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Chebyshev Pseudospeetral Method of 
Viscous Flows with Corner Singularities 
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Chebyshev pseudospectral solutions of the biharmonic equation governing two- 
dimensional Stokes flow within a driven cavity converge poorly in the presence 
of corner singularities. Subtracting the strongest corner singularity greatly 
improves the rate of convergence. Compared to the usual stream function/ 
vorticity formulation, the single fourth-order equation for stream function used 
here has half the number of coefficients for equivalent spatial resolution and uses 
a simpler treatmer/t of the boundary conditions. We extend these techniques to 
small and moderate Reynolds numbers. 

KEY WORDS: Corner singularities; pseudospectral methods; Navier Stokes 
equations. 

1. I N T R O D U C T I O N  

The numerical  study of flow singularities is very impor tant  since they typi- 
cally increase computa t ional  errors. Singularities usually develop where the 
boundary  contour  is not  smooth,  such as at corners. A typical example is 
the viscous flow driven by the tangential mot ion  of  the top boundary  in a 
rectangular cavity (Fig. 1). The upper  corners where the moving boundary  
meets the s tat ionary boundaries  are singular points of  the flow where the 
vorticity becomes unbounded  and the horizontal  velocity is multivalued. 
The lower corners are also singular points, but  are weaker in the sense that  
one more  derivative is required to make a flow unbounded.  

The presence of singularities poses a particular problem for spectral 
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Fig. 1. Problem schematic. 

methods. These methods converge exponentially if a solution is infinitely 
differentiable (Gottlieb and Orszag, 1977), but singularities destroy the 
exponential convergence of the spectral coefficients. The errors caused by 
the singularity are typically spread over the entire solution domain in the 
form of Gibb's oscillations. As a result, most previous studies using spectral 
calculations avoid problems that have corner singularities. Instead they 
usually examine problems that have periodic boundary conditions in all 
but perhaps one direction--Fourier representations are used in the periodic 
directions and Chebyshev or Legendre polynomials in the other direction. 
For the Poisson equation with weak corner singularities, however, the 
double-Chebyshev spectral solutions (Haidvogel and Zang, 1979; Boyd, 
1986) are still shown to be superior to the fourth-order finite difference 
method. The Chebyshev coefficients (amn) decay algebraically as (m +//)-6. 
The maximum pointwise error decreases more slowly as O(N 4) where N 
is the upper limit on the degree of the Chebyshev terms as expected for a 
two-dimensional series. 

In this paper we present a modified pseudospectral method that sub- 
tracts the strongest (inhomogeneous) singularities from the streamfunction. 
The sum of Chebyshev polynomials then represents a function that is only 
weakly singular. 

We test our approach on the driven cavity problem, which has been 
extensively studied using different numerical methods (Burggraf, 1966; Pan 
and Acrivos, 1976; Gupta, 1981; Ghia, Ghia, and Shin, 1982; Kelmanson, 



Chebyshev PseudospectraIMethod 3 

1983; Schreiber and Keller, 1983; Quartapelle and Naploitano, 1984; Ku 
and Hatziavramidis, 1985; Gustafson and Leben, 1986). The standard way 
to accommodate corner singularities in these nonspectral computational 
techniques is to use local mesh refinement. 

The two common methods of solving two-dimensional viscous flow 
problems use the stream function/vorticity or primitive variable formula- 
tions. A major difficulty posed by the stream function/vorticity formulation 
of the Navier-Stokes equation is the complexity of the vorticity boundary 
conditions. The primitive variable formulation, on the other hand, requires 
the pressure to be determined from a Poisson equation by taking the 
divergence of the momentum equation with an incompressibility constraint. 
The biharmonic equation for the stream function avoids the above dif- 
ficulties (Schreiber and Keller, 1983) and also has the advantage of fewer 
unknowns--one-third the number of the primitive variable formulation 
and one-half that of the stream function/vorticity formulation for equiva- 
lent resolution. 

We begin this paper by presenting a modified pseudospectral method 
for the biharmonic equation for Stokes flow (zero Reynolds number), since 
the flow sufficiently close to a sharp corner is dominated by viscous terms. 
We then compute nonlinear flows in Section 4 to demonstrate that the 
modified method is also effective for small and moderate Reynolds number. 

2. FORMULATION 

In the absence of inertia, the steady-state flow of a viscous incom- 
pressible fluid in a rectangular cavity is governed by the Stokes equation. 
After scaling length and velocity by the half-depth and wall velocity, 
respectively, the governing equation and boundary conditions become 

V4~] =0  (2.1a) 

~b = q)x=0 o n x =  _+A (2.1b) 

= ~ y = 0  on y =  - 1  (2.1c) 

and 

~p=~by+ 1 = 0  o n y = l  2.1d) 

where ~ is the dimensionless stream function. Equation (2.1d) implies that 
the upper boundary moves at unit velocity, while the other walls remain 
stationary. The only dimensionless parameter for this problem is the aspect 
ratio, A, which we choose to be unity for this study. 
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The analytical solutions for Stokes flow near singular corners have 
been obtained by Moffatt (1964). The singular solution Os(r l, 01), given in 
polar coordinates centered at the upper corners (see Fig. 1), is 

Os=rlf~(01)+ ~ bir~'+lfi(Oi) (2.2) 

The first term has the most important effect near the upper corners and is 
completely determined by the inhomogeneous boundary term in Eq. (2.1d). 
The other terms in the sum are less singular homogeneous terms with 
constants that must be determined globally. The singularities at the bottom 
corners are similar in form to Eq. (2.2) except that the inhomogeneous 
term is absent. 

To obtain excellent convergence properties for this problem, it is suf- 
ficient to account for the most singular term; hence, we will almost 
exclusively discuss results when only the most singular term is considered. 
If Os includes the other terms, the coefficients of the homogeneous singular 
functions (bi) must be included along with the spectral coefficients in the 
algebraic system. The general form of the functions fi(01) is 

fl(O1)=AlcosOl+BisinOl+ClOlcosOl+DiOlsin01 (2.3a) 

fi(01) = A; cos(2s + 1) 01 + B, sin(2s + 1) 01 

+ Ce cos(2i-  1 ) 01 + Di s in(2i-  1) 01 (2.3b) 

Here, 2i are the complex eigenvalues in the first quadrant of the charac- 
teristic equation 

2~ sin c~ _+ sin()~c~) = 0 (2.3c) 

where c~ is the inner angle of the corner, in this case ~r/2. Constants A~, B~, 
Ci, and D~ are determined by the boundary conditions. These constants are 
complex except for i =  1. The boundary conditions (2.1b) and 2.1d) on 
x = -1 ,  y = 1 can be rewritten as 

and 

= Ox = 0 on 01 = n/2, (2.4a) 

~ = 0 ,  I~y+ 1 = 0  o n 0 1 = 0  (2.4b) 

Using Eq. (2.2) and boundary conditions (2.4), we can write the form of 
the strongest corner singularity at both upper corners as 

Os=rl[Ox(cosOl--2sinO1)--(2)2sinOll/(~---4--1) (2.5) 
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Using the additional inhomogeneous and homogeneous singular basis 
functions of (2.2), we define an auxiliary stream function by 

~1 = ~/a -I- ips,  ( 2 . 6 )  

where Os = O sl for this example (the homogeneous singular functions are 
ignored) and Oa is the stream function after the most singular behavior is 
subtracted throughout the entire solution domain. The unknown function 
Oa(x, y) is expanded as a truncated double Chebyshev series so that 
~O(x, y) is approximated as 

N M 

~= ~ ~ amnTn(x ) Tm(y)+Os (2.7) 
n = 0  m = 0  

Since (2.7) does not satisfy the boundary conditions, these must be 
imposed using the tau method. Lanczos (1964) presents a simple formula 
to determine the number of internal collocation points, PQ, in the x and 
y directions, respectively: 

P=N+ 1-v  (2.8a) 

Q = M + 1 - v (2.8b) 

where v is the number of boundary conditions in each direction (two for 
second-order elliptic partial differential equations and four for fourth- 
order). The truncation shown in (2.7) has (N+ 1)(M+ 1) total degrees of 
freedom, so formulas (2.8) result in a deterministic system that is easily 
solved for all orders of one-dimensional differential equations and for two- 
dimensional, second-order differential problems. The differential equation is 
applied on the internal collocation points and the boundary conditions are 
applied on the exterior points. For the two-dimensional, fourth-order dif- 
ferential equation, these formulas lead to an underdetermined system when 
a rectangular array of P by Q collocation points is used. Our attempts to 
make a determinate system using nonrectangular collocation arrays (i.e., 
adding more collocation points on the boundary) led to singular matrices. 
This is probably one reason why previous researchers have used the stream 
function/vorticity formulation. [Another possible method with the stream 
function formulation uses basis functions that satisfy the boundary condi- 
tions so that the tau boundary constraints are unnecessary. Although a rec- 
tangular array of collocation points leads to a determined system for this 
method, there are several algebraic complications (Zebib, 1984), especially 
for inhomogeneous boundary conditions.] In this paper we increase P and 
Q (usually by 1) resulting in a slightly overdetermined system, which must 
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be solved in a least-squares sense. The internal collocation points are 
chosen to be the roots of the Chebyshev polynomial 

x i = - c o s  i = 1 ..... P = N -  2 (2.9a) 

and 

y j = - c o s  ~ j = l  ..... Q = M - 2  (2.9b) 

Recognizing that V4O, = 0, we write the partial differential equation 
(2.1a) as 

~=o m=o am,, ~x 4 Tn(xi) Tm(Yj) + 2 ~x 2 T,,(xi) +--5 Tm(Yj) 

] + T,,(xi) dy--- ~ Tm(yj) = 0 (2.10) 

The boundary conditions (2.1b)-(2.1d) are complicated by contributions of 
the singular stream function and its normal derivative: 

N M 

2 2 amn(+l)nTm(YJ)'+'l~s(+l, yj) =0 ( 2 . 1  l a )  
n = 0  m = 0  

N M 

E ~ amnTn(Xi)('-}-l)m+l/Is(Xi, + 1 ) = 0  ( 2 . 1 1 b )  

n - 0  m = 0  

U M d 
~ am~n2(+l)  n• T m ( y j ) + ~ x 0 , ( _ + l ,  y j ) = 0  (2.11c) 

n = 0  m = 0  

:v M d 
F~ ~ am~rn(xi)m2+~y~',(x~,l)+ 1=o (2.11d) 

n = 0  m = 0  

and 

N M 

2 2 amn Tn(xi) m2( - -  1) m +1 + d 0s(xi, _ 1 ) 
n = 0  m = 0  dy 

= 0  (2.11e) 

where i =  1 ..... P, and j = 1,..., Q. 
We usually exclude the normal derivative boundary conditions 

(2.11c)-(2.11e) at the four corners because of discontinuities in the normal 
directions. However, when we apply the additional boundary constraints 
that require both normal derivative boundary conditions to be zero at the 
corner, we have obtained a modest improvement in results. 
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Boyd (1989) introduces an effective method to evaluate the derivatives 
of the trigonometric functions using the transformation x = cos(t), which 
converts the Chebyshev series into a Fourier cosine series: 

Tn(x) = cos(nt) (2.12) 

We have found that the derivatives computed this way are less susceptible 
to round-off errors than the more usual recurrence formulas. The 
derivatives of the Chebyshev polynomials are listed in the Appendix. The 
resulting overdetermined matrix problem is solved using a routine based on 
Householders' transformation (Golub, 1965). The cost is O(U2V) opera- 
tions, where U is the number of unknowns and V is the number of equations. 
We have also tried a least-squares conjugate gradient iterative technique 
(Fletcher and Reeves, 1964), which solves the problem in O(UVI) operations, 
where I is the number of iterations. This method needed many iterations, 
however. Presumably, preconditioning would accelerate the convergence, 
although we did not experiment with preconditioning. 

3. NUMERICAL RESULTS 

Table I summarizes calculations for the stream function at various 
truncations after subtracting the strongest singularity. The Stokes flow 
solution for a driven cavity is symmetric with respect to the x-axis. There- 

Table I. Stream Function Comparison 

r 

M y x = 0  x=0.25  x=0 .5  x=0.75 

5 0.03346 0.02886 0.01739 0.005303 
7 0.03332 0.02868 0.01715 0.005126 
9 --0.5 0.03348 0.02890 0.01740 0.005215 

11 0.03348 0.02890 0.01740 0.005214 
Kelmanson 0.0336 0.0290 0.0174 0.0052 

5 0.1177 0.1037 0.06640 0.02202 
7 0.1177 0.1037 0.06641 0.02215 
9 0.0 0.1179 0.t039 0.06663 0.02224 

11 0.1179 0.1039 0.06664 0.02225 
Kelmanson 0.1180 0.1040 0.0666 0.0222 

5 0.1993 0.1836 0.1344 0.05510 
7 0.1996 0.1840 0.1350 0.05536 
9 0.5 0.1997 0.1840 0.1350 0.05537 

11 0.1997 0.1840 0.1350 0.05537 
Kelmanson 0.1996 0.1840 0.1350 0.0554 
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fore, we reduce the number of grid points in the x-direction by a factor of 
2 and examine the solution only on the domain 0 ~< x ~< 1. Since we retain 
only those basis functions that have the same symmetry as the solution 
[terms with Tn(x) of n odd are discarded], and since we present solutions 
with equal resolution in the x and y directions, the number of degrees of 
freedom is (M+ 1)2/2. 

Our results agree well with the modified boundary integral results of 
Kelmanson (1983), when they are adjusted to our length scale. Kelmanson 
presents results with 50, 100, and 200 boundary elements. The modified 
boundary integral method includes four singular terms and in contrast to 
his regular boundary integral method, shows convergence to the three 
digits shown with 100 elements. Our solutions converges so rapidly that 
this pseudospectral method gives approximately the same accuracy as 
Kelmanson using one-fourth the degrees of freedom [(M+1)2/2=50 
versus 100 boundary elements with two unknowns on each node]. Since 

0 . 5  

~ 0 �84 

- 0 . 5  

- 1  
\ 

- - 0 ' . 5  

stream function 

�9 

{ 

0.5 

vorticity 

Fig. 2. Streamlines (left) and vorticity lines (right) for computat ions without singular func- 
tion. The streamline contours are shown in increments of 0.02. The max imum streamfunction 
value is slightly larger than 0.2 in the primary vortex. Spurious eddies occur along the side 
and bot tom walls and the Moffatt eddies are not captured using this scheme. The vorticity 
contours are shown in increments of 2, with the positive values on the top wall and negative 
values on the side wall. 
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our results converge very rapidly, the spectral method  will be even more 
practical for more accurate results. 

Figures 2 and 3 show lines of constant stream function and vorticity 
from the pseudospectral method without and with the most singular basis 
function, ~s, respectively. Figure 2, which does not subtract the strongest 
singularity, shows spurious oscillations near the boundaries that others 
have noted (Ku and Hatziavramidis, 1985). Figure 4, an enlargement of the 
lower corner of Fig. 3, shows the sequence of Moffatt eddies. With our 
method, repeated calculations using more refined grids near the corners, as 
in Pan and Acrivos (1976) and Ghia, Ghia, and Shin (1982) are unne- 
cessary. It can be easily shown that no further eddies can be resolved using 
the tau method with the precision limitations of our calculations (16 digits) 
because the absolute value of the stream function of the next eddy is too 
small. To find the further sequence of eddies, the calculations can be 
modified to obtain the first homogeneous singular function at the lower 
corner. When we included this coefficient in the expansion, as described 
earlier, the solution did not converge faster. This is most likely due to ill- 
conditioning caused by introducing such a coefficient into the algebraic 

/ I 
0 5 ' / , ( �9 / 

>, 0 ~ - - - - - - - - - ~ -  . . . . . . . .  

r 

i 
i 

- 1  
-1  - 0 . 5  0 0.5 1 

X 

s t r e a m  f u n c t i o n  vo r t i c i ty  

Fig. 3. Streamlines (left) and vorticity lines (right) for computations with singular function. 
The streamline and vorticity contours are shown with the same increments as Fig. 2, except 
for negative streamfunction values with increments of 10 -6 to observe the largest Moffatt 
eddy in the lower corner. 
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system and because we did not introduce a similar coefficient for the upper 
corners. At any rate, as Gustafson and Leben (1986) show, even the largest 
Moffatt eddy can be described adequately by one singular coefficient. We 
find only minute differences between the computations shown in Fig. 4 and 
those of the first eigenfunction when the normalization is determined by a 
best fit given by D l = ( - 8 . 5 3 x 1 0  3 , - 1 : 5 5 1 x 1 0  2)/(21+1), where 
),~ = (2.73959, 1.11902). A similar blow-up of an upper corner, Fig. 5, shows 
no eddies, as expected, since the strongest singular eigenfunction is not 
complex there. 

In Table II, the maximum value of the stream function within each 
eddy for our computations with 30 x 30 truncation is compared to those 
obtained by Pan and Acrivos (1976) and Gustafson and Leben (1986). The 
value of I//3 w a s  determined from the local solution using the D 1 listed 
above. The stream function value of the corner eddies is in good agreement 
with those predicted by a scheme employing a local refinement and multi- 
grid algorithm (Gustafson and Leben, 1986). The distance from the apex to 
the center of the first and second corner eddies d l / d  2 is 16.5 as in Gustafson 
and Leben, which is already in good agreement with the asymptotic result 
d~/d 2 = 16.4 obtained by Moffatt (1964) as r ~ 0. 

Fig. 4. 

-0 .8  

-1 \ 
\ ,  

\ 

-0.8 
x 

En la rgement  of Moffat t  eddies in lower  corner.  The s t reamline  con tours  have the 
values - l x 1 0  -6 , - 2 x 1 0  -6 , - 3 x 1 0  -6, - 4 x 1 0  6, and  - 4 . 4 x 1 0  6. 
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X 

Fig. 5. En la rgement  of upper  corner.  The s t reaml ine  con tours  have  the values 2 x 10 -2, 
l x l 0  2, t x l 0 - 3 ,  and  l x l 0  4. 

Figure 6 shows the convergence of the inhomogeneous singular func- 
tion spectral coefficients by expanding ~, as a double series of Chebyshev 
polynomials using pseudospectral methods. As expected, the coefficients 
(amn) converge algebraically at approximately order (m + n)-4 because the 
first derivative is discontinuous at the corners. Figures 7 and 8 show the 
pseudospectral coefficients of the driven cavity problem using a truncation 
of N = M = 29 (i.e., 30 x 30 truncation) with and without the most singular 
basis function, respectively. The coefficients appear to converge algebrai- 
cally at a very large rate for both pseudospectral representations. The 
maximum coefficients for ~a (Fig. 7) are smaller by about a factor of 100 
than for ~ itself (Fig. 8) for fixed n + m .  

Table  II. Vortex Intensi t ies  

Pan  and  Gustafson  
Vortex Acrivos and  Leben Present  

~b I 0.2 0.20012 0.20014 
~/2 --2.2 • 10 -6 - 4 . 4 6  • 10 -6 - 4 . 4 5 4  • 10 -6 
03 6 . 6 x 1 0  -11 1 . 2 4 x 1 0  10 1.24 x l 0  10 
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The rate of convergence of the coefficients is often used to infer the 
convergence of the solution, although some care is needed because the 
error usually decreases at a slower rate of convergence than the coefficients. 
We plot a collage of the bounded (i.e., maximum absolute value for fixed 
n + m) coefficient convergence for Fig. 6-8 on Fig. 9. In addition, we have 
plotted the bounded coefficients for the next most singular function in the 
upper c o r n e r  bzr;a+]f2 with the coefficient b2 predicted by Kelmanson 
(1983). The spectral representation of b2/2 + lf2 exhibits faster convergence 
than the more singular inhomogeneous function, as expected; however, it 
is still slower than the coefficients from the solution for the entire driven 
cavity. This is caused by the different methods to obtain the coefficients: the 
coefficients in Fig. 7 are computed from an overdetermined algebraic 
system, as opposed to those for bzr;'Z+~f2. It is difficult to ascertain the 
convergence rates of the previous computations, in part because the 
coefficient convergence is opposite of that expected. One would expect a 
crossover point, where the exponential decrease of the spectral coefficients 
for the moderate n and m is replaced by the slower algebraic decay of the 
higher-degree coefficients as found in solving Poisson and Bratu equations 
with weak corner singularities (Boyd, 1986). Figures 7 and 8 show an 

Fig. 8. 
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Fig. 9. Convergence of spectral coefficients. Only the largest coefficient for fixed m + n  is 
plotted. N = M = 2 9 .  �9 Inhomogeneous singular function, rfl (Fig. 6); �9 driven cavity 
problem without singular function (Fig. 8); [~, driven problem with singular function (.Fig. 7); 
V, most singular homogeneous function, b2 ra'-+ 1f2. 

increasing convergence rate at a crossover point that occurs near 
m + n + 2 = M .  This appears to be due to the rectangular truncation 
(presumably larger coefficients for fixed m + n would occur for the small m 
or n not included in the truncation) and the nature of the overdetermined 
solution, as will be shown. 

The fourth derivative of the Chebyshev polynomial is proportional to 
n 4 as shown in the Appendix, hence the matrix components for Eq. (2.10) 
become larger as the truncation increases. Since terms are proportional to 
/It 4 at the internal collocation points, we inadvertently weight the tau 
boundary constraints (which are of order n because they contain at most 
first derivatives) much less heavily. Therefore, we rescale the matrix, 
dividing each row by the maximum value of each row. Since we solve an 
overdetermined system, this scaling effectively changes the weighting of the 
least-squares procedure. The scaled equations then satisfy the boundary 
conditions with much higher accuracy and give a more accurate solution 
through the entire solution domain. 

Figure 10 shows the spectral coefficients for various truncations when 
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Fig. 10. Convergence of spectral coefficients supplementing inhomogeneous singular function 
with and without using scaled matrix. Only the largest coefficient for fixed rn + n is plotted. 
�9 30 x 30 scaled matrix; ~, 16 x 16 scaled matrix; D, 16 x 16 unscaled matrix; V, 30 x 30 
unscaled matrix. 

the driven cavity problem is supplemented by the inhomogeneous singular 
function with and without the scaled matrix. After subtracting the 
inhomogeneous singular functions the spectral coefficients amn using the 
scaled matrix show algebraic convergence with order (rn + n )  -8 like the 
Chebyshev expansions of the homogeneous and inhomogeneous singular 
functions of Fig. 9. The higher-order coefficients without the scaled matrix 
are damped out, as shown in Fig. 10, but those with the scaled matrix are 
not damped out by the least-squares procedure when we increase the trun- 
cation. This damping of the high-order coefficients with the least-squares 
procedure and the unscaled matrix decreases the solution accuracy, as 
explained below. 

For  purposes of comparison of the solution convergence, we assume 
that the "exact" solution is given by the scaled matrix system using a 
30 x 30 truncation, where the most singular term is subtracted, since no 
exact solution to the driven cavity problem exists. We must also determine 
a suitable definition of error, which should evaluate the error at other than 
the collocation points. We estimate an L2 error of ~ evaluated at a uniform 
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rectangular grid (including points on the boundary). The RMS error 
evaluated in this way increases with the number of evaluation points in the 
grid, since the convergence is not uniform due to larger errors near the 
singularities and boundary layers. However, the relative accuracy of dif- 
ferent solutions is unaffected by the evaluation grid. Our error estimates are 
based on an 81 x 81 grid. A least-squares fit of the slope of the log-log plot 
in Fig. 11 shows that the error converges algebraically with the order of 
N 9 using the scaled matrix over the shown range of N +  M when sup- 
plemented by the singular function. (The theoretical convergence rate could 
be quite different.) The convergence rate of the error is approximately N-3  
when the most singular function is not handled separately. Our computa- 
tions indicate a convergence rate of N-5  if the matrix is not scaled (not 
shown). We cannot show the exact convergence rate because the artificial 
"exact" solution does not allow the limit N ~ ~ .  This may, in part, explain 
the surprisingly high convergence rate of error compared to the con- 
vergence rate of the coefficients. The convergence rate of the solution 
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Fig. 11. Convergence of driven cavity solution with truncation. The solution subtracting the 
inhomogeneous singular function with 30 • 30 truncation is considered the exact solution, tB, 
With singular function; A, without singular function. 
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should be lower than that of the coefficients by two orders. (Note that 

k (m+n)k~O(N2-k)asN-+c~.) 
m = N n = N  

It is interesting to see the effect of increasing the number of grid points 
(i.e., the number of equations) without changing the number of coefficients 
to check the convergence of a more highly overdetermined system. 
Table III shows that the convergence of the higher-order coefficients 
improves as the system becomes more overdetermined for the unscaled 
system; however, the error (compared to the "exact" solution described for 
Fig. 11) actually increases. The solution using the scaled matrix is more 
accurate than that of the unscaled matrix by factor of 50. 

This table indicates two things: that it is dangerous to make conclu- 
sions about the convergence of the solution from the convergence of the 
coefficients, and that it is more efficient to make the system as little over- 
determined as possible. However, little additional error is introduced by 
making the system more overdetermined. 

4. THE N O N L I N E A R  PROBLEM 

We extend these techniques to small and moderate Reynolds numbers 
using the same inhomogeneous singular basis function, since the nature of 
the singular flow near the corner does not change when the nonlinear 
inertial terms are added. The Navier Stokes equations governing the 
steady flow of an incompressible viscous fluid can be written as 

V40 - RGO = 0 (4.1) 

where G is the nonlinear convection operator, 

G~//= ~ v2 ~l/] ax ~1//V2 ~1/1 ~x (~y (4.2) 

and R is the Reynolds number. The no-slip boundary conditions are still 
(2.1b)-(2.1d). 

The unknown function 0(x, y) is still expanded as a truncated double 
Chebyshev series, adding the analytical form of the most singular function. 
We still overdetermine the problem using additional collocation points. 
The pseudospectral problem then leads to a nonlinear least-squares 
problem that is solved by a full Newton's method. This requires that a 
sequence of overdetermined linear problems be solved for Aamn, where 

a(i+l)_ (0 +Aamn (4.3) 
m n  - -  a r n n  
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and a~~ (the initial guess) is obtained either from a fully converged solu- 
tion at lower Reynolds number or from a lower truncation solution at the 
same Reynolds number. We again solve for Aamn using the overdetermined 
scaled matrix that divides the matrix coefficients by the maximum value of 
each row. This scaling procedure is much more important than for Stokes 
flow, as the magnitude of the matrix elements for large N is of order N3R. 
The solution using the unscaled matrix diverges when the Reynolds 
number is large. Also, the driven cavity flow with inertia is no longer sym- 
metric with respect to the x axis. Therefore, we must use both even and odd 
Chebyshev polynomials in both spatial coordinates. The iterated, over- 
determined matrix equations are solved as before using a routine based on 
Householders' transformation (Golub, 1965). 

The Newton iteration of the algebraic nonlinear equations is robust. 
The procedure converges with amnCO) = 0 for large Reynolds numbers and 
small truncation, e.g., Re = 104 and N = 5. Increasing the spatial resolution 
increases the iteration convergence for high Reynolds number as expected. 
We also find that two procedures related to the overdetermined system 
speed up the Newtonian iteration convergence and enlarge the radius of 
convergence: weighting the boundary conditions and increasing the 
number of collocation points to further overdetermine the system. The 
results presented here use a boundary condition weighting of 103. That is, 
we use a second type of scaling: after making the maximum coefficient in 
each row equal to one as in Section 3, we multiply the rows representing 
the boundary tau constraints by 103. This also significantly improves the 
convergence of the solution error with respect to increased truncation N. 

The effect of making the system more overdetermined is less pronoun- 
ced--its primary advantage is to increase the convergence radius. It has a 
very little effect on the solution error with respect to increased truncation 
N. Therefore, for the sake of computational efficiency, the results presented 
here are overdetermined as little as possible, i.e., P = N + 1 and Q = M + 1. 

Figure 12 show the lines of constant stream function with a stronger 
secondary vortex in the lower left corner for R = 100 using 30 x 30 trunca- 
tion. The secondary vortices in the lower left corner become larger while 
those in the lower right corner diminish in size and, due to numerical 
errors, essentially "wash away." Similar figures for R = 50 and 200 are 
nearly identical to those of Ghia et aL (1982) (our Reynolds number is 
defined to be one-half those of others since our length scale is one-half the 
cavity depth). As the Reynolds number increases, nonphysical Gibbs 
oscillations appear near the wall. Ku and Hatziavramidis (1985) find Gibbs 
oscillations near R = 50. They show that these oscillations disappear when 
local expansions of the Chebyshev-spectral element method are employed. 
Our overdetermined procedure does not exhibit this problem until 
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Fig. 12. 
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X 

The streamline contours for R = 100 are shown in increments of 0.02. The streamline 
contours in the lower left corner are 0.0 and - 1 x 10-4. 

significantly higher Reynolds numbers (R ,,~250) as long as the boundary 
conditions are weighted and the inhomogeneous singularity is subtracted to 
avoid the problem shown in Fig. 2. 

The vorticity values on the side walls near the upper corners of the 
driven cavity for 18 x 18 truncation and various R are shown in Table IV. 
We compare these values with those obtained using a perturbation solution 
(Gupta, Manohar,  and Noble, 1981) and a finite difference method 
(Gupta, 1981) that are modified to fit our length scale. Our solution shows 
good agreement with the perturbation solution, especially for low Reynolds 
number. Since the perturbation procedure uses only the local solution, it is 
only valid in the limit as the distance from the corner goes to zero. Hence, 
the difference between the spectral and perturbation solutions is due to the 
less singular homogeneous terms that the perturbation procedure cannot 
take into account. The spectral results are considerably more accurate than 
the finite difference results, as indicated by the convergence data below. 

Table V shows the convergence of the vorticity near the upper corner 
on the stationary wall. Since the vorticity values near the corner are nearly 
singular, they converge slowly even though the Reynolds number is small. 
We obtain 5 digit (R = 0), 4 digit (R = 0.5), and 2 digit (R = 5) convergence 
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Table IV. Vorticity Values on the Stationary Walls: 18 x 18 Truncation 

21 

R (x, y) Spectral Perturbation Finite difference 

0 ( - 1 ,  0.9) -13.6395 -13.6295 -9 .04 
(1, 0.9) -13.6395 -13.6295 -9 .04 

0.5 (--1, 0.9) -13.693 -13.67 -9 .07 
(1, 0.9) -13.578 -13.59 -9.05 

5 ( - 1 ,  0.9) -14.2  -14.02 -9 .27 
(1, 0.9) -13.1 -13.27 -8.85 

25 ( - 1 ,  0.9) -16.3 -15.91 -9.27 
(1, 0.9) -11.0  -12.16 -8.85 

50 ( - 1 ,  0.9) -18.3 -19.01 -11.22 
(1,0.9) -8 .7  -11.52 -7.53 

using 18 x 18 truncation, shown in Table V. As might be expected from a 
global spectral method, the vorticity does not converge well at other loca- 
tions, especially in the boundary layer near the moving wall. 

Kelmanson (1983) presents the homogeneous singular coefficients near 
the corner using a boundary integral method modified to account for the 
singularity in the Stokes flow problem (R = 0). Using his singular coef- 
ficients we estimate a vorticity value of -13.63918 at x = - 1 ,  y=0.9  
(Kelmanson defines vorticity with the opposite sign in his paper). Our 
solution (co = -13.63928) using 17 x 17 truncation agrees with Kelmanson 
(1983) to within five digits. Our solution should be more accurate because 
our solution for stream function gives 11 decimal accuracy (at 30x 30 
truncation), but Kelmanson's gives only 4 decimal accuracy, as shown on 
Table I. 

Table V. Convergence of Vorticity Values at x = -1 ,  y = 0.9 

Truncation R = 0 R = 0.5 R = 5 R = 50 

9 x 9 -- 13.6369 - 13.6435 - 13.04 - 11.37 
12 • 12 -13.6394 -13.6648 --13.88 -12.93 
15 x 15 -13.6394 -13.6841 --14.08 -15.96 
18 x 18 --13.6394 -13.6936 -14.18 -18.28 
21 • 21 -13.6395 -13.6905 -14.15 -18.70 
24 x 24 -13.6394 --13.6788 -14.04 -17.82 
30 x 30 -13.6394 -13.6730 - -  --17.82 
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Figure 13 shows the spectral coefficients convergence for three different 
Reynolds numbers. A fit of Fig. 13 shows that the nonzero Reynolds 
number coefficients converge at the slower rate of ( n + m )  s. For suf- 
ficiently high Reynolds number, the nonlinearity rather than the singularity 
causes the slow convergence at this truncation, even though the nonlinear 
terms should not affect the asymptotic convergence limit (Boyd, 1986). We 
compare our results for velocity to those of Ghia et al. (1982) for R = 50 
and 200. In spite of our lack of convergence of the vorticity at the corner 
(Table V), the vertical velocities for R = 50 at the cavity centerline are fully 
converged. A similar velocity profile with 2 6 x 2 6  truncation is 
indistinguishable from the results using 20 x20 truncation. This would 
indicate that the results of Ghia et al. (1982) shown in Fig. 14 have not yet 
converged for their 129 x 129 or 258 x 258 grid. However, the convergence 
of the spectral results for R - -200  is considerably slower. We do not know 
why this is so, but a plot of the spectral coefficients similar to those in 
Fig. 13 (not shown) shows a trend similar to those for R = 100 but with a 
sharp rise around n + m + 2 = 38. This indicates that the nonlinearity, and 
not the singularity, is causing the most computational difficulties. 

Fig. 13. 
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Fig .  14. V e r t i c a l  ve loc i t i e s  a t  t h e  c a v i t y  c e n t e r l i n e  ( y  = 0). - - ,  R = 50, N =  14 spec t r a l ;  - -  - - ,  

R = 50, N =  20 s p e c t r a l ;  O ,  R = 50, N =  129 f in i te  d i f f e r ence  ( G h i a  et al., t 9 8 2 ) ;  . . . .  , 

R = 200, N = 20 s p e c t r a l ;  - -  - - - ,  R = 200,  N = 23 s p e c t r a l ;  . . . . . .  , R = 200,  N = 26 s p e c t r a l ;  

- -  , R = 200, N = 29 s p e c t r a l ;  [3, R = 200, N = 129 f in i te  d i f f e r e nc e  ( G h i a  et al., 1982).  

5. CONCLUSIONS 

We presented a pseudospectral method supplemented by the analytic 
form of the corner singularity presented for two-dimensional Stokes flow 
problems using the stream function formulation. The method gives 
accurate solutions with far fewer grid points than higher-order finite dif- 
ference and modified boundary integral methods. The rate of convergence 
for the pseudospectral coefficients and the error is greatly improved by sub- 
tracting the most singular part of the solution and using a scaled matrix. 

The overdetermined pseudospectral method proves to be simple to 
program, and is economical and very accurate. These techniques are 
extended to the solution of the driven cavity problem with inertia using the 
steam function formulation. The solutions are shown to be accurate for 
small and moderate Reynolds numbers using only 18x 18 truncation. 
These techniques are not well suited to the calculation of much thinner 
boundary layers because Gibbs oscillation may degrade numerical 
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accuracy. We recommend using a mapping or domain decomposition for 
high Reynolds number flows. 
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