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We solve two problems on x ~ [ -  or, ~ ]  for arbitrary order j. The first is to 
compute shock-like solutions to the hyperdiffusion equation, uz = ( -  1 )J+~ u2j, x. 
The second is to compute similar solutions to the stationary form of the hyper- 
Burgers equation, ( t ) '  u2s, x + uux = 0: these tanh-like solutions are asymptotic 
approximations to the shocks of the corresponding time dependent equation. 
We solve the hyperdifl'usion equation with a Fourier integral and the method 
of steepest descents. The hyper Burgers equation is solved by a Fourier pseudo- 
spectral method with a polynomial subtraction. 

Except for the special case of ordinary diffusion I / =  1 ), the jump across the 
shock zone is described by nonmonotonic, oscillatory functions. By smearing 
the front over the width of a grid spacing, it is possible to numerically resolve 
the shock with a weaker and weaker viscosity coefficient as L the order of the 
damping, increases. This makes such "'hyperviscous'" dampings very attractive 
for coping with fronts since, outside the frontal zone, the impact of the artificial 
hyperviscosity is much smaller than with ordinary viscosity. Unfortunately, both 
the intensity of the oscillations and the slowness of their exponential decay from 
the center of the shock zone decrease as j increases so that the shock zone is 
much wider than for ordinary diffusion. We also examined generalizations of 
Burgers equation with "spectral viscosity", that is, damping which is tailored to 
yield exponentially small errors outside the frontal zone when combined with 
spectral methods. We find behavior similar to high order hyperviscosity. 

We conclude that high order damping, as a tool for shock-capturing, offers 
both advantages and drawbacks. Monotonicity, which has been the holy grail 
of so much recent algorithm development, is a reasonable goal only for ordinary 
viscosity. Hyperviscous fronts and shock zones in flows with "spectral viscosity" 
are supposed to oscillate. 
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1. INTRODUCTION 

In high Reynolds number flow, frontal zones or shocks form spontaneously. 
These fronts have widths small in comparison to any reasonable grid 
spacing. Roe (1986) reviews a variety of ingenious numerical schemes 
which cope with shocks without explicitly resolving them. An alternative, 
which is the only tactic discussed here, is to simply add sufficient artificial 
damping to smear out the frontal zone until the computational grid is 
sufficient to resolve it. Normally, two or three grid points in the region of 
high gradient is sufficient. 

An alternative to ordinary viscosity is to employ a damping which is 
proportional to a higher derivative of u(x) than the conventional second 
order viscosity or diffusion. Such "hyperviscosities" are very popular 
in geophysical modeling because the 2jth derivative of exp(ikx) is 
(-1)Jk2iexp(ikx) .  Thus, the larger j is, the smaller the effect of the 
damping on the low wavenumbers. At the same time, the damping increases 
with wavenumber so that the highest waves resolvable on the grid are 
strongly damped, insuring computational stability. 

An obvious question is: how does hyperviscosity alter the structure of 
the shock? By means of multiple scales perturbation theory and matched 
asymptotic expansions, one can show that the frontal zone has its own 
self-similar dynamics where advection and diffusion reach a balance that is 
largely independent of the complexities of the flow outside the zone. The 
analysis is given in Boyd (1992), Blumen (1990a, b), Kevorkian and Cole 
(1981) and Lesser and Chrighton (1975). 

To avoid drowning in detail, we shall limit ourselves to a simple 
theorem which is restricted to a generalized Burgers' Eq. (1.1). 

1.1. Matched Asymptotics Analysis of a Generalized Burgers' Equation with 
Variable Order Viscosity 

Theorem 1. The problem is 

u , + u u ~ + ( - 1 ) J v  2J lu2j~ = 0 u(x ,O)=Q(x)  (1.1) 

where the subscript "2ix" denotes the (2j)-th derivative with respect to x 
and where v > 0. Then outside a narrow frontal layer of width O(v), u(x, t) 
is well approximated by the solution of 

u, + uux = 0 u(x, O) = Q(x) ["outer problem"] (1.2) 

The solution in the frontal zone is given by 

u(x, t)..~s+ j2j-Iw(JX) IX[ ~O(1)  (1.3) 
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where s(t) is the speed of the shock as given by the solution of the outer 
problem, i.e., 

s(t) = �89 t) + u(0 +, t)} (1.4) 

u(0-,  t) and u(O +, t) denote the values of the outer solution on either side 
of the shock and 

J ( t )  2~-I = �89  t) - . ( 0  +, t)} (1.5) 

w(X)  is the unique solution of the parameter free problem 

( - 1 y W z j x + W W x = O  x e  I - -oo ,  oo] 

lim w(X)={  1_ X < 0  
bxl ~ ~, 1 X>O 

(1.6) 

where the inner coordinate is 

x _ x - f ' s ( r ) & + ~  

V 
(1.7) 

where ~b is a phase factor which is determined to lowest order by the 
requirement that X =  0 at that value of x where the shock first forms in the 
outer solution. 

To render the local approximations spatially uniform, that is, valid 
both inside and outside the shock zone, it suffices to apply the inner 
approximation with J( t )  and s(t) allowed to vary slowly with x: 

J(t)  ~i '= �89 § 

j ( t )s /  I l) = ~(u(O , t) - u(.'<, t) 

s(t) = �89 {u(x, t ) +  u(O +, t) 

s(t) = �89 , t) + u(x, t) 

The proof is given in Boyd (1992). 

Ix < s(t)] 
(1.8) 

[ x > s ( O ]  

I x < s ( 1 ) ]  
(1.9) 

[ x > s t t ) ]  

This theorem is quite remarkable because it implies that regardless of 
whether the hyperviscosity coefficient is large or small, regardless of 
whether there is one front or many fronts and regardless of the symmetry 
or speed of the front, the frontal zone is still described by a single function 
which is parameter-free once the order of the viscosity has been specified. 
Thus, we can answer our question about the effects of different orders of 
viscosity on the shock merely by solving Eq. (1.6) for various j. 

Lest the restriction to the hyperBurgers equation seem too restrictive, 
note that Blumen (1990a, b) has demonstrated that Burgers equation, 
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though it involves only a single spatial coordinate, is actually a consistent 
model for fronts in three-dimensional atmospheric frontogenesis. Boyd 
(1992) gives an even more general version of the theorem that incorporates 
an instability term: Even when the flow is amplifying in time, the shocks 
are still described by the solutions to Eq. (1.6). 

Unfortunately, the hyperBurgers equation cannot be solved analyti- 
cally. We offer two remedies. One is a polynomial-plus-Fourier pseudo- 
spectral method to solve Eq. (1.6) numerically for j as large as 40 [80-th 
derivative damping]. The other is to examine the hyperdiffusion equation 

Ut=(- -1)  j+l u2j.x (1.10) 

We can solve this for arbitrary j by a Fourier integral followed by the 
method of steepest descents, as explained in Sec. 2. We find that this 
equation has self-similar shocks which behave with increasing j very much 
like the nonlinear solutions to Eq. (1.6). 

Tadmor (1989, 1990) and Maday and Tadmor (1989) have introduced 
a still more general hyperviscosity, dubbed "spectral viscosity", which is 
chosen so that pseudospectral methods converge exponentially fast to the 
correct, high Reynolds solution away from the shock. (The shock itself has 
been smeared over a frontal zone of one or two grid points in width, so it 
is true of spectral viscosity, as of all artificial diffusion methods, that the 
frontal zone itself is too wide to faithfully approximate the shock of the real 
high Reynolds number flow, which by assumption is too narrow to explicitly 
resolve.) We explain why spectral viscosity also gives an oscillating frontal 
zone. Indeed, it appears that ordinary diffusion may be the only damping 
that gives monotonic shocks for Eqs. (1.1) and (1.6). 

Lastly, hyperviscosity in an implicit consequence of high order dif- 
ference methods. This is seen most easily in the "modified equation" analysis 
of Warming and Hyett (1974), Hedstrom (1975), and LeVeque (1990). For 
example, if a one-sided, first order upwind difference approximation is 
applied to the first derivative in the linear advection equation 

u t + U x = 0  (1.11) 

then the usual error formula can be interpreted either as a first order 
approximation to the original equation, i.e., 

u, + Vu ~ u, + ux + O(h) (1.12) 

where V is the difference operator and h is the grid spacing or as a second 
order approximation to the modified partial differential equation 

U t -J- V U  ~ bi t  -~- Id x - -  �89 + O(h 2) (1.13) 
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In words, Eq. (1.13) implies that the upwind difference has effectively added 
a weak diffusion term to the advection equation with a coefficient propor- 
tional to the grid spacing. Although Eq. (1.13) is nothing more than a 
restatement of the fact that the O(h) error in the finite difference is propor- 
tional to the second derivative of the function being differentiated, the 
"modified equation" approach is of great conceptual value. For example, it 
explains why upwind differencing generates stable solutions even in the 
presence of shocks: the differencing effectively smears out the shock over a 
distance of O(h). Similarly, a downwind differencing would change the sign 
in Eq. (1.13), creating an "anti-diffusion" which amplifies, rather than 
smoothes, giving instability no matter how accurately we approximate the 
time derivative. 

The relevance of this perspective on differencing errors is that higher 
order upwind-biased schemes create similar artificial diffusion terms of the 
form 

hZJ- l ( -  l )J u2jx (1.14) 

where 2j is the number of grid points used in the approximation. The width 
of the resulting frontal zone is O(h) because we can eliminate the factor of 
h 2i ~ by rescaling the x-coordinate via x ~ X / h .  (Such a rescaling is 
implicit in the unit coefficients of Eqs. (1.6) and (1.8), for which the shock 
zone width is O(1) when t is O(1).) 

The question remains: What is the shape of a hyperviscosity-smoothed 
frontal zone when j > 1 ? In the rest of this article, we offer some answers. 

2. THE H Y P E R D I F F U S I O N  EQUATION 

The hyperdiffusion problem is 

u ,=  ( - 1 ) J + '  u2j., x e  [ - o o ,  oo] 

1 x > 0  
u(x, t=O)= - 1  x < 0  (2.1) 

where j is a positive integer and the subscript "2j, x" denotes the 2jth 
partial derivative with respective x. The initial condition is chosen to be the 
signum function so that this linear equation will have solutions that mimic 
the shocks of its nonlinear generalization of Eq. (1.1) as closely as possible. 
It is easy to verify by direct substitution that the solution is 
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(x) u(x, t) = Aj 

;o A;(Z) = /~j(z} dz (2.2) 

2j(x) = qj e x p ( - k  2j) e ikx dk (2.3) 
- - o O  

where qj is a propor t ional i ty  constant  chosen so that A j ( o c ) =  1. 
For  the special cases of j =  1 (ordinary diffusion) and j ~  o% the 

integrals can be evaluated analytically: 

! fZ/2 
AI(Z) = erf(Z/2) = , f ~  ~o e x p ( - y 2 )  dy (2.4) 

A,~o(Z)=2Si(Z) 1 f z  sin! v) 
=nJo y" dy (2.5) 

The limit j ~ oo follows from 

lim ( e x p [ - z 2 J ] ) =  Izl < 1 = > 2 ~ . ( z ) = q ~  eik:dk=2q~__sin(z) (2.6) 
J ~ ,  [ z l > l  -1 z 

Figure 1 compares these two limiting cases (solid) with the solutions 
for fourth and sixth derivative damping. The error  function in Eq. (2.4) 
varies smoothly  and monotonical ly  from - 1  to 1. 

10 

Fig. 1. Shocks for the ordinary diffusion equation. Solid monotonic curve: Allx) (ordinary 
diffusion), Dashed (smallest oscillations): A 2 [fourth derivative damping]. Dotted (medium 
osci l la t ions) :  A 3 [sixth derivative damping]. Solid oscillatory curve (largest oscillations): A~ 
(Sine integral). 
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Furthermore, it asymptotes very quickly to its limits as ix[ ~ oo with 
the I A z ( X ) I -  1 decreasing as exp(--X2/4). 

However, the sine integral in Eq. (2.5) is just the opposite: It oscillates, 
and the oscillations decay very slowly as O(1/x). Its asymptotic expansion 
is (Abramowitz and Stegun, 1965): 

2 21  
- S i ( x ) ~ l - - - c o s ( x ) + O ( 1 / x  2) x>> l (2.7) 
7[ 7rX 

The fronts for j = 2 and j = 3 are intermediate between these extremes. 
As j increases, the amplitude of the largest crest increases, but is bounded 
by the maxima of the sine integral. A more significant change is that the 
oscillations decay more slowly in Ix] for larger j. Thus, although the neigh- 
borhood of the center of the front is little changed as j increases--note that 
the four graphs in Fig. 1 fall atop one another for ix] < 0.5--the width of 
the oscillatory region expands with increasing j until the sine integral is 
obtained in the limit. 

By using the method of steepest descents (Bender and Orszag, 1978, 
and Boyd, 1982), we can approximate the shocks for general j. (We first 
approximated 2j(xl and then employed Laplace's method, which is steepest 
descent for the special case for which .the dominant part of the integral is 
at an endpoint, to approximate Aj(~,)-A~(x).) For fourth derivative 
damping (j  = 2), 

, { } A2(x) ~ 1 + 1.15 ~ .  , exp( --ax 4/3) cos a f i  X 4/3 --5 6 7[ x--+ ~ (2.8) 

where a = (3/8) 2 ~/3= 0.236. The oscillations decay exponentially, but the 
rate of decay is slower than the exp ( -x - ' )  decay in the error function. 
Figure 2 compares the asymptotic approximation in Eq. (2.8) with the 
exact solution and displays the error. Except very close to the origin, the 
steepest descent approximation is very good and becomes better with 
increasing x. 

Only positive x is shown because A j ( - x )  = -Aj(x)  for all x, j. Equa- 
tion (2.8) may be extended to all x by multiplying the R. H. S. by sgn(x). 

The complete asymptotic approximation for general j is rather messy, 
but the crucial point is, that ignoring algebraic factors of x (i.e., x 2/3 for 
] = 2) and multiplicative constants, 

A2(x)-  1 ~ [ ] exp( - /~x  ~//~i 1))cos{Tx~J/f~j 11 phase] x--+ ~ (2.9) 
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Steepest Descent Approx.' 

, i 

Exact ~ 

0 10 ~ 
x 

Fig. 2. The error in the steepest descent approximation of Eq. (2.8) to the front for the 
hyperdiffusion equation with fourth derivative damping. All curves display the scaled function 
~ =  [Az (x ) - -1 ]  x 2/3 exp(ax4/3). Solid: exact A2(x). Dashed: sleepest descent approximation 
of Eq. (2.8). Dotted: Absolute error. 

where [ ] denote an algebraic factor of x and "phase" denotes a phase 
constant and 

/~ = ( 2 j -  1) ~ ~)) sin n 2(2j_ 1 i 

7 = ( 2 j -  1) \ ~ /  cos n 2 ( 2 j -  

(2,10) 

The arguments of the exponential and the cosine are identical except for 
the trigonometric functions in Eq. (2.10). The crucial point is that in the 
limit j ~  oo, /z ~ 0  while 7 ~ 1, Thus, the exponential decay disappears, 
leaving only the sinusoidal factor to oscillate with unit wavenumber, 
modulated by an algebraic factor of x. This is all perfectly consistent with 
the known asymptotic behavior of the sine integral, Si(x), which is the limit 
j => 00. 

These results present us with a paradox. Increasing the order of the 
damping is a Good Thing in the sense that smaller wavenumbers are 
damped less and less as j increases. This in turn implies less and less 
damping in smooth regions away from the front, But paradoxically, 
increasing the order of the damping is also a Bad Thing because the front 
becomes more and more oscillatory and the wiggles extend farther and 
farther away from the front. 
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The ultimate high order damping is a "band-limited" diffusion: All 
wavenumbers below the bandwidth W are not damped at all while all 
wavenumbers larger than W are truncated. The result is that the front 
assumes the shape of the sine integral. But Si(x), as shown in Korner 
(1988) and other Fourier texts, is the asymptotic approximation to the 
Gibbs Phenomenon, that is to say, to the wiggles that develop when the 
Fourier series (or integral) of a discontinuous function is truncated. (For 
this reason, we shall dub the Si(x) solution the "Gibbs' Shock" in later sec- 
tions.) The Gibbs Phenomenon is generally regarded as a Very Bad Thing. 

In the remaining sections, we show that this ironic equation 

Higher Order Damping ca, Wider Wiggles (2.11 ) 

also applies to the hyperBurgers Eq. (1.6) and to its spectral viscosity 
generalizations. 

One important point is that in the steepest descent method, the 
exponential and trigonometric factors come from computing the stationary 
points of the phase function of the integral and then substituting these into 
the phase function. For example, if we generalize power-law diffusion by 
writing the diffusion equation after Fourier transformation as 

U(k, t ) ,=  - Q ( k )  U(k, t) 
(2.12) 

f 
~c 

u(x, t ) -  U(k, t)eik~dk 

(where Q(k)=-k ~/for Eq. (2.1)), then the formal solution is 

u(x, t) = U(k ,O)exp ( -Q(k ) t+ ikx )dk  (2.13) 
,-5"__ 

Define the phase function 

(p(x, t, k)= -Q(k)  t+ ikx (2.14) 

The steepest descent approximation is a sum of all stationary points on the 
deformed contour of integration of the form 

u(x, t )~  ~ U(k,, 0) [algebraic factor] exp(cp(k,[x, t] ), x, t) (2.15) 
al l  s t a t i o n a r y  

p o i n t s  s 

where the stationary points ks(x, t) are the roots of the first derivative of 
the phase function, i.e., solve 

dQ(k) x 
= t -  (2.16) 

dk t 
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Because of the factor of i in Eq. (2.16), in general all the stationary 
wavenumbers are complex, and so usually is ~b(ks). Consequently, the 
normal, expected behavior of a shock-like solution to a generalized diffusion 
equation is that the frontal zone is oscillatory. 

The case j =  1, i.e., Q(k)= k 2, is very special. The only stationary point 
is pure imaginary (ks=ix/(2t)) and exp(~[k~])=exp(-x2/2t),  which is 
purely real. But all other power law viscosities and general Q(k) will give 
a complex argument to the exponential, which implies that at least for large 
x, u(x, t) is not monotonic but oscillatory. 

3. A POLYNOMIAL-FOURIER PSEUDOSPECTRAL M E T H O D  FOR 
COMPUTING TANH-LIKE SOLUTIONS 

When the solution u(x) to a problem on an infinite interval decays 
exponentially to 0 as Ixl =~ oo, Fourier domain truncation is a standard 
method. The problem is solved by a Fourier series on the truncated 
domain I - L ,  L]  with boundary conditions of periodicity with period 2L 
(Boyd, 1988). 

We can understand the success of both Fourier domain truncation 
and also the polynomial-Fourier generalization needed here by examining 
the "Fourier Asymptotic Coefficient Expansion" (FACE). Since all the 
solutions discussed here are antisymmetric with respect to the origin (i.e., 
f (x)  = - f ( - x )  for all x), it suffices to specialize to a Fourier sine represen- 
tation. 

Let 

. /n~x5 
f ( x ) =  E b,s'nt--L-- ) (3.1) 

n = l  

Then the Fourier coefficients have the usual integral representation 

b,, = -L f (x )  sin dx (3.2) 

Repeated integration-by-parts gives 

M 2 )~+l )m ~ bn :-~ ( -  1 y~ ( -  1 (L/~)2 m r~2"~L~r, 
m = 0  

2(L)2M+I(--1)M+I~ff~f,2M+2)(x)sin(nL) 
-i---7[ H 2 M +  2 - -  

dx (3.3) 
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Equation (3.3) is exact for any M; the Mth order FACE is obtained by 
dropping the integral term to achieve an error which is O(1/n 2M+2) in the 
limit n ~ oo for fixed M (Lyness, 1971, 1984, and Boyd, 1989). 

If f (x) is a periodic, infinitely differentiable function, we can integrate- 
by-parts an arbitrary number of times. If the boundary terms in the series 
in Eq. (3.3) vanish, the Fourier coefficients must decrease faster than a 
finite inverse power of n. This rate of convergence is variously labelled 
"infinite order", "exponential" or "spectral" (Boyd, 1989). 

Unfortunately, when domain truncation is used, the true solution is 
not periodic and the boundary terms do not vanish. However, if f (x) is 
decaying exponentially fast as Ixl increases, then for sufficiently large L, the 
boundary terms in Eq. (3.3) are exponentially small. A Fourier pseudo- 
spectral algorithm will then give superb accuracy as shown in (Boyd, 1988). 

The complication here is that the shocks for the hyperBurgers 
Eq. (1.6) and for the hyperdiffusion Eq. (2.1) are "tanh-like", that is to say, 
asymptote to different values as x tends to positive and negative infinity. 
(In fact, the Burgers shock for j =  1 is tanh(x/2)!) The FACE shows that 
if we expand tanh(x) itself on a large interval as a Fourier sine series, the 
coefficients are, using f ( L ) ~  1, 

2 
b n ~ - - (  1) n+l 1l>>1 (3.4) 

117[ 

The reason for this pitiful rate of convergence is that the sum f s ( x )  of the 
Fourier sine series is discontinuous, jumping from 1 to - 1 at x = L so that 
f s ( L )  = ~Fs.(--L) ~ -1  as required by the (2L)-periodicity of the sines. 

However, the remedy is easy. First, note that the tanh function asymp- 
totes exponentially fast to its asymptotic value, i.e., 

t a n h ( x ) -  1 ~ 2 e x p ( - x )  x>> 1 (3.5) 

Thus, all the higher derivatives in the FACE series do decrease exponen- 
tially fast with L. Only the leading ( m = 0 )  term in the FACE series is a 
problem. 

We can eliminate the problem by defining 

f ( x )  - u(x) - x /L (3.6) 

The new unknown f ( x )  asymptotes to zero. Consequently, it has a rapidly 
convergent sine series and Eq. (3.4) is irrelevant. 

Thus, our numerical method is to replace the unknown u(x) by f ( x )  
via Eq. (3.6) and then apply the usual Fourier pseudospectral method 
(Boyd, 1989) to compute f (x) .  With this modified procedure, we have 
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solved the hyperBurgers' shock Eq. (1.6) f o r j  as high as 40, that is, solved 
a differential equation of 80th order. 

Three minor technical points remain. First, the x-plus-Fourier series 
used to make Fig. 1, 

exp(-[ng/L]2j) ( ~ - )  
Aj(x) = x/L + qj sin (3.7) 

n = l  n 

is a legitimate solution to the diffusion equation for all x, albeit a rather 
peculiar one whose graph resembles stairsteps, and not merely an approxi- 
mation to the infinite interval solution which is accurate on I - L ,  L].  In 
contrast, the x-plus-Fourier series for tanh(x) or a solution to the hyper- 
Burgers' shock equation is a representation valid only on x~  I - L ,  L].  
This limited range of validity does not alter the fact that the x-plus-Fourier 
series has only exponentially small error in approximating the infinite 
interval shock for xE [ - L ,  L].  

The second technical point is: How large should L be? The answer is 
that (u(L)-1) should be smaller than the desired error tolerance. Unfor- 
tunately, because the oscillations decay more and more slowly as j 
increases, L must increase with j. In practice, we had no trouble with j as 
large as 40 even on a microcomputer. 

The third issue is: How many Fourier sines do we need? As for the 
hyperdiffusion equation, the solutions to Eq. (1.6) turned out to be more 
and.more bandlimited as the damping order j increased. That is, all coef- 
ficients n such that 

n ~  
- - >  I (3.8) 
L 

tend rapidly to zero as j increases. Because the hyperBurgers equation is 
quadratically nonlinear, the Fourier series for the nonlinear term has twice 
the bandwidth of u(x) itself. So, for large j, we obtained excellent results by 
taking the truncation of the sine series to be 

N>2L/g (3.9) 

For the solutions to the 80th order ( j = 4 0 )  version of Eq.(1.6), for 
example, we found by varying L and N that we obtained reproducible 
graphs with L = 80 zr or larger and N = 200. 
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4. SHOCKS IN THE HYPERBURGERS EQUATION 

The problem is Eq. (1.6): 

(--1)Ju2j.x+UUx=O Xff F - -  or ctD] 

1 x < O  
lim u (x )=  (4.1) 

Ixl ~oo --1 X > 0  

The only known analytical solution is for j =  1 (ordinary, second derivative 
diffusion): 

u(x) = - t anh(x /2 )  [ j  = 1[ (4.2) 

The case ( j =  2) is a special case of the Kuramoto-Sivashinsky equation 
(Hooper and Grimshaw, 1988), but this and all other cases including the 
limit j =~ oo have defied analytical solution. 

The tanh function is qualitatively like the error function, which is its 
counterpart for the hyperdiffusion equation, in that (i) it varies monotoni- 
cally between its limits of _+ 1 and (ii) decays exponentially fast to those 
limits with increasing Ix[. However, the error function decays like a 
Gaussian whereas the tanh function decays like e x p ( - x ) :  Even for j =  1, 
the diffusive and Burgers shocks are different, though similar. 

The numerical solutions show that the same is true for other j. The 
cases j =  1, 2, and 3 are compared in Boyd (1992). Figure 3 compares j =  5, 
10, 20 and 40 on graphs of three different widths. Oscillations damp out 
with Ixl more slowly as j increases. In Fig. 3a, for example, the difference 
between the second crest and the asymptotic value, - 1, is more than twice 
as large for j = 40 as for j = 20. In Fig. 3b, oscillations are visible for j = 40 
even for x = 250, but the wiggles in the j =  5 shock are invisible beyond 
x = 50. 

This behavior is consistent with an asymptotic analysis of the hyper- 
Burgers equation for large x where the equation reduces to 

(--l)itl2j,c--lt,~'=O X > 0  (4.3) 

This constant coefficient differential equation is easily solved; the slowest 
decaying component is of the form 

u ~ e x p ( - # x ) c o s ( ? x - p h a s e ) ,  x ~ o o  

1 
/~ = sin (~  2 ( 2 j - 1 ) )  

( l )  
7 = cos rc 2 ( 2 j -  i-i 

j even (4.4) 

854/9/1-7 
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Fig. 3. HyperBurgers' shocks on the intervals (a) x e [0, 15], (b) [0, 50] and (c) [0, 250]. 
Solid: j = 4 0  (80-th derivative damping). Long dashes: j=20.  Short dashes: j =  10. Dotted: 
j = 5 (tenth-derivative damping). 
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and similar expressions with the arguments  of the tr igonometric  functions 
doubled w h e n j  is odd. The similarity to Eqs. (2.9) and (2.10) is striking. In  
particular, the coefficient of the exponential  decay, p, tends to zero with 
increasing j so that the oscillations extend farther and farther from the 
front as observed. 

Figure 3a also suggests there is a limiting form u~ a s j ~  o% which we 
will call the "infinity shock." For  x < 4 ,  the four graphs are almost  
indistinguishable. For  larger x, however, the j = 5 curve is more  and more  
rapidly damped and therefore is a poor  approximat ion  to the other  curves. 
The j = 10 graph, however, is a good  approximat ion  to both  the first peak 
and trough of the graphs for larger j. The j = 20 and j = 40 curves are 
.barely distinguishable on the whole interval x e  [0, 15]. Only  in Figs. 3b 
and 3c do we see the j = 20 shock damp out more  rapidly than the j = 40 
solution so that  the oscillations of the former have only half the amplitude 
of the latter at x = 50. 

The conclusion is that  the port ion of the infinity shock which would 
fit on Fig. 3a would differ little from the solid ( j  = 80) curve on that figure. 
As j increases, uj(x) would approximate  u~(x) on a larger and larger x 
interval. 

This behavior with increasing j is very much the same as we found via 
steepest descent for fi'onts of the hyperdiffusion equation in Sec. 2. To 
confirm the similarities, Fig. 4 is a graph of the sine coefficients for 

( ? m  

- . 4  - 

. . d r  

J 

n 

Fig. 4, Fourier sine coefficients for the j = 40 hyperBurgers" shock: Solid: b. [coefficients of 
utx)~. Dashed: fin [coefficients of -Si(x)]. Dotted: p. [coefficients of u(x)-(-Si(x))].  
L = 80/~. so the coefficients of Si(x) are bandlimited to n ~ 80. 
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b/40(.X'), b,, together with the coefficients of the x-plus-sine approximation to 
the sine integral, 

f 2 L 

B ' ~  L 
0 n > -  

[Coefficients of "Gibbs' Shock", Si(x)] (4.5) 

and the "residual" coefficients 

P n  = bn  - -  f in  ( 4 . 6 )  

We see that the residual coefficients are small' in comparison to those of the 
Gibbs' Shock: the negative of Si(x) is a good first approximation to the 
j = 40 hyperBurgers front. 

However, it would be wrong to infer that the small difference between 
u j ( x )  and - S i ( x )  disappears in the limit j ~ ~ .  First, note that the largest 
trough in - S i ( x )  is about -1 .18  whereas the four converged graphs in 
Fig. 3a show that the corresponding trough in the infinity shock is about 
- 1.34--roughly twice as large an oscillation. Second, Fig. 5 compares the 
residual coefficients defined by Eq. (4.2) for four different orders of 
damping, j. 

Two trends are clear. One is the resemblance to - S i ( x )  already noted: 
As j increases, the coefficients of degree > 80 decrease very rapidly. This 

ooco 

- o . o o 5  - 

-0.o10 

~ -o.o2o 

-ooz~ 

.... t , S "  
i/' 

. . . . . . . . .  4'o ' ' ' g o  r ' ' ~ o '  ' ' ~ o '  ' ' 2 o o  

n 

Fig. 5. Graph of the "residual" coefficients p, for j = 40 (solid), j = 20 (long dashes), j = 10 
(short dashes) and j=  5 (dotted). The solid curve is the same as the dotted curve in Fig. 4 
except that y-axis scale has been reduced by a factor of about 20: even the largest residual 
coefficient is small in comparison to b~ ~ -2~re. 
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strongly suggests that uo~, like Si(x), is a bandlimited function. The band- 
width condition n <~ L/re for the discrete sine series translates into the 
statement that if the infinity shock is alternatively represented as a Fourier 
transform, then 

f' 
Uoo(X) = goo(k) e ikx dk (4.7) 

- - 1  

for some function Uoo(k). 
The second trend is that the residual coefficients have a taller and 

taller spike at the bandlimit, n--L/re, suggesting that Uoo(k) may contain 
the Dirac delta functions, 3 ( k -  1) and 3(k + 1). The spectral series for the 
Si(x) is free of delta functions. 

Figure 6 displays the Fourier coefficients for the (2j)-th derivative of 
u(x)  for j = 8G- these  may be equivalently interpreted as the coefficients of 
the nonlinear term, u Ux. Given that U4o(X) is approximately bandlimited to 
Ikl ~< 1 (n ~< 80 in the graph), it is hardly surprising that the Fourier spec- 
trum of the quadratically nonlinear term u ux is bandlimited to k ~< 2. What  
is remarkable is that (i) the spectral coefficients for n < 80(Ikl < 1) are very 
small, presumably zero in the limit and (ii) another apparent 3-function at 
k = 1 (and by symmetry, at k = - 1  ). 

Despite all these tantalizing clues, we have not been sufficiently clever 
to deduce an analytical form for the infinity shock: only that it rather 
resembles the corresponding Gibbs'  Shock. Perhaps some reader will be 
smarter! 

Fourier coefficients of 2j-th derivative 

. 0  

. :3 

. 0  

q()@ 2f)O 
I ]  

Fig. 6. Coefficients of the 2jth derivative of ulx) for .j=40. (These are also the sine coef- 
ficients of - u u ~.) 
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5. SPECTRAL VISCOSITY 

The hyperviscosities described earlier have one disadvantage when 
combined with spectral methods. When the damping order j is fixed, the 
hyperviscosity coefficient must be O(h 2j-1) in order to smear out the front 
over the thickness of one grid spacing. (In this context, we mean that the 
crest and trough nearest the center of the front are separated by O(h).) 
This unfortunately implies that the O(1) wavenumbers will be artificially 
damped by O(h2J- 1). Thus, with j = 2, the error in the O(1) wavenumbers 
will decrease only cubically with h even though the intrinsic accuracy of the 
spectral method decreases exponentially fast with 1/h. The obvious remedy 
is to choose a "spectral viscosity" which is exponentially rather than 
algebraically small for small wavenumbers. 

As with other forms of artificial viscosity, the error is nonuniform: 
There are O(1) "smearing" errors within one grid interval of the discon- 
tinuity in the exact solution. However, Tadmor (1989, 1990), Maday and 
Tadmor (1989), and Schochet (1991) have proved that the error .is 
exponentially small outside the neighborhood of the front. 

Their analysis does not demand a unique form for the artificial 
viscosity, but rather imposes some constraints, broad enough to describe a 
whole family of functional forms, which give spectral accuracy outside the 
frontal zone. These criteria are the following: 

(i) The damping of small wavenumbers must be either identically 
zero or decrease exponentially with the Fourier truncation N. 

(ii) The frontal zone should be as narrow as possible for a given N. 

(iii) The oscillations of u(x) in the frontal zone should damp out 
rapidly away from the center of the front. 

(iv) The function Q(k) should be infinitely differentiable for all real 
k in the Fourier truncation where the damping term is of the 
form 

Q(k ) U(k)r162 -~  q(y) u ( x -  y) dy (5.1) 

where the left-hand expression is in wavenumber space whereas 
the right-hand side is the same expression in physical space; 
U(k) and Q(k) are the usual Fourier transforms of u(x) and 
q(x), respectively. 

Tadmor (1989) experimented with a form which satisfies constraints 
(i) (iii), but is not smooth because the first derivative of Q(k) is discon- 
tinuous 

0 k ~< m (5.2) 
Q(k)= - e k  2 k > m  
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where re(N) is an increasing function of N, the truncation of the Fourier 
series, and ~ is a constant. As shown in Fig. 6.1, [Tadmor  (1989)] this 
damping, although technically a "spectral" viscosity, gives very wiggly 
shocks as illustrated in our Fig. 7. 

It is well known (Lighthiil, 1958) that the rate of decay of the Fourier 
transform of a function q(x) as Ixl =" 0o is inversely related to the smooth- 
ness of Q(k), the function being transformed. In particular, if Q(k) is a C ~ 
function, q(x) will decay exponentially; this implies that the smearing of the 
discontinuity in the convolution integral wilt be a perturbation that will 
decay exponentially fast as we move away from the discontinuity. In other 
words, the effect of the damping is local and confined (except for an 
exponential tail) to the neighborhood of the front. Unfortunately, Q(k) as 
defined by Eq. (5.2) has a jump discontinuity at k = rn. This implies that its 
Fourier transform q(x) will decay only as O(1/Ixl) so that the damping 
term is a significant perturbation of u(x) even at great distances from the 
discontinuity in u(x). 

This argument is a bit suspect as applied to Eq. (5.1) because Q(k) 
must increase with k, and that implies that even if Q(k) is C ~', its function 

LI 

1 

X 

Fig. 7. The solution to the generalized hyperBurgers' equation when the viscosity is 

0, k, k~<l[n~<3l]  Q(k) = 
- -L k > l  

where the basis functions, periodic with a period of 62n, are sin(kx) with k=n/31 ,  
n = 1, 2 ..... 124. Only half the period is shown because the solution is antisymmetric with 

respect to x -  0. 
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transform q(x) exists only as a distribution. Nevertheless, the empirical 
evidence is that smoothness in Q(k) is highly desirable. 

Tadmor (1990) does not give the formula of his (smooth) spectral 
viscosity, so we experimented with a number of forms. Our best result is 
illustrated in Fig. 8 where 

Q ( k ) :  - e x p  41s188 t-16(~:-~)2 ' h:~>�88 
(5.3) 

where x is the wavenumber scaled by the maximum wavenumber, i.e., 

1(. ~- k / k m a  x ( 5 . 4 )  

The 1/IK-1/41 in the exponential ensures that all derivatives of Q(k) with 
respect to k are 0 at the cutoff, k = kmax/4, thus ensuring continuity of the 
viscosity and all its k-derivatives, i.e. Q(k) in Eq. (5.3) is a C a function. 

The front is oscillatory, as Tadmor found for all the choices he tried. 
He obtained good results, but only after applying the postprocessing of 
Gottlieb and Tadmor (1985). 

In order to compare the spectral viscosity with the solutions of the 
hyperBurgers Eq. (4.1), we normally used kma x = 2, which is equivalent to 
choosing the spatial period P to be rcN where N is the number of sines in 

-.6 

U 

-.8 

-1.2 

-1.4 

10 th derivative 
hyperviscosity 

Y viscosity 

I 

0 i0' 20 

Fig. 8. Solid: the solution to the generalized Burgers equation Q(k) U(k) + ~(u u~) where 
U(k) is the Fourier transform of u(x), ~ denotes the Fourier transform operation and Q(k) 
is defined by Eq. (5.3). Dashed: the solution to the hyperBurgers Eq. (4.1) for j = 5  (10th 
derivative damping). The spatial period is 160re and N =  160. 
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the spectral basis. The reason for this choice is that for high order damp- 
ing, the solution u(x) to Eq. (4.1) is approximately bandlimited to k <  1 
since the damping, - k  2j, increases very rapidly for larger k, annihilating 
the higher wavenumbers as previously illustrated in Figs. 4 and 5. The non- 
linear term has double the bandwidth of u(x) itself, so there is little error 
in truncating the spectral basis by ignoring k > 2. 

Figure 8 compares two solutions to the hyperBurgers equation: one 
with the spectral viscosity in Eq. (5.3) and the other with 10-th derivative 
damping. The spectral viscosity is a great improvement because the oscilla- 
tions damp out much rapidly away from the origin than with hyper- 
viscosity. Of course, the alternative of narrowing the oscillation zone by 
using a lower derivative damping, i.e., smaller j in Eq. (4.1), is also 
available; for j = 1 (2d derivative damping), u(x) varies monotonically. The 
price of smaller j is stronger damping of small wavenumbers, however, and 
this is precisely what spectral viscosity aims to avoid. 

One remarkable feature of the graph is that the first and deepest 
trough is almost identical for both solutions, even though the viscosities 
have rather different functional form as shown in Fig, 9. For larger Ix1, 
the effects of different viscosities are very striking: the spectral viscosity 
solution damps out more quickly. For small Ixl, however, there is a kind 
of universality. Perhaps this is not too surprising. Both cases have the same 
nonlinear term, u ux, and both have viscosities which are large for k > 1 
and small for k <  1 and equal 1 at k = 1. 
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Fig. 9. A comparison of the absolute values of the viscosity coefficients, Q(k), for the spectral 
viscosity Eq. (5.3) [solid] and for 10th derivative hyperviscosity [dashed] where k .... = 2. 
For the spectral viscosity Q(k)=-0 for k < 1/2. 
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We found this common shape for the first t rough--a  minimum of about 
-1 .33  at around x = 2 . 5 - - f o r  many other choices of spectral viscosity. 
Indeed, a case which gave a minimum of - 1.5 made us suspicious: Why was 
the minimum not - 1.33? The answer was inadequate numerical resolution. 

We must emphasize that this 33 % overshoot is not completely univer- 
sal. A second derivative damping, for example, gives a shock which is a 
hyperbolic tangent function and thus has no oscillations or overshoot at 
all. When the damping of the small wavenumbers is exponentially small, 
however, the shape of deepest trough seems to be the same across a wide 
range of functional forms for the viscosity. We have no explanation. 

6. S U M M A R Y  

In this work, we have used multiple scales perturbation analyses to 
reduce frontal dynamics to a stationary, generalized Burgers equation 
(Lesser and Chrighton, 1975, Blumen, 1991a, b, Boyd, 1992). We then 
solved this ordinary differential equation numerically to analyze the effects 
of different choices of viscosity on the structure of the fronts. By rescaling 
the length scale, the viscosity coefficient can be removed to give a canonical 
equation which is parameter-free except for the shape of the dependence o f  
the damping on wavenumber. 

Two numerical accomplishments are independent of shock pheno- 
menology: (i) to illustrate the linear-plus-Fourier series pseudospectral 
method for computing tanh-like, nonperiodic solutions and (ii) to solve 
nonlinear differential equations of very high order. 

Our other interesting conclusions are all tied to the physics of fronts. 
The first is that although shock-resolving algorithms are generally devised 
to enforce monotonic change across the front, we find that hyperviscosity 
and spectral viscosity generally lead to oscillatory frontal zones. It follows 
that we must be extremely careful in interpreting frontal oscillations in 
numerical models that use higher order damping. Such oscillations may not 
be a sign of numerical disaster, but rather a correct mathematical expres- 
sion of the form of the dissipation. A second order viscosity is very special 
in generating a nonoscillatory, monotonic front. 

A second conclusion is that using a hyperviscosity of very high order to 
resolve the front is a bad idea, even though the damping outside the frontal 
zone decreases rapidly with increasing order of dissipation. The reason is 
that the oscillations decay more and more slowly away from the center of 
the front as the dissipation order j increases. Spectral viscosity is better 
because it gives exponentially small damping away from the front in corn- 
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bination with a narrow region of oscillation around the front (Tadmor, 
1989, 1990, Maday and Tadmor, 1989, and Schochet, 1991). 

A third conclusion, noted by Tadmor (1989) and explained here, is 
that it is important that the spectral viscosity be C ~, that is, a continuous 
function of wavenumber k with continuous derivatives. A discontinuous 
viscosity may have little or no damping for small wavenumbers (good!), 
but the discontinuity (in wavenumber) will extend oscillations (in x) to 
vast distances from the center of the front. 

A fourth conclusion is that there is a quasi-universality in the structure 
of the deepest trough corresponding to an overshoot of about 33% for a 
wide range of high order and spectral viscosities. The universality is limited 
because it is easy to find counterexamples; we computed a viscosity such 
that the sine integral Si(x), which has the usual Gibbs' overshoot of less 
than 18%, is the exact solution. Nevertheless, it is striking the structure of 
the front is much more sensitive away from the front than in the trough 
nearest the center of the front. 

Because hyperviscosities and spectral viscosities give oscillatory fronts, 
it is common to combine the artificial damping with a postprocessing filter 
such as that of Gottlieb and Tadmor (1985). Some schemes, such as Cai 
et al. (1989), explicitly fit a step function to the computed coefficients. This 
is successful as a running substitute for artificial viscosity, but would be 
disastrous if applied as a postprocessing to flows computed with hyper- 
viscosity or spectral viscosity. The front illustrated in Fig. 8, for example, 
is not the sine integral, but rather has its own structure with almost twice 
the overshoot of Silx). 

The major open question is how to optimize the choice of spectral 
viscosity. The stationary generalized Burgers equation is a good starting 
point because the frontal structure has been reduced to an ordinary 
differential equation. It is simple in principle to solve this with a general 
viscosity coefficient, Q(k) [in spectral space], and then optimize to find the 
best Q(k) subject to various constraints. Unfortunately the constraints are 
multiple and messy. 

One constraint is that the frontal zone should be as narrow as 
possible, that is, u(x) should rapidly asymptote to - 1 as x ~ ~ .  A second 
constraint is monotonicity: real fronts are generally assumed to be free of 
the oscillations generated by a high order or spectral viscosity. (In many 
applications, the physical viscosity is so small that the physical fronts, 
whether oscillatory or not, have a width small in comparison to any 
reasonable grid spacing.) A third constraint is that the viscosity must taper 
the spectral coefficients so that the Nth coefficient is very small. Setting the 
viscosity identically equal to zero, for example, would make the solution of 
the hyperBurgers equation a step function, satisfying the first two constraints, 
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but badly flunking the third constraint because of Gibbs oscillations. Good 
choices for spectral viscosity are now known, but determination of an 
optimum choice is an unsolved problem. 
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APPENDIX. PERIODIC SHOCKS 

Fourier spectral methods are normally applied to compute solutions 
which are spatially periodic, as opposed to the infinite interval solutions 
calculated here. An obvious question is: how does the periodicity modify 
the shape of shocks? How relevant are the tanh-like solutions illustrated in 
Fig. 1 to the periodic, sawblade-like solutions of Tadmor (1989)? 

The first answer, as expressed in Theorem 1, is that the tanh-like 
shocks are good local approximations to general shocks, regardless of the 
interval or the details of the initial conditions. This may be proved via the 
method of multiple scales (Boyd, 1992). 

The second answer is that the tanh-like numerical solutions contain 
good global approximations to a simple class of spatial periodic nonlinear 
solutions. If we write 

u (x) = -x /L  + f(x) (A. 1 ) 

as in Eq. (3.6) where f(x) is periodic, then by direct substitution into the 
hyperBurgers' equation and a standard scale analysis, 

(-1)J fzj.x+ ff~,=O+O(1/L) f ( x ) - - f ( x+2L)  (A.2) 

In words, the periodic part of our numerical solutions is itself a solution 
to the hyperBurgers' equation with an error O(1/L) where L~>I is the 
spatial period. The graph o f f (x )  qualitatively resembles the sawtooth-like 
solutions displayed in Yadmor (1989, 1990). 

The second answer is really a reaffirmation of the first. The linear term 
x/L, which is the difference between the tanh-like u(x) and the periodic 
f(x), is a slowly-varying perturbation--"slowly-varying" denoting a length 
scale of O(L). The method of multiple scales implies that the structure of 
the frontal zone must be the same for both the periodic solution and the 
tanh-like solution except for an error inversely proportional to the scale on 
which these solutions are diverging, O(1/L). 
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