (1) residues from poles of Q(y) and similar branch 
point  contr ibut ions and (2) steepest descent terms that depend on how 
rapidly the function decays as y ~ oe. Figures 1 and 2 show the decay of 
error for the integrals of two simple functions on [ - o e ,  oo] which each 
have only one type of term. The function 

Q(y) = 1/(1 + y2) (4.1) 
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Fig. 1. Base-10 logarithm of the absolute vaiue of the absolute error versus N, the number of 
grid points, for the Fourier quadrature of Q(y) = 1/(1 + y2) on ye [ - ~ ,  oe]. 
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Fig. 2. 
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Base-10 logarithm of the absolute value of the absolute error versus N, the number of 
grid points, for the Fourier quadrature of Q(y)= exp(-y2)  on y e [ -  oe, oe]. 

decays algebraically rather than exponentially with y, so its asymptotic 
Fourier coefficients are determined by the residues of the poles at y = +i. 
As explained in Boyd (1986a), this implies that the quadrature error will 
decrease geometrically with N, that is, 

log lEave ~ - N d ,  N ~  oo (4.2) 

On the log-linear plot in Fig. 1, the predicted error decay is a straight line 
exactly as observed. Because the singularities are on the imaginary axis, the 
decay is monotonic, but the error would be modulated by an oscillatory 
phase if the singularities were elsewhere. 

The function 

Q(y)  = e x p ( - y 2 )  (4.3) 

in contrast, has no singularities; its asymptotic behavior is controlled by a 
steepest descent term, which in turn is dictated by the exponential decay as 
l Yl --' oo for real y. (Equivalently, the steepest descent terms are associated 
with the essential singularities at t = 0, ~, the images of y - -  +oo under the 
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change of coordinate.) The error decreases s u b g e o m e t r i c a l l y  in the sense 
that r < 1 in the asymptotic estimate 

log IENI ~ - d ' N  r + log[cos(d"N r + ~b] (4.4) 

where d', d", ~b, and r are all constants (r = 2/3 for the Gaussian). Figure 2 
illustrates both the oscillations induced by the cosine term in (4.4) and the 
gradual decrease in the (mean) slope as N increases. 

When the asymptotic Fourier coefficients contain both types of terms, 
the steepest descent contribution must always dominate for sufficiently 
large N and the asymptotic convergence is subgeometric. Figure 3 shows, 
however, that for 

f ( y )  = sech(y) (4.5) 

the convergence is geometric--a straight line--for N~< 16 because the 
Fourier coefficients for small N are dominated by the poles of sech(y) at 
y = +_i=/2. Only if one is interested in more than four decimal places of 
accuracy is it necessary to go to larger N where the coefficients are com- 
inated by the more slowly decreasing steepest descent (end-point) terms. 
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Fig. 3. Base-10 logarithm of the absolute value of the absolute error versus N, the number  of 
grid points, for the Fourier quadrature of Q ( y ) =  sech(y). Solid curve: the actual quadrature 
error. Dashed line: schematic of the contribution of the poles at y = ++_ire~2. Dotted curve: 
schematic of the contribution from the end points (steepest descent term). 
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Because of this competition between these two classes of terms that 
sum to give the asymptotic Fourier coefficients, it is difficult to apply the 
rules of Boyd (1982) to all situations. Experimentation will probably be 
needed both to optimize the map parameter L and estimate the error. The 
consolations are that (1) accuracy is rather insensitive to L and (2) the 
exponential convergence with N makes it easy to integrate to many decimal 
places--and be sure of high precision--even with a poor choice of L and a 
relatively small number of grid points. 

5. SUMMARY 

In this article, we have extended the Clenshaw-Curtis quadrature 
scheme to semi-infinite and infinite intervals. Although the method is not 
quite as accurate as Gaussian quadrature for a given number of grid 
points, it does offer two important advantages. First, the change-of-coor- 
dinate Fourier method has simple, explicit abscissas and weights. In 
contrast, the Gaussian quadrature abscissas are the irrational roots of 
polynomials, and must be stored in tables or recalculated by root-solving 
for each choice of N. Second, the Clenshaw-Curtis procedure is more 
efficient for adaptive quadrature because previous evaluations of the 
integrand Q(y) can be reused when N is doubled. 

Like Gaussian quadrature, the Fourier method has a accuracy that 
increases exponentially fast with the number of grid points. Because of this 
and because it is so simple to program, the change-of-coordinate Fourier 
algorithm is a good integration method for both bounded and unbounded 
intervals. 
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APPENDIX: CARDINAL FUNCTIONS FOR SINE AND 
COSINE INTERPOLATION 

The review by Gottlieb, Hussaini, and Orszag in Voigt et al. (1984) 
lists the cardinal functions for general trigonometric interpolation, but the 
cardinal functions for sine interpolation (of functions antisymmetric about 
t = 0) and cosine interpolation [q(t) symmetric about the origin] do not 
seem to be readily accessible. These specialized cardinal functions can be 
derived from the general trigonometric cardinal functions by combining the 
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later in pairs: the symmet ry  of q(t) for cosine interpolat ion implies that  the 
coefficients of  the general cardinal  functions Cj(x) and C j(x) are identical, 
for example.  Th rough  e lementary  algebra and t r igonometr ic  identities we 
find 

C 7 ~  = ( - -  1 ) j + l  sin(t) s i n ( [ N  + 1) t ) /{c j (N + 1)I-cos(t) - cos( t j ) ]  } 
IN+  1 

= { 2 / [ ( N  + 1  )cj]} ~_0 cos (mt j )cos  (mt)/Cmj (A.1) 

c~in(t) = ( - -1)  j + l  sin(tj) s i n [ ( N  + 1) t ] /{  (N + 1)[cos( t )  - cos(t j )]  } 

N 
= ( 2 / I N +  1]) ~ sin(mtj) sin(rot) (A.2) 

m=l 

where the grid points  are 

ti = lri/(N + 1 ), i =  0,..., N +  1 (cosine in terpolat ion)  
(A.3) 

i =  1 ..... N (sine interpolat ion)  

f 2  if j = 0  or j = N + I  
c J = ~ l  if 0 < j < ( N + I )  

(A.4) 

Two forms are given for each cardinal  function because the first 
expression makes  it easy to verify that  Cj(ti) = 0 if ira j and C~(tj) = 1 while 
the second version shows that  each cardinal  function is a linear com- 
binat ion of the original sine or cosine basis functions. 
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