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We present new algorithms for computing the H ~ optimal performance for a 
class of single-input/single-output (SISO) infinite-dimensional systems. The 
algorithms here only require use of one or two fast Fourier transforms (FFT) 
and Cholesky decompositions; hence the algorithms are particularly simple and 
easy to implement. Numerical examples show that the algorithms are stable and 
efficient and converge rapidly. The method has wide applications including to 
the H ~ optimal control of distributed parameter systems. We illustrate the 
technique with applications to some delay problems and a partial differential 
equation (PDE) model. The algorithms we present are also an attractive 
approach to the solution of high-order finite-dimensional models for which use 
of state space methods would present computational difficulties. 

KEY WORDS: H ~ control; optimal performance; Krein space; infinite- 
dimensional systems. 

1 .  I N T R O D U C T I O N  

Since the early 1980s control  theory has been revolutionized by the intro-  

duct ion of methods that  account  for model uncer ta inty  and unst ructured 
dis turbances and  hence provide robust  and stabilizing controllers with 
uns t ructured  dis turbance reduction. Classical control  theory solves a 
problem for a single model  or a probabi l i ty  dis t r ibut ion of disturbances. 
The idea of H a control  is to minimize the weighted effect of any of a class 

of dis turbances on optimal  plans. Whereas the basic in tu i t ion  of the H a 
control  approach is simple, it is surprisingly difficult to formulate properly 
mathematically.  This mathemat ical  difficulty perhaps explains why the 

* Program in Applied and Computational Mathematics, Princeton University, Princeton, 
New Jersey 08544. 
Department of Economics, University of Michigan, Ann Arbor, Michigan 48109. 

289 

854/7/4-1 0885-7474/92/1200-0289506.50/0 �9 1992 Plenum Publishing Corporation 



290 Yang and Orszag 

simpler approach in which probability distributions are treated as fixed 
is so widely used and why the H ~176 approach was not developed until the 
1980s. The H ~ approach is most effective when there is substantial 
uncertainty about plant dynamics and the disturbances. 

Most numerical and theoretical work on H ~ control has focused on 
rational transfer functions. However, most real world transfer functions are 
unlikely to be rational. The problem is that traditional H ~ computation 
methods rely on spectral factorization and hence are difficult to apply to 
infinite-dimensional systems. In this article we shall present some new 
algorithms to numerically compute the optimal performance for a general 
class of SISO infinite-dimensional systems. Our starting point is from 
the standard one-block and two-block problems, which correspond to 
weighted pure and mixed sensitivity minimization problems, respectively. 

The algorithms presented here require only use of one or two fast 
Fourier transforms and Cholesky decompositions and hence are very 
efficient and easy to implement. The algorithms are also applicable to the 
finite-dimensional systems whose transfer functions are rational. The 
standard frequency domain method in H ~ control is computationally com- 
plicated to implement due to high dimensionality and the related projec- 
tions (Yang and Flamm, 1990). The standard method is also fragile 
because of "false zeros" related to the optimal performance when second- 
or higher-order poles occur in the related projections (Yang, 1992). An 
added advantage of the algorithms here is that computation does not 
increase as the orders of the plants and weights increase. 

We introduce the H ~ optimal control problem in the next section. 
Section 3 deals with the theoretic aspects of the algorithms. We present the 
algorithms formally in Sec. 4. Numerical examples and results are presented 
in Sec. 5. Some concluding remarks are made in Sec. 6. 

2. H ~ O P T I M A L  C O N T R O L  P R O B L E M  

To illustrate the most basic H ~ optimal control problem we consider 
the general feedback model shown in Fig. 1. P is the plant and K is the 
compensator that we want to design, W1 and W2 are frequency-dependent 
weights on the disturbances d and d'. For clarity, we list the dimensions of 
input u, output y, etc., as follows: 

y: m x l ,  u: n x l  

d: m x l ,  d': m x l  

P: m x n ,  K: n x m  

Wl :  /"/'7 x m ,  '[~2: m x m  
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Fig. 1. 

d'  --- W2 

A feedback system. 

Without loss of generality we assume that W~ and I4/2 are square 
matrices, so they may be singular. 

In the case where W~ = W 2 = / ,  we see that the transfer matrix from 
the disturbance d(s) to the output y(s) is 

S = ( I+  PK) 1 

and the transfer matrix from the disturbance d '  to y, which is the same as 
the transfer matrix from d to y', is 

( I+  PK) -1 P K =  I -  S = P K ( I +  PK) - j =  PKS  

(noting that for any matrix A with ( I + A )  -1 existing, A ( I + A )  l__ 
(I  + A) - 1 A). We also see that the transfer matrix from d to e, which is the 
same as the transfer matrix from d '  to e, is 

K ( I +  PK) -1 = KS  

S is called the sensitivity and I - S  the complementary sensitivity. A small 
sensitivity over a frequency range of interest means good disturbance rejec- 
tion and hence risk reduction, and it is known (Doyle and Stein, 1980; 
Safonov et al., 1980) that a small complementary sensitivity means a good 
stability margin for multiplicative perturbations to the plant and a small 
KS means a good stability margin for additive plant perturbations. Here 
the term "small" refers to the H ~ norm. In order to see why the H ~ norm 
is used here, we list some of the properties of the H ~ norm in the following 
remark. These proper t ies  are standard results, which can be found, for 
example, in Hoffman (1962) and Rosenblum and Rovnyak (1985). 
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Remark  1. (1) H ~ is the space of transfer matrices of causal, 
L2-bounded input /bounded  output  stable, linear, t ime-invariant  systems. 
Fur thermore ,  the H ~ no rm of the transfer matr ix  of a system equals the 
system gain: 

[IPII co = sup{ IlPxlk2: x E H 2, Hxll2 = 1 } 

where the space H 2 is defined below. 

(2) Definitions of the space H ~ and its norm:  For  a matr ix  P 
analytic on the right half plane C +, define 

[IPII oo := sup O'max[P(s)] = ess sup O-max[P(jo)] 
s E C  + 

here O'ma x denotes m a x i m u m  singular value. The second equali ty follows 
from the maximal  modulus  principle and the existence of boundary  value 
functions. 

The  space H ~ and its norm:  The space of matrices P analytic on the 
right half plane C + with ]]PH ~o < +oo. []P[] o~ is the H ~ n o r m  of P. 

(3) Since we deal with causal systems, we need a mathemat ica l  
f ramework  for classifying functions analytic in the open right half  plane. 
If  a function f(s) is analytic in the open right half  plane, we say that  f (x )  
belongs to H 2 provided that  

f 
oo 

sup I f(c~ + je))[ 2 do) < o0 
a > O  - - o o  

The H 2 no rm of f(s) is defined as 

It is known (Hoffman,  1962) that  H 2 can be considered as a subspace 
of L 2. We shall denote  the or thogonal  complement  of H 2 in L 2 by H 2 . The 
time domain  version of H 2 functions represent L 2 signals (i.e., signals with 
finite energy) with suppor t  on the positive time axis, the t ime domain  ver- 
sion of H 2_ functions represent L 2 functions with suppor t  on the negative 
time axis. The time domain  H 2 spaces and frequency domain  H 2 spaces are 
connected by the Laplace transform. 

(4) One can also define H ~ space on the unit disk. For  a function 
f on the disk, f (x )  is in H ~176 of the unit disk if and only if f ( ( s -  1)/(s + 1)) 
is in H ~ of the right half plane (Hoffman,  1962). 
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In greater generality, one can also add two m x m-dimensional weight- 
ing matrices W1, y and W2, y to emphasize and deemphasize the importance 
of the outputs at different frequencies. They are in general nonsingular. 

The H ~ optimal weighted pure sensitivity problem is to find a stabi- 
lizing compensator K that minimizes 

II WI, ySW1 oe 

The H ~ optimal weighted mixed sensitivity problem is to find a 
stabilizing compensator K that minimizes 

W1 ySW1 
w2, y ( / -  s) w2/I/ 

(2.1) 

Remark 2. In the single-input/single-output case, we can combine 
the weighting functions W1 and Wx, y, W2 and W2,y, so (2.1) becomes 

Let 

(sup { [ Wl(je~) S(jm)] 2 + [ W2(j~o)[1 - S(jo3)]i2}) ~/2 
ok 

= inf ( WI, ySW1 
#o Kstabilizing \ W2, y(I-- S) W2/Ir oo 

#o is called the (H ~ optimalperformance. We define the (H a)  optimal 
controller as a compensator K which makes the right-hand side of (2.1) 
equal to #o- (The optimal performance and optimal controller for the pure 
sensitivity minimization problem are defined in the same way.) 

In some circumstances we may want to define a m x m matrix W 3 
which captures uncertainty about additive perturbations to the plant. We 
can define a corresponding n • n weighting matrix W3,y to emphasize or 
deemphasize the weights of disturbances at different frequencies. We can 
then define another type of H ~176 problem: 

p0 = inf ( W I ' y S W I ~  
K stabilizing ][ \ W3 v KS W3/]l o~ 

The optimal performance and optimal controllers are defined in the 
same way. 

Solutions of most H ~176 optimal control problems come from the solu- 
tions of one-block or two-block problems which follow (nontrivially) from 
the original H ~ optimization problems (see, for example, Francis, 1987, for 
the rational case and Flamm and Yang, 1990, and Yang and Flamm, 1990 
for some irrational cases). The algorithms in this paper solve the one-block 
and two-block problems which are outlined below. 
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(P1): Given g e L  ~, find 

#o = inf IIg-hH~ (2.2) 
h ~ H  m 

This problem corresponds to the weighted pure sensitivity minimization 
problem. It is a disturbance reduction problem which does not consider the 
stability margin. In general, controllers which solve the pure sensitivity min- 
imization problem are improper and not robust to model misspecification. 

(P2): Given g e l  ~ and f ~ H  ~, find 

inf ( g T h ~  (2.3) /~o = 
h e H ~  \ J / ov 

This problem corresponds to the weighted mixed sensitivity minimiza- 
tion problem. Controllers which solve the mixed sensitivity minimization 
problem both reduce disturbances and achieve a good stability margin. 
Proper controllers can be obtained by properly choosing the complemen- 
tary sensitivity weight (Flamm and Yang, 1990). 

3. BASIC THEORY 

We shall now develop some necessary theoretic background for the 
algorithms. To understand how the algorithms work, first we shall briefly 
summarize the Krein space approach to H ~ control theory. Since our main 
purpose is to introduce new algorithms for the computation of the optimal 
performance, we shall keep the notation and definitions to absolute 
minimum here. More details and related references can be found in Yang 
(1993), Francis et al. (1984), and Sarason (1985). All the results cited below 
can be found in these references too. 

Hankel and Toeplitz operators associated with symbol g are defined as 
follows: 

~g: H 2 ~ H 2_ (h ~ / 1 . 2  gh) 

Yg: H 2 ~ H  2 (h~-~Hri2gh) 

where H denotes the orthogonal projection. 
Nehari theorem and its extensions say that 

I I ~ l l  = inf Ng-hll~ 
h E H  + 

and 

inf 
h e l l  m 
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Thus computing the optimal performance for (P1) is equivalent to 
computing the operator norm of the Hankel operator ~g. Computing the 
optimal performance for (P2) is equivalent to computing the operator 

~g norm of the operator d(g. ,  f )  := (jl) .  
First we consider the one-block case (P1). The space 

K1 : = L Z O H  2 

equipped with the indefinite inner product 

Lcu, , (.)]: 
\ v l /  v2 

will be called a Krein space. The shift operator on K1 is defined as 

where sl is the bilateral shift operator on L 2 and s2 is the unilateral shift 
operator on H 2. 

A vector x E K 1 is positive, negative, or neutral if Ix ,  x]  is positive, 
negative, or zero, respectively. A subspace is positive, negative, or neutral 
if each vector in the subspace is positive, negative, or zero, respectively. 
A subspace with both positive and negative vectors is called indefinite. 

For the adjoint operator ~r of the Hankel operator ~g, let 

be the graph of $4 '~*. 
The orthogonal companion of N(X~)  in the Krei'n space K~ with 

respect to the indefinite inner product [ . , - ]  defined in (3.1) is denoted as 

Now we define the subspace L~ 

L1 := J/g1 c~ (S,//gl ) E• 

It has been shown (Ball and Helton, 1983; Sarason, 1985; Francis 
et al., 1985) that to find the optimal sensitivity is the same as to charac- 
terize the set of all Sl-invariant maximal-negative subspaces of ~'~. In 
order to do so, we need to find a basis for the subspace L~. 

Our basic idea comes from the following result regarding the 
subspace L1. 
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Lemma 1 (Sarason, 1985). dim L 1 = 2 .  Further if kl~tl < 1 
(regularity), then there exist two vectors Xl, x2 ~ L such that 

[ - x , , x ~ ]  = 1 = -[x2, xd, l-x,,  x2]  = 0  

Lemma 1 says that if ]]~ll < 1, then  L1 is indefinite. From Lemma 1, 
we get the following observation. 

Observation 1. If IlJfgn < 1 (regularity), then L1 is indefinite. In other 
words, if L1 is not indefinite, then I1~1[ > 1. 

The space L~ is crucial in our study. Yang (1993) studies the space L1 
and gives the following characterization of L~. 

Theorem 1 (Yang, 1993). A vector function (,P.)~L1 if and only if 

p* G H 2 (3.2) 

p - g r e H  2 (3.3) 

r* - g p *  ~H 2 (3.4) 

where p*(zl = p(1/s r*(zl = r(1/s 

We shall use Theorem 1 to compute the elements of L 1. 
Next we shall consider the two-block problem (P2). We define the 

Krein space 

K 2 := L 2 O H 2 O H  2 

with indefinite inner product 

E(') 
W1 W 2 

(3.5) 

The shift operator on  K 2 is defined as 

\ s 2 w /  

with sl the bilateral shift operator on L 2 and s2 the unilateral shift operator 
on  H 2. 
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Recall that 

We have 

(3~g) : H2 -+ H2 @H 2 ~'(g, f )  := j}  

d * :  H 2 O H 2 ~ H  2 

= H + g*h + H + f * h  

The graph of ~'* is: 

{( ) } ~ ( d * )  = h 'h_  ~H2_, h c H  2 

H + g*h + H + f * h  

Let ~2=N(d*)~•  the orthogonal companion in K2 of ~ ( d * )  
with respect to the indefinite inner product defined in (3.5). Similar to the 
one-block case, we need to find a basis for the subspace L2 := Jg2c~ 

($2 ~ 2 )  E• . 
Corresponding to Lemma 1, Fagnani (1991) proved the following 

lemma. 

Lemma 2 (Fagnani, 1991). d imL2=2.  Further if [Id(g,f)l[ < 1 
(regularity), then there exist two vectors xl, x2 s L2 such that 

Ix1, x2] = 1 = -I-x2, x2], [Xl ,  X2"] : 0 

We have the following. 

Observation 2. If [r~'(g,f) H <1 (regularity), then L2 is indefinite. 
In other words, if L2 is not indefinite, then lid(g, f ) l l  > 1. 

Yang (1993) gives the following characterization of L2: 

Theorem 2 (Yang, 1993). A vector function 
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if and only if 

Y a n g  and  O r s z a g  

p* e H 2 (3.6) 

q =fr  (3.7) 

( 1  - f ' f )  r* - gp* e H 2 ( 3 . 8 )  

p - gr E H 2 (3.9) 

where f*(z) = f(1/~), p*(z)-- p(1/~), r*(z) = r(1/~). 

We shall use Theorem 2 to compute the elements of L 2. 

4. ALGORITHMS 

Based on the theory developed in Sec. 3, we shall present two algo- 
rithms for computing optimal performance for the weighted pure and 
mixed sensitivity design problems, assuming that we have arrived at (P1) 
and (P2). In this section we shall always use a caret (^) to denote 
approximations. 

We first consider the computation of the optimal performance #o 
for (P1). 

Our basic idea is the following: From (2.2) we know that #o ~ II gll ~. 
Beginning from # = ]l gl[ ~ we compute a vector x = (rP~) e L 1 for the func- 
tion g/p and search for the largest # that makes [-(rPQ, (Pr")] = ( p . ,  p . )  - -  

�9 # # 
( r . ,  r . ) =  0. In the following we shall surpress the subscript # for p~ and 
r~ for notation convenience. 

In general, the g(s) is defined on the imaginary axis. We use the map 
s =  (1 + z ) / ( 1 - z )  to map the imaginary axis to the unit circle. 

Now we can write the functions g in terms of its Fourier series 
expansion 

g(eJ~ ~ gne j~ 0e  [0, 2hi  
n =  - -oo  

From (3.2) we can write p and r in terms of their Fourier series 
expansions as 

0 

p= ~ PnZ n 

r = ~ rn Zn 
n=O 
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The conditions (3.3) and (3.4) mean 

g o f g ' z " f  p ----  r = E Pn Zn -- - -  rnZn 
# ,,= ~ ~=-00 # ~=o 

= E Pn z n -  \ i + ~ = n #  J /  
n =  - - 0 0  n =  oo 

i( = P . - E  # ' i t  
n =  - -00  i + j = n  n = l  i n 

g* ) ~rj  z~eH 2 

and 

r*--g-p*= e. g"z~ Z b. 
n = 0  n =  co  /2  n = - - 0 0  

o ) 
gi Zn 

= 2 F-. zn- 7, fij 
n =  00 00 i n 

i (  ) iczg,-I = ?_,,- ~ g-!fi2 z " -  --pj z"EH 2 
n =  - -00  i - - j = n  [~ n =  1 \ i - - j = n  ]~ / 

Thus we see that (3.3) and (3.4) are equivalent to 

P n -  ~ gi = 0  for n = - l , - 2 , . . .  (4.1) 
i + j = n ~  rj 

gi/~j. = 0 for n =  - t ,  - 2  .... (4.2) ~-o-2 7 
i .j = n 

Suppose ~_j ,  g-2  ..... g-m are approximations of the Fourier coef- 
ficients g - l ,  g-2  ..... g-m for g. We approximate the conditions (4.1) and 
(4.2) by the following system of linear equations: 

g2~ g--m~ gX 
P -  I - -  r l  . . . . . .  rm 1 - -  r o  

g - - m  ~ g - - m + 1  ^ 

P - r e + i - - - - q - -  - - t o  
P P 

m 
/0 - m  - -  ro 

# 
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Then we have 

A1J(1 = V1 (4.3) 

A Fast Fourier transform can be used to get the approximation of the 
Fourier coefficients of g. The system of linear equations (4.3) is used to find 
the approximations for p and r. Here the matrix A~ is Hermitian. 

We now present an algorithm for the one block problem (P1) as 
follows: 

Step 1. Use fast Fourier transform to get ~_~, g-2 ..... g-m, the 
approximations of the Fourier coefficients g- l ,  g 2,..., g-m for g. 

Step 2. Pick r0 and Po such that Ip0l r Irol. Starting from # =  rJgll~, 
get the approximation {/~ 1,/~ 2,:", ]}--rn} and {/r /~2,'", /~rn}, of p ,  and r u 
by solving (4.3). The subscript # is used to remind the readers that the 
functions p and r depend on the value of #. 

Step 3. Search for the largest/t < I[ gll ~ such that 

( /~ , /~}-  (P, P} = ~ [fi_k[ 2 -  ~ [Pk[2=0 (4.4) 
k 0 k = 0  

This kt is an estimate of the optimal performance #o for (P1). 
Next we shall extend the above algorithm to the two-block case (P2). 
From (3.6) we know that p* e H 2. Again we write the functions f ,  g, 

p and r in terms of their Fourier series expansions as 

f = ~ f ~ z  ~ 
n = O  

g= ~ g,z" 
n= - - o o  

?" ~ ~ rn Zn 
n = 0  

0 

p = ~ p,,z" 

Then 

f ' f =  f~ f~z"= f i f j  z" 
n ~ 0  n = 0  n =  --co j n 
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Let 

Then 

We have 

oo 

j i = 0 ~ / ~  i =  

Fn = -  Z f ' f j ,  n = _ + 1 , _ + 2  .... 
j - - i = n  ]~ g 

1 -  = Fnz n 
n ~ --oo 

(4.5) 

(4.6) 

1 -f-~-f~ r* -g- p* 

= ~ n Z n 
F,z" ?, g" E f i n  

n= -- c~ i n -- ~ i n -~  

Thus (1 - f* f /#=)  r* - (g/#) p* e H  2 if and only if for n =  - 1 ,  -2, . . . ,  

( F i ? j - ~  pj)=O (4.7) 
i - - j = n  

Similarly, we have 
0 g 

p - - r =  
# n =  --oo 

0 

= Z 
n =  --oo 

n =  --o0 ]~ n ~ O  

n= -~ i n # JJ 

= P,-- 2 # , /  -firj 
n =  --oo i + j = n  n = l  i 

So p- (g /# ) reH= if and only if for n =  - 1 ,  -2, . . . ,  

g i  p.= E ;r j  
i + j = n  

(4.8) 

It is easy to see that (4.7) and (4.8) are equivalent to 



H ~ Optimal Control 303 

p k = ~ rj g-k--------2 , 

j - o  # 

j = o  j = o  fl 

F r o m  Theorem 2 we see that  

if and only if q = f r  and (4.9) and (4.10) hold. 

A2= 

k = l ,  2 .... 

k = l ,  2 .... 

We approx imate  (4.5), (4.6), (4.9), and (4.10) by 

i 
j i=0, /'/ / "l i=0 
i,j<~m 

j - - i = n ,  [2 ]2 
i /<~m 

/~_k=  ~ rj , k =  1,2, . . . ,m 
j=o # 

j = o  j = o  ,u 

Let 

"- - 1  0 --. 0 

0 - 1  

0 0 

~-3 ~-4 
# # 

~--m--i ,~-m- 2 
,u # 

n =  - m ,  - m +  l,..., m -  1 

k = 1, 2,..., m 

g--2 g'-3 

g--3 g--4 
0 

# 

~-~-, ~-m-2 
- 1  

g-~-~ -fo -L  ,u 

2-~ _~_,  - f o  
# 

~--2m 
/z ~--m+ I --~--m+2 

(4.9) 

(4.1o) 

(4.11) 

(4.12) 

o~_2_m 
# 

g--2m 
Y 

--~m--1 

-~-2 

(4.13) 
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g 2 = 

- t o  - -  

~ 2  
m F O  w 

# 

g-m 
m r o  _ _  

ro*~- 1 - Po # 

r o F _ 2 - P o  g-2  
# 

g 
toE-in - Po 

~ m 

# 

t3_2 

X2= P-m 
rl 

j 
m 

(4.14) 

Then (4.11) and (4.12) are 

A2X2 = V2 (4.15) 

We can solve the system of linear equations (4.15) to get approxima- 
tions of the functions p~ and r~. Here the subscript # is used to remind the 
readers that p and r depend on the value of #. We remark that by the 
definition of Fk, one can see that A 2 is Hermitian. 

We now present an algorithm for the two-block problem (P2) as 
follows: 

Step 1. (a) Use the fast Fourier transform to get g - l ,  g -2  ..... g m, 
the approximation of the Fourier coefficients g_ l ,  g-2,..., g-m for the L ~176 
function g. 

(b) Use the fast Fourier transform to g e t f o , f l  ..... J~m, the approxima- 
tion of the Fourier coefficients fo, f l  ,..., fm for the H a function f 

Step 2. Pick r o and Po such that IPol #lrol  �9 Beginning from 
# = ll(})ll ~, get the approximation {/~-1, P-2  ..... /~ m} and {P1, t~2 ..... Pm}, 
o f p ,  and ru by solving (4.15). 

Step 3. Search for the largest # < ]I(})N ~ that makes 

, = <p, ~ >  + <f,% f i ~ > -  <,% ,~> = o 
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This # is an estimate of the optimal performance ~t 0 for (P2). 

Remark  3. In the first algorithm we can also make the upper-right 
and lower-left submatrices of A1 full as we did for the matrix A2. For  cases 
in which the Fourier coefficients of the function g decay slowly, this should 
be done to improve accuracy of the approximations. 

5. NUMERICAL EXAMPLES 

To illustrate how the algorithms perform we present results of numeri- 
cal solutions obtained from the algorithms for some infinite-dimensional 
problems and compare them to the analytic solutions for these problems. 
The first example is for the one-block problem with the function g 
continuous on the extended imaginary axis. The second example is for the 
one-block problem with the function g discontinuous at ~ .  Example 3 is 
a two-block problem with bo th  functions g and f continuous on the 
extended imaginary axis. The last example is a two-block problem where 
the irrational part is an infinite Blaschke product. 

Example  1. For the first example, we consider a simple delay 
problem with 

e s 

g -  
l + s  

This is a weighted pure sensitivity minimization problem for a pure delay 
system with weight 1/(1 + s) studied in Foias et al. (1986). The optimal per- 
formance is #o ~ 0.44215 as can be computed based on the theoretic results 
in Foias et al. (1986). We used 64 sampling points on the unit circle for the 
function g so that for each value of # we need to solve a system of 128 
simultaneous linear equations; since the structure of the matrix is complex 
Hermitian, systems of even 1024 equations can be solved (using Cholesky 
decompositions) in a matter of seconds on a fast workstation so that the 
method is computationally very attractive. Analytic bounds can be placed 
on the optimal performance, and computation need only be performed 
within the analytic bounds to select the largest zero which solves the equa- 
tion (4.4). Figure2 shows the numerical results when p o = l ,  r0=2 .  
Figure 3 shows the numerical results for a much different choice of Po and 
r o. Of course, the answer should not depend on the choice of the free 
parameters Po and r o as long as they are not chosen to be equal. The 
numerical experiments show that indeed the answer is independent of the 
choice of P0 and ro even though the plots of the solutions look quite 
different. With 64 sampling points for the function g the numerical 
solutions achieved three-digit accuracy. 

s54/7/4-2 
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Plot of (p ,  p )  - (P, f )  for Example  1 with po = 1, % = 2 .  

Example 2. 
performs for 

As a second example we investigate how the algorithm 

( l + s ) e  s 
g = - -  

a-q-s 

This is a weighted pure sensitivity minimization problem for a pure delay 
system with weight (1 + s)/(a+ s) studied in Flamm (1986). This problem 

' ' ' ' I . . . .  I . . . .  

.3O i , i , I i r i , I , ,  f i i 

O .35 0.4 0.45 0.5 

Fig. 3. Plot of (/~, f i )  - (~, f )  for Example  1 with P0 = 5 . 0 -  4.0j, r o = 1 . 0 -  3.0j. 
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1 . 1 8  i i 1.12 I 
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1 , 2 2  1 . 2 4  1 2 6  

Fig. 4. P lo t  of ( p , / 5 )  - (P, #> for Example  2 with Po = 1, % = 2 .  

is more difficult because g is not continuous on the extended imaginary 
axis, the related Hankel operator ~g is not compact. With a=0.5  the 
theoretical result is an optimal performance #o ~ 1.22. The numerical results 
using the algorithm are shown in Figs. 4 and 5. Even though the problem has 
a singularity, with only 64 sampling points for the function g the algorithm 
gives the estimate of 1.214, which agrees well with the analytic solution. 
With more sampling points, accuracy of three or more digits was obtained. 

l i l r J l i l l l l i J l  
2 3 

Fig. 5. P lo t  of (/5, t5) - (#, f )  for Example  2 with Po = 1, r o = 2 on a wider  range of/~. 
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E x a m p l e  3. We now show a simple example of the two-block 
problem. The functions g and f are 

e ds 
g ( s )  = (s + a)[(1 + e2a2) 1/2 - e2a 2] 

g 
f ( s )  = (1 + 82a2) 1/2 + 8S 

This corresponds to a weighted mixed sensitivity minimization problem of 
a pure delay system with sensitivity weight 1/(1 + s )  and constant com- 
plementary sensitivity weight e. Analytic solution can be obtained by using 
the results from Flamm and Yang (1990). Yang (1992) studies this example 
and show that "false zeros" can occur because of the occurrence of double 
poles in related projection formulas. This can result in a totally wrong 
estimate of the optimal performance if one is not careful. When the 
dimensions of the plant and weights are high, those "false zeros" can be 
very difficult to identify. The present algorithm does not produce "false 
zeros" and hence gives reliable results. 

For a numerical example we choose e = 1.1, a = 0.9, and d =  2.0. With 
64 sampling points for both g and f the numerical results are shown in 
Fig. 6. Single precision arithmetic was used for all calculations. With 512 or 
1024 sampling points the numerical answer is correct to five decimal places. 
Even with only 16 sampling points the numerical answer is correct to four 
decimal places, and with 8 sampling points it is correct to three decimal 
places. Thus, even when very few sampling points are used on the func- 
tions, the numerical method produces remarkably good results. Numerical 

I ~ ' ' ' I ' ' ' ' , ' , , I ' 

I I 

0 . 9  
" 2  0.18 

Fig. 6. 

, , , , ! ,  

Plot of (/~, p ) + (fP, f?) - (?, f) for Example 3 with P0 = 2.0 - 2.0j, r o = -3.0. 
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experiment also indicates that numerical solutions do not depend on the 
parameters Po and ro. 

Example 4. In this example we examine the Euler-Bernoulli beam 
model (Clough and Penzien, 1975) studied in Flamm (1990). With the sen- 
sitivity weight 1/(a + s) and the complementary sensitivity weight e(b + s), 
the corresponding g and f are (Flamm and Yang, 1990) 

1 

g - e(~l - s)(~2 - -  s)( a + s) Ui(s) 

b+s y -  
(~1 + S)(~- 2 + S) 

where Ne(s) is an infinite Blaschke product. The zeroes of Ni(s) have been 
found explicitly in Flamm (1990). Finite Blaschke product approximation 
is used to evaluate Ni(s). We compare the analytic solution given in 
Flamm and Yang (1990). 

Parameters used were a=0.9, b=0.8, e= 1.1. Using the formulas 
in Flamm and Yang (1990), 41 and ~ are computed as ~1= 
0.970740716 + 0.46619474j, ~2 = 0.970740716- 0.46619474j. Single preci- 
sion computation with only 64 sampling points for both functions g and f 
yielded an optimal performance of #0=0.862345. These computations 
agree well with the analytic solution which gives #o ~ 0.86236933. The 
results are shown in Fig. 7. Again the answer does not depend on different 
choices of Po and ro. 

0.1 

0 

-0,1 

-0.2 

0.8 0.82 0 .84 0 ,86 0.88 0.g 

Fig. 7. Plot of (/~,/~ > + (fP,  f i >  - ( 6  ?> for Example  4 with P0 = 2.0, r 0 = -3 .0 .  
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6. CONCLUSION 

This article has presented two simple numerical algorithms for the 
computation of the optimal performances for the H a weighted pure and 
mixed sensitivity minimization problems. The algorithms use FFT and fast 
matrix solvers for complex Hermitian matrices and hence are computa- 
tionally very attractive. The algorithms are very easy to implement; they 
do not require the computation of varies projections as in the analytic 
frequency domain approach. Therefore the difficulties associated with the 
projections such as high dimensionality and complexity of formulation with 
high-order poles are not present in our algorithms. Our method treats the 
irrational and rational cases in a unified way. The computation does not 
increase as the order of the model and weights increase. Applications of the 
numerical methods are presented to problems involving delays as well as to 
a PDE model. Comparison with the analytic results shows that even with 
a small number of sampling points the algorithms give very accurate 
estimates of the optimal performances both in the continuous and the 
discontinuous cases. The algorithms presented here are also applicable to 
the solution of H ~ control problems with rational transfer functions where 
the high order of models in some practical problems presents numerical 
problems. 

The strength of the algorithms is highlighted by the ease at which they 
can be extended to be applied to H ~176 design for MIMO systems and model 
reduction such as are required in spacecraft design problems as well as 
multi-input/single-output problems such as occur in portfolio choice in 
financial economics (Orszag and Yang, 1992; Yang and Orszag, 1992). 
In addition, we believe that the algorithms can also be used to compute 
suboptimal controllers. Most H ~ controllers tend to be of fairly high order 
so the approach here may not only speed computation but also eliminate 
some numerical errors in controller design. We also believe that the 
approach here is one that can be adapted for spectral prediction of time 
series with irrational spectral densities. Since rational spectral densities can 
be estimated well in the time domain, the time series literature has moved 
away from frequency domain analysis. The present study raises new 
possibilities for the spectral analysis of time series which are not feasible in 
the time domain. 
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