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Scheduling Data Base Analysis 
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Noah D. Glick 

A methodology to determine and maintain the schedule times used in a computer-based OR 
Scheduling System is presented. State-of-the-art equations to be used for different scheduling 
situations are presented and discussed with the attendant data base reduction methodology to 
provide the scheduling parameters. An example is given of the data reduction methodology as 
well as suggestions for maintenance of the data base. 

I N T R O D U C T I O N  

As the use of microcomputers becomes more extensive in the scheduling of patients in 
operating rooms (OR), great potential exists to improve the scheduling process so that 
many of the present administrative problems, such as schedule slippage, low utilization, 
and excessive overtime can be reduced. 

This paper discusses a very important aspect of the use of microcomputers in the OR 
to determine and maintain schedule times that are as accurate as possible. Typical OR 

- -  

scheduling systems usually are based on the average time (X) for the procedure(s) with 
the values based on experience or statistical analysis. If these times are assumed to be 
normally distributed and are used to schedule the OR procedures where everyone is 
expected to be ready to begin at the scheduled time, then the probability will be approx- 
imately 0.50 that the procedure will be finished within the allotted period; thus, the 
probability of being able to start the second procedure on time is 0.50. Likewise, the 
probability of starting the third procedure on time is between 0.25 and 0.50. 

This methodology can result in poor utilization because surgeons, especially the 
busier ones, will want to schedule cases only where they have a reasonable probability of 
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starting on time, namely, the AM cases, or when they can follow themselves. Also, poor 
utilization can result because OR personnel are reluctant to schedule cases in the afternoon 
due to the difficulty in determining a schedule permitting them to finish before the end of 
the shift. 

If more appropriate scheduling times could be provided and used as part of the 
scheduling process, then the administrative problems described above could be greatly 
reduced. Procedures could be scheduled throughout the day with much higher probabil- 
ities that they would start on time. 1'2 In addition, OR staff could be forewarned with 
greater precision when overtime would be required. 

P R O C E D U R E  T I M E  C O M P O N E N T  E Q U A T I O N S  

If the distributions of time required for an OR procedure were normally distributed, 
Equation (1) could be used accurately to predict the amount of time required for the case 
at whatever level of confidence the user desired. 

P i j - - - m  = X i j - - . m  "1- Z ~1' S i j . . . m ,  ( 1 )  

where P is the time to be allotted for the procedure, ij • • • m are subscripts indicating 
surgeon, case teaching status (resident surgeon involvement), inpatient or outpatient 
status, and other case characteristics. X is the average operating room time for the 
procedure. Z is the number of standard deviations associated with the probability of 
having enough time to set up for the case, do the surgery, and clean up afterward. S is the 
unbiased sample standard deviation of the operating room time for the procedure. 

With Z = 0, the probability is 0.50 for having sufficient time to set up for the case, 
do the procedure, and clean up afterwards; it is the same as using the average time as 
previously discussed. With Z = 1.645, the probability is 0.95 for having sufficient time. 

Unfortunately, many OR procedure time distributions display non-normal charac- 
teristics. Plots of OR procedure times usually reveal a truncation on the left side and a tail 
on the right side as shown in Fig. 1. This suggests that OR procedure times might be better 
represented by a lognormal distribution. Because of this, predictions for individual cases 
could be improved if they were based on a data base constructed from the natural logs of 
the procedure time data. To predict the time to be scheduled for the procedure, Equation 
(2) should be used on the natural log data instead of Equation (1). This is the same as 
using Equation (1) on the transformed data and then taking the antilog of the result. 

P i j "  • • m = eC2iJ . . . .  +z*s , j . . .  ~1 (2) 

Frequency 

Procedure Time (minutes) 
Figure 1. A plot of a typical procedure time. 
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Equations (1) and (2) were presented for the purpose of determining the time required 
for a single case. If the scheduling policy of the OR suite is to assign fixed start times to 
cases throughout the day, then Equation (2) using a Log transformed data base should be 
used. An exception to this is when two or more cases on an "as follows" basis will be 
done. To determine the total amount of time that the room will be in use, Equation (3) 
should be used. Equation (3) should also be used to estimate the endpoint for the last case 
in a room (assuming that two or more procedures are to be performed) when the OR suite 
scheduling policy calls for all cases to be performed on an "as follows" basis. For this 
situation only the first case of the day in a room has a fixed starting time. Obviously, if 
only one case is to be performed in a room for the day, Equation (2) should be used 
regardless of the scheduling policy. 

/ z(g) : E ~'ij - • • rn q- Z * ( S i j - . .  n0 2 , (3)  

h=l h=l  

where T(N) is the total time needed for " N "  cases that are performed on an "as follows" 
basis. 

As with Equation (1), Equation (3) also assumes that the cases' distributions are 
normally distributed. Unfortunately, the authors do not know of any equation that can be 
used with the transformed log data. Though some error will result, the size of this error 
will decrease as the number of cases (N) increases. Summing the times derived with 
Equation (2) would significantly overestimate the amount of time required. 

D A T A  BASE R E D U C T I O N  M E T H O D O L O G Y  

In order to derive the greatest benefit from OR case time data, the data need to be 
subdivided into subsets that are not only clinically meaningful and consistent but also 
statistically similar for the purpose of predicting OR time needed for procedures. In 
addition, data subdivision needs to be done along lines that are conducive to the devel- 
opment of user-friendly microcomputer programs that can use the processed data for 
scheduling purposes. 

Because OR time requirements are highly procedure dependent and because the data 
subsets need to be clinically meaningful, the authors have chosen the "set  of codes" 
identifying the set of OR procedures (to be done during one trip to the OR) as the first 
factor to be used in data subdivision. Even though the time distributions for two different 
sets of procedures (e.g., one on the mouth and another on the foot) may be essentially the 
same, clinical meaningfulness of the subsets will be lost if the data are combined. Table 
1 illustrates the type of summary statistics that one might see for data subdivided at the 
procedure set level for six different sets of procedures. 

Further data analysis now can be attempted to refine the predictive power of the time 
estimates by subdividing the data by other factors, such as primary (staff) surgeon, case 
teaching status (resident involvement), patient inpatient/outpatient status, patient sex, 
patient age, etc. These particular factors are mentioned because they are patient and case 
attributes that should be known at the time the surgery is scheduled. Information not 
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Table 1. A Partial Summary of Operating Room Time Data Subdivided at the Procedure 
Set Level 

AVG STDV AVG STDV 
PC1 PC2 TIME TIME LTIM LTIM PRED CNT 

28.30 0.00 63.4 14.2 4.1266 0.2188 87.8 235 
47.00 0.00 77.6 19.0 4.3228 0.2431 112.5 61 
49.46 0.00 62.5 21.1 4.0980 0.2564 91.8 63 
53.00 0.00 71.8 16.1 4.2498 0.2174 100.2 241 
65.61 68.40 123.0 25.8 4.7906 0.2088 169.7 100 
79.35 0.00 143.3 32.8 4.9408 0.2191 200.6 128 

Total 828 

The following is a key to the table's nomenclature: 

28.30 
47.00 
49.46 
53.00 
65.61 
68.40 
79.35 

Tonsillectomy with adenoidectomy 
Appendectomy 
Excision of hemorrhoids 
Unilateral repair of inguinal hernia 
Removal of both ovaries and tubes; same oper. episode 
Total abdominal hysterectomy 
Open reduction of fracture with internal fixation; femur 

AVGTIME 
STDVTIME 

AVGLTIM 
STDVLTIM 

PRED 

CNT 

average room time (in minutes) for the procedure set 
unbiased sample standard deviation (in minutes) for the distribution of the 
procedure set 
average of the natural logs of the procedure set room times 
unbiased sample standard deviation for the distribution of the natural logs 
of the procedure set room times 
predicted maximum length of time (in minutes) that the procedure set will 
require with a probability of 0.95. It is derived from Equation (2). The 
specific equation is: 

PRED = e tAVGLTIM + (1"645 × STDVLTIM)] (4) 

number of cases of data within the procedure set 

known until after case scheduling, such as nursing/anesthesia personnel assignments and 
patient preoperative condition, cannot be used. 

The objective of the methodology presented below is to determine the subsets of data 
within procedure sets that are statistically different from each other and that will produce 
better predictions of room time needed, based on the chosen factors and corresponding 
case attributes. Basically, the process involves subdividing the data into component 
subsets by the chosen factors and then pooling the subsets determined to be statistically 
similar in terms of their time requirements. 

The methodology is designed to work with any size data set and with whatever 
factors an OR administrator may choose. For many types of procedures, however, sample 
size will limit the process of forming subsets of data beyond the procedure level. For other 
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procedure sets, regardless of the amount of available data, subdivision will not be possible 
because a procedure and one or more specific factors may be incongruous, e.g., open heart 
surgery is not performed on an outpatient basis. Finally, attempted subdivision by mul- 
tiple factors, though not necessarily incongruous in theory, may result in empty subsets 
due to OR policy, lack of data, and/or other reasons. To facilitate explanation, an example 
is presented based on procedure 53.00 (unilateral repair of inguinal hernia) data, sum- 
marized in Table 1. The factors selected as an example for data subdivision are primary 
surgeon and case teaching status (surgical resident involvement). 

Before data subdivision is done for any procedure set, rules must be established to 
accommodate situations when potential subsets contain only single cases, i.e., insufficient 
data to compute variances. Though single case subsets simply could be excluded, it is 
desirable to combine them with one or more other single case subsets to maintain overall 
sample size. This complicates data management by having to maintain subset(s) in which 
one or more factors are disregarded in the formation of the initial component subsets. For 
our example, the following rules are used to handle single case subsets: 

1. If  a primary surgeon has performed only two cases with one being a teaching case 
and the other a nonteaching case, pool the two cases for the primary surgeon and disregard 
the teaching status factor. 

2. I f  rule 1 falls, exclude the single case subset from analysis. It cannot be used in 
testing and pooling for this detailed set of factors, but it will be included in later analyses 
when, for example, teaching status is the only factor. 

Table 2 illustrates the situation prior to final data subdivision with respect to the 
initial case count breakdown and other statistics. Because Surgeon 1 performed two cases, 
one teaching and one nonteaching, rule 1 will be applied when subdividing the data into 
their component subsets. Under rule 2, the single case performed by Surgeon 8 will be 
excluded from subset assignment for this round of testing and pooling. Table 3 shows 
these component subsets at the start of the testing and pooling process following subdi- 
vision, as well as the initial component subset identifiers (subset number) to be used to 
track the data during processing. 

Table 2. Data Summary for Procedure 53.00 Subdivided by the Factors Primary Surgeon 
and Case Teaching Status 

Primary Teaching AVG STDV AVG STDV 
Surgeon Status TIME TIME LTIM LTIM CNT 

1 No 45.0 - -  3.8066 - -  1 
1 Yes 75.0 - -  4.3174 - -  1 
2 No 50.0 0.0 3.9120 0.0000 3 
2 Yes 67.8 13.8 4.1964 0.2061 51 
3 No 64.0 10.7 4.1476 0.1680 5 
3 Yes 67.8 9.4 4.2073 0.1425 9 
4 Yes 67.3 11.8 4.1937 0.1750 66 
5 No 83.5 30.4 4.3905 0.3725 2 
5 Yes 90.3 15.1 4.4898 0.1659 18 
6 No 79.0 9.6 4.3638 0.1162 5 
6 Yes 77.8 13.5 4.3404 0.1605 37 
7 Yes 82.0 19.9 4.3809 0.2468 7 
8 No 55.0 - -  4.0073 - -  1 
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Table 3. Data Summary  for Procedure 53.00 Subdivided by the Factors of  Primary 
Surgeon and Case Teaching Status 

Case Teaching Status 

Teaching Nonteaching 

Primary Subset Case Subset Case 
Surgeon Number Count Number Count 

1 1 a 1 1 a 1 
2 3 51 2 3 
3 5 35 4 5 
4 7 66 6 9 
5 9 18 8 2 
6 11 37 10 5 
7 12 7 

a Pooled by Rule 1. 

To determine if the data of two component subsets should be pooled, we must test 
the hypothesis that both subsets represent samples of data from the same population, i.e., 
the schedule time means and variances from Equation (4) for both subsets are equal. (An 
assumption is that if the variances are equal, the standards deviations are equal.) If equal, 
the hypothesis is accepted and the data are pooled (subsets combined); if either set of 
terms is not equal, then the hypothesis must be rejected. The first step is to test the 
variances 2 2 (S 1,S 2) using an equality of variance F test. If no significant difference is 
found, then equality of the subsets' means (X 1 rX2) is tested using a two-sample t-test. If 
the variances are not equal, there is no need to test the means. 

In practice, testing and pooling occur in two separate stages. In Fig. 2, the decisions 
made during both stages of the process are graphically displayed for the procedure 53.00 
example. On the far left side of the figure, the initial component subset identifiers from 
Table 3 are displayed. Though it is not possible to show all pair-wise tests in two 
dimensions, the asterisks (*) that fall in a vertical column indicate the existence of tests 
between one subset and every other subset in that column. Each vertical bar represents the 
combining of two sets and the pooling of their data. P1-P4 identify the aggregate subsets 
following stage one processing, and A-F identify the final subset groups that are homog- 
enous in terms of their subset means and standard deviations. 

In the first stage of testing and pooling (see Fig. 3), processing is based only on the 
subsets' unbiased variances. One by one the subsets with the greatest similarity are 
combined and new comparisons are made between the pooled subset and the other re- 
maining subsets. More specifically, processing begins by testing each pair of component 
subsets with the F test for significant difference between their unbiased standard devia- 
tions (this requires N(N-1)/2 tests for "N" component subsets). Pooling then is done for 
only the two subsets with the largest significance level that is also greater than alpha 
(alpha = 0.05 in the example). If no pair's significance level is greater than alpha, stage 
one processing is completed. If pooling does occur, then an unbiased overall standard 
deviation is computed for the pooled data of the combined subset, and pair-wise testing 
between the combined subset and the remaining subsets is done next. This process is 
repeated with subsequent pooling of subsets occurring each time the greatest significance 
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Test Group Variances for 
Equality and Combine 

Accordingly 
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where: 

-- The numbers identify original groups by surgeon and teaching status. 
-- Asterisks "*" indicate comparisons with remaining groups. 
-- Vertical bars indicate combining of subsets by pooling data. 
-- P1 - P4 represent aggregate subsets with homogeous variances. 
-- Capital letters in the far right column identify final groups. 

Figm~ 2. A graphical display of the testing and pooling process performed on the component subsets of 
procedure 53.00 data. 

level of  a pair-wise test between the remaining pooled and unpooled subsets is greater than 
alpha. When stage one processing is completed, each resulting "aggrega te"  subset is 
homogeneous with respect to the variances of  its component subset(s) and significantly 
different with respect to the component subset(s) of  the other aggregates. 

For the second stage, each aggregate is separated into its component subsets in 
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Form data groups having similar case attributes 
(e.g, by surgeon). 

+ 
For each N(N-1)/2 pairs of groups, use the F-test to 
determine the (~ significance level for equality of 
variance of group pairs. 

Order all pair-wise comparisons by ~ level and 

select the group pair with the largest c£ 

Y 

I Form a new group by combining the pair's two 
components and compute its overall variance. 

Omit from further consideration all comparisons 
between the component groups of the new group and 
the other remaining groups. 

Use the F-test to determine the (x significance 
levels for equality of variance of the new group 
paired with each of the remaining groups. 

I 
Final "aggregate" groups are 
significantly different from 
each other with respect to 
variance 

/ ~ r o c e e d  with means testing f o ~  
~ original groups within aggregates~) 
~ Point A ~ 

Figure 3. Flow chart for variance comparison. 

testing and pooling of the latter based on the subsets' means (see Fig. 4). Processing is 
done on one aggregate at a time. This limits the scope of testing and pooling to only the 
component subsets from within the same aggregate which have no statistical differences 
in their standard deviations. Except for the use of t tests instead of F tests to assess 
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I For each pair of groups, use the t-test to determine the (7. 

significance level for equality of means of the group pairs. 
=,._1 
w T 

I Order all pairwise comparisons by O~ level and select the 

group pair with the largest G .  

Y 

I Form a new group by combining the group pair's two components I 
and compute the new 9roup mean. I 

I Omit from further consideration all comparisons between the 
component ~]roups of the new ~droup and the other remaininc d 9roups. 

÷ 
I Use the t-test to determine the ~ significance levels for equality of 

means of the new group paired with each of the remaining groups. 

I , 

I Determine I 
Cell Matrix 

+ 

Figure 4. Flow chart for means comparisons. 
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equality of the subsets' means, the algorithm for testing and pooling is essentially the 
same as in stage one. 

For the procedure 53.00 example, Table 4 shows the statistics for both the interme- 
diate (PI • • • P4) and final subsets (A, B . . . F) following testing and pooling. The 
headings in the table are as previously defined. 

Based on the identifying component subset numbers, Table 5 depicts the final subset 
groups' assignments for scheduling purposes according to the primary surgeon and case 
teaching status factor. For example, operating room time for a case to be performed by 
Surgeon 3 on a nonteaching basis would be predicted by final subset group " B " .  Because 
the case for Surgeon 8 was excluded from testing and pooling, scheduling for Surgeon 8 
and other surgeons not included in processing because of lack of cases cannot be deter- 
mined from the analyses carried out so far. 

Predictions for the time needs of Surgeon 8 and Surgeon 7, nonteaching will be 
minimal because they did one or fewer 53.00 procedures. However, there likely are to be 
instances when a time prediction will be needed for them, or when a new surgeon will 
want to do the procedure. For these instances, another round of testing and pooling will 
have to be done for all procedure 53.00 data factored only for case teaching status. This 
is accomplished using the same methodology as just described. Table 6 is an example of 
the result. 

T H E  S C H E D U L I N G  A P P L I C A T I O N  

Once the data base has been analyzed, a system to predict times for scheduling 
purposes is necessary. Regardless of scheduling policy (fixed start time versus "as 
follows" scheduling), there always will be a need to compute the maximum times re- 
quired for both single and multiple cases. Hence, the system must be capable of deriving 
time requirements based on both Equations (2) and (3). This implies that for each entry 
in the scheduling data base, there must be two sets of means and standard deviations, one 

Table 4. Intermediate and Final Subset Information Derived from the Testing and Pooling 
of Procedure 53.00 Component Data Subsets Based on Primary Surgeon and Case 

Teaching Status 

AVG STD AVG STD 
DATA SET TIME TIME LTIM LTIM PRED CNT 

P1 50.0 0.0 3.9120 0.0000 50.0 3 
P2 70.3 15.0 4.2311 0.2093 97.1 140 
P3 73.2 20.8 4.2568 0.2699 110.0 46 
P4 76.1 13.0 4.3192 0.1602 97.8 51 
A 50.0 0.0 3.9120 0.0000 50.0 3 
B 67.4 12.6 4.1929 0.1871 90.1 122 
C 90.3 15.1 4.4898 0.1659 117.1 18 
D 73.2 20.8 4.2568 0.2699 110.0 46 
E 67.8 9.4 4.2073 0.1425 84.9 9 
F 77.9 13.0 4.3432 0.1549 99.3 42 
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Table 5. Final Subset Group Assignments 

Primary Teaching Nonteaching 
Surgeon Case Case 

1 D D 
2 B A 
3 D B 
4 B E 
5 C D 
6 F F 
7 D *~ 
8 ,a ,a 

a No group assignment because of rule 2. 

representing log data and one representing the untransformed data. An alternative ar- 
rangement would be to have the means and standard deviations of the untransformed data 
along with precalculated estimates for single procedure set scheduling times. This, how- 
ever, would restrict time estimates for single procedure sets to values based on a prede- 
termined value of Z (as in Table 4). 

To deliver the greatest benefit, the system must render scheduling time estimates for 
as many types of procedures as possible. Because of sample, size limitations, there will 
continue to be a need for estimates from surgeons and/or OR schedulers for infrequently 
performed procedures and for surgeons doing a particular type of procedure for the first 
time. The system should produce some time estimate even if it has no specific data for one 
or more of the factors used in the full-scale factor analysis. Therefore, the system's data 
base will contain a degree of redundancy to enable the scheduler to use the most appro- 
priate set of data for the circumstances. 

For example, suppose that testing and pooling for only the teaching status factor 
produced the results shown in Table 6. Table 7 then would provide the type of scheduling 
data base entries for procedure 53.00 based on both multiple factor processing (primary 
surgeon and teaching status) and single factor processing (teaching status). 

In practice, the system first would prompt the user to enter information on all factors 
used for testing and pooling, i.e., procedure codes, primary surgeon codes, and the 
expected case teaching status. Next, the system would locate hierarchically the data base 
record containing the statistics of the subset that most closely matched the factors entered 
by the user. In Table 7 records 786 through 798 contain the statistics for all surgeons for 
which surgeon-specific predictions can be made, whereas records 784 and 785 contain the 
statistics for all other surgeons depending on the teaching status of the case to be sched- 
uled. 

Table 6. Hypothetical Final Subset Information from Testing and Pooling of Procedure 
53.00 Component Data Subsets Subdivided by Only Case Teaching Status 

AVG STD AVG STD 
DATA SET TIME TIME LTIM LTIM PRED CNT 

Teaching 73.4 16.2 4.2778 0.2172 103.0 215 
Nonteaching 67.0 14.5 4.1828 0.2119 92.9 26 
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Table 7. Example of Scheduling System Data Base for Procedure 53.00 Based on 
Information from Table 4 and Table 6 

Data Base Factors Final Subset Group Statistics 

Record Surgeon Teach AVG STDV AVG STDV 
Number PC1 PC2 (i) a (j)b TIME TIME LTIM LTIM 

784 53.00 0.00 0 1 73.4 16.2 4.2778 0.2172 
785 53.00 0.00 0 2 67.0 14.5 4.1828, 0.2119 
786 53.00 0.00 1 1 73.2 20.8 4.2568 0.2699 
787 53.00 0.00 1 2 73.2 20.8 4.2568 0.2699 
788 53.00 0.00 2 1 67.4 12.6 4.1929 0.1871 
789 53.00 0.00 2 2 50.0 0.0 3.9120 0.0000 
790 53.00 0.00 3 1 73.2 20.8 4.2568 0.2699 
791 53.00 0.00 3 2 67.4 12.6 4.1929 0.1871 
792 53.00 0.00 4 1 67.4 12.6 4.1929 0.1871 
793 53.00 0.00 4 2 67.8 9.4 4.2073 0.1425 
794 53.00 0.00 5 1 90.3 15.1 4.4898 0.1659 
795 53.00 0.00 5 2 73.2 20.8 4.2568 0.2699 
796 53.00 0.00 6 1 77.9 13.0 4.3432 0.1549 
797 53.00 0.00 6 2 77.9 13.0 4.3432 0.1549 
798 53.00 0.00 7 1 73.2 20.8 4.2568 0.2699 

a A value of "0" for Surgeon indicates that the factor was not used in forming the subset. 
b In the Teach column, "1" indicates a teaching case and "2" indicates a nonteaching case. 

Application o f  the scheduling system data base would depend on the type of  sched- 
uling function to be performed. For  each case to be scheduled, the computer would 
uniquely identify the appropriate data base record to be used by the scheduler 's  inputs. I f  
only a single case were to be scheduled, the estimated time required would be computed 
from the values in the last two columns and Equation (2). I f  an "a s  fo l lows"  scheduling 
function were to be processed, values from the first two columns for each of  the "a s  
fo l lows"  cases and Equation (3) would be used to compute the overall  t ime required. 

M A T R I X  M A I N T E N A N C E  

In practice, the methodology presented herein would be incorporated into a computer 
program that would be run every three months to produce a matrix like Table 7. As the 
data base increased in size, the methodology would produce more precise schedule times 
because of  the increased power o f  the statistical tests. Consideration also must be given 
to purging the data base of  particular procedure times if  the following conditions were 
found to exist: 

1. I f  the method of  doing a particular procedure changed. 
2. I f  a surgeon left the staff. 
3. I f  errors occurred concerning the elapsed time of  a procedure. This typical ly 

occurs when there are delays in doing a procedure that are not excluded prior to posting 
to the data base. 

4. Changes in the methods in determining the start and stop times of  doing a 
procedure. 
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C O N C L U S I O N  

A methodology with examples has been presented to produce an OR procedure 
historical data base to provide schedule times for future procedures. Use of the method- 
ology requires a microcomputer because of the computations necessary to perform the 
tests, the log transforms and the repooling of data. The result is schedule times that are 
established according to hospital policy with the specified probability of having enough 
time to do the procedures. These schedule times, when properly integrated into the OR 
scheduling procedure, should greatly reduce the administrative problems of late starts, 
poor utilization, and excessive overtime. 
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